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We present a quantum computing algorithm for the smoothed particle hydrodynamics (SPH) method. 
We use a normalization procedure to encode the SPH operators and domain discretization in a quantum 
register. We then perform the SPH summation via an inner product of quantum registers. Using a one-
dimensional function, we test the approach in a classical sense for the kernel sum and first and second 
derivatives of a one-dimensional function, using both the Gaussian and Wendland kernel functions, 
and compare various register sizes against analytical results. Error convergence is exponentially fast in 
the number of qubits. We extend the method to solve the one-dimensional advection and diffusion 
partial differential equations, which are commonly encountered in fluids simulations. This work provides 
a foundation for a more general SPH algorithm, eventually leading to highly efficient simulations of 
complex engineering problems on gate-based quantum computers.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Interest in quantum computing and its practical uses has grown 
dramatically in recent years, as exemplified by Google’s claim of 
‘quantum supremacy’ [1] and a potential ‘goldrush’ for industry 
[2–4]. Quantum computers promise a way to perform highly com-
plicated calculations that are infeasible on classical machines. The 
power of quantum computation has been well documented [5–7]
in many areas such as chemical and materials science [8–10], high-
energy physics [11–13], post-quantum cryptography [14,15], and 
optimization problems across industry [16,17]. The original moti-
vation for quantum computing was based on Feynman’s arguments 
[18]: since the world is fundamentally quantum mechanical, it 
makes sense to use ‘quantum’ machines to simulate both quantum 
mechanical and classical physical systems [19].

There already exists a rich ecosystem of quantum numeri-
cal algorithms which have applications in modeling, simulation 
and numerical analysis. A well known example is the Harrow-
Hassidim-Lloyd (HHL) algorithm [20] for solving linear systems 
of equations to approximate the solution vector. Other promi-
nent methods include quantum walks [21–23], quantum anneal-
ing [24–26], and hybrid quantum-classical algorithms [27,28]. The 
present era of quantum computing offers new opportunities for 
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numerically modeling physical systems that have real-world appli-
cations. Whether quantum methods can reduce the cost of compu-
tational fluid dynamics (CFD) simulations is an especially pertinent 
question for industry [29,30]. Our work joins the growing number 
of studies on quantum simulations for solving CFD problems. For 
example, the methods investigated so far include the quantum am-
plitude estimation algorithm to solve the discretized Navier-Stokes 
equation [31,32]; standard form encoding combined with quan-
tum walks to simulate a lattice Boltzmann approach [33]; quantum 
Fourier transform to implement vortex-in-cell methods [34–36]; 
linearization methods to simplify nonlinear terms [37,38]; and 
modular quantum circuits to solve the Poisson equation [39,40].

Our work focuses on the smoothed particle hydrodynamics 
(SPH) method [41,42]. Mathematically, SPH is an interpolation 
method that uses a set of disordered points (particles) to express 
a function in terms of its values at these points. The integral inter-
polant of any function A(r) can be expressed as an integral

A(r) =
∫
�

A(r′)W (r − r′,h)dr′ (1)

over the entire space � for any point r in space and a smoothing 
kernel W with smoothing length h. Smoothing kernels are often 
chosen to have a compact support, so the space � reduces to the 
support radius of the kernel, often 2h. The integral interpolant can 
be approximated by a summation interpolant,
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108909
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108909&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:rhonda.au-yeung@strath.ac.uk
mailto:viv.kendon@strath.ac.uk
mailto:steven.lind@manchester.ac.uk
https://doi.org/10.1016/j.cpc.2023.108909
http://creativecommons.org/licenses/by/4.0/


R. Au-Yeung, A.J. Williams, V.M. Kendon et al. Computer Physics Communications 294 (2024) 108909
Fig. 1. Example of a kernel function W (r), with smoothing length h. [Adapted from: 
Abaqus docs.]

A(r) =
∑

k

mk
A(rk)

ρk
W (r − rk,h) (2)

that sums over the set of particles {k}. Each particle k has mass 
mk , density ρk and velocity vk at position rk . This means a dif-
ferentiable interpolant of a function can be constructed from its 
values at the particle level (interpolation points) by using a differ-
entiable smoothing function W [42].

In SPH, the sum (eq. (2)) is a discrete approximation to the 
convolution of A with the Dirac δ-distribution, A(r) = ∫

A(r′)δ(r −
r′)dr′ with the kernel W providing a smoothed approximation to 
the Dirac delta function, δ(r).

Qualitatively, kernels tend to resemble Gaussian profiles but are 
often constructed to have a compact support (e.g., Fig. 1) con-
trolled by their smoothing length h. This controls the amount of 
smoothing and hence how strongly the value of A at position r
is influenced by the values in its proximity. The smoothing effect 
increases with h. Other key qualities for W include symmetry, pos-
itivity, normalization, and convergence to a Dirac δ-function in the 
limit h → 0 [42,43]. It is essential to satisfy the normalization and 
Dirac δ conditions to ensure that the approximation to (eq. (1)) re-
mains valid. To properly discretize second-order partial differential 
equations, the kernel should be at least twice continuously differ-
entiable.

As a flow solver, SPH is typically a Lagrangian method that uses 
particle interpolation to approximate continuous field variables. 
These particles carry the system’s physical properties (such as 
mass and temperature) and we can construct the governing equa-
tions of the discrete system to conserve mass, energy and momen-
tum. The Lagrangian nature gives clear advantages over traditional 
mesh-based Eulerian methods. For example it does not suffer from 
mesh distortions that affect the numerical accuracy and stability 
when simulating large material deformations. This is useful, for 
example, in highly compressible flows as the Lagrangian particles 
naturally resolve the variable density regions. Similarly, SPH can 
model violently deforming and dynamic interfaces without using 
special treatments required for meshes (e.g., mesh re-zoning). This 
has led to its adoption by many application areas such as astro-
physics [45,43,44] (see example Fig. 2a from [44]) and engineering 
fluid flows [46,47] (see example Fig. 2b, based on work of [47]). 
There are many similar meshless numerical methods based on a 
force or kernel sum, as in SPH. Examples include the force field 
calculation in classical molecular dynamics [48], smoothed dissi-
pative particle dynamics (DPD) [49,50], and general purpose radial 
basis functions (which often use the Gaussian and Wendland ker-
2

nel types in our work) [51]. The quantum algorithm in our work is 
just as applicable and readily generalizable to these methods.

Indeed, there may be computational advantages and opportuni-
ties for advanced multi-scale applications and coupled approaches. 
Each SPH particle represents a finite volume in continuum scale. 
It is similar to the classic molecular dynamics (MD) method [52]
that uses particles to represent molecules in nano-scale, and the 
DPD method that uses a particle to represent a small cluster of 
molecules in mesoscale. Thus, it is natural to generalize or extend 
SPH to smaller scales, or to couple SPH with molecular dynamics 
and dissipative particle dynamics for multiple scale applications, 
especially in biophysics, and biochemistry.

Based on the general interpolation (eq. (2)), SPH can be used 
as a general PDE solver: it approximates any differential opera-
tors. As a discrete particle method, the SPH system may also be 
described using the classical Hamiltonian. Hence this provides a 
natural link with quantum computing and a potential route to 
efficient and practical quantum nonlinear PDE solvers. Years of 
theoretical work on quantum simulators have provided efficient 
quantum algorithms that run in almost linear time [53,54] for cal-
culating the time evolution under a quantum Hamiltonian. Given 
that the classical Hamiltonian underpins SPH physics, there should 
be at least one natural mapping of SPH to quantum computers that 
we can exploit for quantum enhancement. For our work, we take 
a different approach - we investigate the SPH approximation of 
a function and solve partial differential equations using quantum 
subroutines.

In this work our primary focus is on devising quantum sub-
routines for the SPH discretization. SPH accuracy relies on using a 
large number of particles in the simulation. Theoretically, quan-
tum machines could allow exponentially more particles to be used 
without significantly increasing the runtime. For example, every 
additional qubit in our proposed algorithm would double the num-
ber of SPH particles. While we await testbed hardware, how we 
can achieve this in practice remains unclear. It may be that hard-
ware memory constraints (on either quantum or hybrid classical 
devices) provide a practical limitation to what we may simu-
late. Nevertheless, such quantum subroutines raise the possibility 
of highly resolved simulations, potentially deployed within multi-
resolution schemes in sub-domains within a lower-resolution clas-
sical simulation. This could offer an efficient route to high reso-
lution and even Direct Numerical Simulation (DNS) of challenging 
turbulent flows using SPH.

The structure of our paper is as follows. First we introduce the 
core ideas behind our quantum method such as quantum registers. 
As an example, we calculate the first and second derivatives of a 
smooth, well-behaved function, laying out each step of the domain 
discretization and quantum encoding processes. We numerically 
solve the SPH approximation of the first and second derivatives for 
different numbers of qubits and SPH kernels. Note that we simu-
late the quantum algorithm on a classical machine. Then we adapt 
the method to solve the advection and diffusion equations, and 
compare with the results from classical numerical methods. We 
finish with a discussion on how to improve the method by identi-
fying the bottlenecks and ideas for future work.

2. Quantum principles

There are many excellent introductory resources on quantum 
computing science (see e.g. [55,56]) so we will not present a de-
tailed review here. Instead in this section we briefly introduce the 
quantum subroutines that we use in our method, namely quantum 
register and inner product.

https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-sphanalysis.htm
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Fig. 2. Examples of SPH in astrophysics and engineering.
2.1. Quantum registers

The central idea behind quantum speed-ups over conventional 
computing is due to quantum bits (qubits) and hence quantum 
superposition and entanglement [57]. In this work, we focus on 
gate-based quantum computing models [55]. These are the basis 
of devices by IBM, Rigetti and others.

In classical computers, we store the intermediate results of a 
program in an electronic circuit, the register. The contents of such 
a register consist of bits which are changed with each operation. In 
the gate-based quantum computing model, quantum registers and 
qubits are respectively the analog of classical registers and bits. 
Now the quantum mechanical qubit state can represent two com-
plex numbers: a quantum register containing m entangled qubits 
can represent 2m complex numbers and every quantum operation 
on the register acts on all superpositions simultaneously [55].

Measuring the registers would output strings of bits like clas-
sical computer registers. If each qubit in the register is in a su-
perposition, then the register of m qubits is in a superposition of 
all 2m possible bit strings that may be represented using m bits. 
3

The state space for a quantum register is a linear combination of 
m basis vectors |k〉. The superposition state of length m is

|ψm〉 =
2m−1∑
k=0

αk|k〉. (3)

For example a three-qubit register would be represented as |ψ3〉 =
α0|000〉 + α1|001〉 + α2|010〉 + α3|011〉 + α4|100〉 + α5|101〉 +
α6|110〉 + α7|111〉 with complex numbers αk . The probability of 
observing a particular bit string upon measuring the register is 
|αk|2, and the quantum register must satisfy the normalization 
condition

2m−1∑
k=0

|αk|2 = 1. (4)

2.2. Inner products

Multiplying two vectors together using the inner product to 
produce a scalar is a useful operation in many numerical algo-
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Fig. 3. Domain discretization with particle locations rk and sizes �xk .
rithms. For example, matrix multiplication can be broken down 
into successive applications of the inner products of rows and 
columns to form the entries in the resultant matrix. Estimating, 
rather than evaluating, inner products are also important espe-
cially when considering large vectors. It is used in HHL [20] and 
quantum machine learning algorithms [58–60] and has attracted 
renewed interest as a fundamental primitive. The inner product is 
core to our proposed SPH algorithm, and in Section 4 we review 
some interesting existing quantum algorithms for inner products 
that may be used as supporting subroutines in the future.

3. SPH using a quantum register

In this section, we present two examples. We start by finding 
the SPH approximation of a one-dimensional function f (x) and its 
first and second derivatives. Extending this procedure, we solve the 
one-dimensional advection and diffusion equations.

3.1. Calculating derivatives

We define a one-dimensional function f (x) on the finite do-
main x ∈ [A, B] where A < B are constants, using an m qubit 
quantum register. Let {x j} be a partition of [A, B] such that

A = x0 < x1 < . . . < x j < . . . < xN−1 < xN = B, (5)

where N = 2m is the number of subintervals. Each x j , where j ∈
{0, 1, . . . , N}, defines the edge of a subinterval. The width of the 
kth subinterval is

�xk = xk+1 − xk, k ∈ {0,1, . . . , N − 1}. (6)

Each SPH particle is located at the center of the respective subin-
terval so that the particle locations are given by

rk = xk+1 + xk

2
, k ∈ {0,1, . . . , N − 1}. (7)

The domain discretization is shown in Fig. 3. The function value at 
each particle location is fk = f (rk).

The one-dimensional SPH approximation of any function is

f (r) ≈
∑

k

fk�xk W (r − rk,h) (8)

where W (r, h) is a known kernel function. Derivatives of f can 
then be easily estimated by replacing the kernel with the required 
derivative, as in SPH the derivative is found by taking an exact 
derivative of W in approximation (eq. (8)) [42]. We wish to eval-
uate this SPH approximation using a quantum computer therefore 
it is necessary to encode the values in a quantum register.

First we rewrite the summation (eq. (8)) as an inner product of 
two vectors f ≈ a · W where

a = [ f0�x0, f1�x1, . . . , f N−1�xN−1],
W = [Wr,0, Wr,1, . . . , Wr,N−1] (9)

and Wr,k = W (r − rk, h). Initially, for simplicity, we assume that all 
subintervals are equal hence �x1 = �x2 = ... = �x (Fig. 3). By ef-
fectively fixing the SPH particle positions, we negate an important 
(Lagrangian) element of SPH. However we only do this to pare back 
the mathematical details and show the mechanisms behind the 
4

quantum algorithm more clearly. If the SPH particles could move 
freely, we would need another quantum register(s) to keep track of 
the particle positions (and other properties). Ipso facto this is an 
area for further investigation.

Next we encode the vectors in a quantum register by calculat-
ing appropriate normalization factors and augmenting the entries 
with complex values.

For the vector a we define the quantum state

|a〉 = a

‖a‖ , (10)

where ‖·‖ denotes the Euclidean (L2) norm. If we have a large 
number of SPH particles then calculating this norm directly is com-
putationally expensive and defeats the objective of encoding the 
values in a quantum register. However we use an approximation 
of the form

‖a‖ ≈ 1√
N

⎛⎝ B∫
A

| f |2dx

⎞⎠1/2

(11)

using the function f or a smaller number of its values. As N
becomes large this approximation becomes increasingly accurate. 
Hence we rewrite a using an m qubit quantum register as ‖a‖|a〉. 
The norm of |a〉 is unity so this is a legitimate quantum state.

Encoding the kernel vector W requires a little more ingenuity 
since calculating the Euclidean norm of this vector is computation-
ally expensive.

1. First we scale the vector using ν = max(|W (r, h)|) so that the 
maximum/minimum value is ±1. We define the scaled vector 
W̃ = W/ν . If W (r, h) is a symmetric kernel function then ν =
W (0, h). However ν will vary for different kernels and their 
respective derivatives.

2. We scale the vector again using the number of subintervals N
to give Ŵ = W/(νN) so that the largest absolute value of Ŵ is 
1/N .

3. We create a quantum state using the values in vector Ŵ plus 
a complex term which we choose to satisfy the normalization 
conditions of a quantum register (eq. (4)).

Suppose we add an imaginary part br,k to each value in Ŵ to 
create a quantum state of the form

|W 〉 =

⎡⎢⎢⎢⎣
Ŵr,0 + ibr,0

Ŵr,1 + ibr,1
...

Ŵr,N−1 + ibr,N−1

⎤⎥⎥⎥⎦ . (12)

If we choose the br,k values appropriately then |W 〉 is a legitimate 
quantum state. If

br,k =
√

1

N
− Ŵ 2

r,k (13)

then∣∣Ŵr,k + ibr,k
∣∣2 = Ŵ 2

r,k + b2
r,k = 1

N
. (14)

Hence
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N−1∑
k=0

∣∣Ŵr,k + ibr,k
∣∣2 =

N−1∑
k=0

1

N
= 1, (15)

as required. The kernel function values are encoded in a quantum 
state, albeit with additional imaginary parts. Both approaches for 
encoding |a〉 and |W 〉 provide legitimate quantum states. Depend-
ing on the variable being encoded, one approach may be favored 
over the other. For example, our |a〉 is designed to contain a phys-
ical flow variable. While we can directly calculate the L2 norm, in 
this context the norm may be related (approximately or otherwise) 
to global, perhaps constant, flow measures that are already known 
or readily available. If |a〉 encodes velocity data, then the L2 norm 
scales to kinetic energy. Similarly, if |a〉 encodes density then ‖a‖
is related to a constant global measure of mass. Being able to use 
physical arguments makes the encoding and computation more ef-
ficient. On the other hand, normalizing via an additional complex 
term br,k provides a valid state more efficiently if no norm ap-
proximations are available. Rather than taking direct and repeated 
arithmetic operations to find the norm, we can construct a state 
using br,k values. These ultimately take no part in the calculation 
since we only require the real part of the inner product.

We must now use the quantum states |a〉 and |W 〉 to recon-
struct the SPH approximation of our function f . In general, encod-
ing the kernel is likely to be expensive. Depending on the choice 
of kernel, this may involve exponentiation operations or condi-
tional statements (e.g. for piecewise kernels). It is also unknown 
whether there will be sufficient memory on near-term quantum 
devices to retain variable values, as processor speed is likely to 
prioritized over memory (or QRAM). Hence given the memory lim-
itations and the need to repeat calculations on quantum hardware, 
even modest computational savings via different encoding options 
are welcome. It should also be noted that if both states are nor-
malized by adding an imaginary part then spurious real elements 
will be created from the combination of the two imaginary parts. 
In this respect, using two different normalization approaches to-
gether has further benefit..

Taking the inner product of |a〉 and |W 〉 gives

〈a|W 〉 = 1

‖a‖
[

f0�x0(Ŵr,0 + ibr,0)

+ f1�x1(Ŵr,1 + ibr,1)

+ . . .

+ f N−1�xN−1(Ŵr,N−1 + ibr,N−1)

]
. (16)

As noted, the imaginary part is not required when |a〉 is purely real 
(which it is in all examples in our paper). However due to physical 
arguments, we must include it so that |W 〉 is a valid state.

Therefore multiplying through by νN‖a‖ we have

νN‖a‖〈a|W 〉 =
N−1∑
k=0

fk�xk
(
Wr,k + iνNbr,k

)
. (17)

Retaining only the real part of the inner product,

f (r) ≈
N−1∑
k=0

fk�xk Wr,k = νN‖a‖Re〈a|W 〉. (18)

This is equivalent to the SPH approximation of a function but cal-
culated using a quantum register.

An m qubit register, storing N = 2m values, can be used to per-
form the SPH approximation on a quantum register. Subsequently, 
the swap test or another method (see section 4) determines the 
inner product 〈a|W 〉. Its efficiency relies on the values ν and ‖a‖
5

Table 1
Values of ν = max(|W (r, h)|) for the Gaussian and Wendland kernels and their first 
and second derivatives.

Kernel Derivative ν

Gaussian - 1/(
√

πh)

1st
√

2e−1/2/(
√

πh2)

2nd 2/(
√

πh3)

Wendland - 3/(4h)

1st 405/(512h2)

2nd 15/(4h3)

being known and there being a fast method to encode the quan-
tum states |a〉 and |W 〉. The kernel function and its encoding can 
easily be replaced by equivalent derivative kernels so that deriva-
tives of the function may be approximated, provided that ν is 
altered accordingly.

In this section, we develop a method for encoding the SPH 
approximation of a function in a quantum register. The quantum 
computation required for this procedure can be simulated on a 
classical machine when there are fewer than 10 qubits. To com-
pare, some current real devices contain 50-100 qubits. Simulat-
ing over roughly 40 qubits with a classical computer is beyond 
the reach of current HPC. Now we show simulations of the one-
dimensional SPH approximation of a function and its derivatives 
on a quantum computer for various register sizes and kernel func-
tions.

We test the scheme by approximating the scaled “Witch of Ag-
nesi” function

f (x) = 1

1 + 25x2 (19)

and its first

f ′(x) = − 50x

(1 + 25x2)2
(20)

and second derivatives

f ′′(x) = 50
75x2 − 1

(1 + 25x2)3
(21)

for different register sizes, using both the Gaussian

W (r,h) = e−q2

√
πh

, (22)

and Wendland kernels,

W (r,h) =
{

3
4h

(
1 − 1

2 q
)4

(2q + 1) , 0 ≤ q ≤ 2,

0, q > 2,
(23)

where q = |r|/h. A key element of the quantum numerical scheme 
outlined above is the constant ν = max(|W (r, h)|) which is used to 
scale the weight vector and is different for each kernel. In Table 1, 
we show ν for both kernels and their first and second derivatives.

Fig. 4 shows the quantum SPH approximation of the func-
tion (eq. (19)), using various register sizes m, for the Gaussian 
and Wendland kernels. For each m-qubit approximation, we use 
smoothing length h = 4/2m = 2�x; 2m particles in the domain and 
four additional boundary particles to complete kernel support at 
each edge of the domain. We measure the function approxima-
tions at n = 300 uniformly distributed points x′

j in the domain 
x ∈ [−1, 1]. Note, these are not the domain discretization points, 
but simply points in the domain where we calculate the approx-
imation. Fig. 5 shows approximations of the first derivative of 
(eq. (19)) for the Gaussian and Wendland kernels. Fig. 6 shows the 
approximations of the second derivative of (eq. (19)). Fig. 7 shows 
the root-mean-square (RMS) error
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Fig. 4. The function (19) and its quantum SPH approximations for m = 4, 6, 8 qubits.

Fig. 5. The first derivative function and its quantum SPH approximations for m =
6, 8, 10 qubits.

RMS =

√√√√∑n
j=1

(
f (x′

j) − f j

)2

n
, (24)

where f (x′
j) is the exact value of f (x) at the point x′

j and f j is 
the quantum SPH approximation, as a function of the register size 
m for both the Gaussian and Wendland kernel approximations of 
the function (19).

In classical SPH simulations, this is equivalent to calculating 
eq. (8) for function f (r j). The numerical bottlenecks occur when 
finding the pair-wise particle separations r j − rk and using these 
values to evaluate the summation. There also exists various neigh-
bor searching algorithms of varying efficiency. We can store details 
of these distances in efficient data structures but searching and 
summation must generally be repeated for each SPH particle j and 
at each timestep (if applicable). In comparison, the main bottle-
necks in the quantum method occur when encoding the SPH oper-
ators and domain discretization in a quantum register, performing 
the inner product for each timestep, and quantum readout steps. 
We note that the quantum method presented here is a simplifi-
cation that uses SPH particles fixed in space. In a general setting 
with freely moving particles, we would need to devise an efficient 
neighbor search subroutine to address the potential bottlenecks.

3.2. Solving the advection equation

The advection equation is a fundamental partial differential 
equation describing the transport of some physical quantity. In 
6

Fig. 6. The second derivative function and its quantum SPH approximations for m =
4, 6, 8 qubits.

Fig. 7. RMS error for Gaussian and Wendland kernel sum approximations of (19) for 
various m qubit registers.

the one-dimensional case, the advected quantity u(x, t) changes in 
space x and time t according to the partial differential equation

∂u(x, t)

∂t
+ c(x, t)

∂u(x, t)

∂x
= 0 (25)

for advection velocity c(x, t) [61].
For simplicity, we consider the linear advection equation with 

constant velocity c(x, t) = c. Hence the initial condition gives so-
lutions that are uniform translations of the initial profile, u(x, t =
0) = u0(x − ct).

Since any quantity f can be written as eq. (8), its spatial deriva-
tive is

∂ f (x)

∂x
≈

N∑
j=1

f (x j)�x j∇W (x − x j,h). (26)

The following form is commonly used in the SPH community

∂u

∂x
≈

N∑
j=1

(u j − ui)�x j∇i W (xi − x j,h) (27)

because it is more accurate by being zeroth-order consistent. We 
use the Courant-Friedrichs-Lewy (CFL) condition to define the 
timestep size

�t ≤ �x
. (28)
c
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Table 2
Data table for advection equation simulation.

Initial
Gaussian 
[β, L]

c t f x ∈ [A, B] m qubits Smoothing
length
h

CFL 
condition 
c �t

�x

RMS (4 dp)

Fig. 8a [0,0.4] 1 0.5 [−2,2] 8 16/2m 0.1 Gaussian 0.0105
Wendland 0.0061
Lax-Wendroff 0.0095

[0,0.4] 1 0.5 [−2,2] 8 8/2m 0.1 Gaussian 0.0033
Wendland 0.0019
Lax-Wendroff 0.0100

Fig. 8b [0.15,0.7] 1.3 0.5 [−4,4] 10 16/2m 0.1 Gaussian 0.0003
Wendland 0.0010
Lax-Wendroff 0.0028

[0.15,0.7] 1.3 0.5 [−4,4] 10 16/2m 1 Gaussian 0.0041
Wendland 0.0050
Lax-Wendroff 0.0038
Then we express the advection equation in SPH form as

u(n+1)
i = u(n)

i − c�t
N∑

j=1

(u(n)
j − u(n)

i )�x j∇i W ij(h) (29)

where the (u(n)
j − u(n)

i ) terms are analogous to fk in eq. (8) and 
W ij(h) = W (xi − x j, h).

We follow a similar procedure as in the previous example to 
encode the function into a quantum register. We rewrite the sum-
mation as an inner product a · (∇iW) with vectors

a =

⎡⎢⎢⎢⎢⎣
(u(n)

1 − u(n)
i )�x1

(u(n)
2 − u(n)

i )�x2
...

(u(n)
N − u(n)

i )�xN

⎤⎥⎥⎥⎥⎦ , W =

⎡⎢⎢⎢⎣
W i,1
W i,2

...

W i,N

⎤⎥⎥⎥⎦ (30)

at time tn . When defining the quantum state |a〉 = a/‖a‖, we use 
an approximation to efficiently calculate

‖a‖ ≈ 1√
N

⎛⎝ B∫
A

|u(n) − u(n)
i |2dx

⎞⎠1/2

. (31)

Since ∇ is a linear operator, it is trivial to calculate |∇i W 〉 from 
∇iW. We scale vector ∇iŴ = ∇iW/(νN) where ν =
max(|∇W (r, h)|). Therefore we may write the real part of the in-
ner product

Re〈a|∇r W 〉 = 1

νN‖a‖
N∑

j=1

(u(n)
j − u(n)

i )�x j∇i W i, j (32)

and

u(n+1)
i = u(n)

i − c�t νN‖a‖Re〈a|∇i W 〉. (33)

We solve the advection equation in its SPH form (eq. (33)). For 
simplicity, we take a Gaussian profile as initial state,

u(x,0) = e−(x−β)2/L2
, (34)

and define parameters β and L. Ideally there should be no dis-
persion so the shape of the Gaussian profile should be perfectly 
preserved. Hence the analytical solution is simply eq. (34) shifted 
along the x-axis according to time t at speed c,

u(x, t) = e−(x−β−ct)2/L2
. (35)
7

The quantum SPH method considers both Gaussian and Wend-
land kernels with parameter values outlined in Table 2 with con-
stant ν = max(|∇W |). The simulation is set up so that the domain 
boundary interactions do not need to be considered. The bound-
aries are far enough that we do not need to specify boundary con-
ditions in the numerics. We let the system evolve from time t = 0
to t f = 0.5 and we obey the CFL condition (eq. (28)) when set-
ting the intermediate timesteps. We compare these solutions with 
the analytical solution and classical Lax-Wendroff method [62] by 
calculating the RMS error (eq. (24)).

The smoothing length h controls the smoothing interpolation 
error and determines how many SPH particles influence the in-
terpolation for a particular point. Table 2 shows how decreasing 
h (while fixing the number of SPH particles) increases the solu-
tion accuracy. In classical algorithms, the CFL condition determines 
whether the numerics remain stable and subsequently converge 
to a solution: the algorithm is successful when c �t

�x ≤ 1. In the 
Lax-Wendroff method, decreasing c �t

�x = 1 to c �t
�x = 0.1 slightly 

improves the solution accuracy. In the quantum SPH algorithm, we 
found that c �t

�x = 1 can give far less accurate results than when us-
ing c �t

�x = 0.1. This means the quantum algorithm requires notice-
ably smaller �t to converge to the most accurate solution, at the 
expense of iterating over more timesteps and hence longer run-
times. The quantum SPH simulation required a few seconds versus 
roughly 40 minutes to complete in Fig. 8a and Fig. 8b respectively. 
For both tests, the classical Lax-Wendroff method required under 
two seconds.

3.3. Solving the diffusion equation

The diffusion equation is defined as

∂u(x, t)

∂t
− κ

∂2u(x, t)

∂x2
= 0 (36)

with diffusivity constant κ . Following similar arguments above, the 
SPH form of this PDE is

u(n+1)
i = u(n)

i + κ�t
N∑

j=1

(u(n)
j − u(n)

i )�x j∇2
i W ij(h). (37)

The discretized quantum form is

u(n+1)
i = u(n)

i + κ�t νN‖a‖Re〈a|∇2
i W 〉. (38)

The diffusion time step constraint is

�t ≤ (�x)2

. (39)

2κ
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Fig. 8. Solutions of the advection equation with quantum SPH method, with comparison against the classical Lax-Wendroff method and analytical solution. System evolves 
from initial time t = 0 to t = 0.5.

Fig. 9. Solutions of the diffusion equation with Gaussian SPH kernel. Initial state uses Gaussian profile (eq. (34)) with [β, L] = [0, 0.5]. We use m = 6 qubits and diffusivity 
constant κ = 1.2. Colors in both graphs correspond to solution at times t = {0.04, 0.06, 0.14, 0.2}. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)
Fig. 9a shows the results of solving eq. (38). To compare, we 
solve the diffusion PDE (eq. (36)) using the classical implicit finite-
difference method (FDM) [63]. There is excellent agreement be-
tween the methods.

As time t increases (Fig. 9a), the initial wave form (black) be-
comes shorter and wider. This is expected behavior. However there 
are hints of issues at the boundaries: the ‘QSPH’ solution at t = 0.2
starts increasing in the limits x → −2+ and x → 2− . Unlike in the 
advection example above, the wave form approaches the bound-
aries which causes the unusual behavior. This is because we have 
effectively used constant zero-valued dummy boundary particles 
at our domain edges by not explicitly encoding a boundary condi-
tion in the formulation. More advanced boundary conditions (e.g. 
mirror or outflow) would resolve such issues. Hence developing 
a more advanced boundary condition within this quantum frame-
work is the subject of further work.

As an aside, the implicit FDM uses backward Euler time scheme 
to solve a large, sparse tridiagonal matrix. Recent work [64] has 
shown that it is possible to use a quantum method based on the 
HHL algorithm to solve such a matrix. The authors demonstrate its 
usage on Poisson’s equation in two dimensions.
8

For the QSPH scheme, we also displace the SPH particles from 
their original positions shown in Fig. 3. Even though we still fix 
the particles on the 1D line, they are no longer equally spaced. We 
define these shifted positions as

xk → xk + η
xN − x0

N
N (μ = 0,σ 2 = 1) (40)

with scaling factor η and sample taken from the standard normal 
distribution N (μ = 0, σ 2 = 1). When the SPH particle displace-
ment is small (η = 0.01), the solution is smooth and well-behaved 
(Fig. 9b) but does not have the excellent agreement seen in Fig. 9a. 
As we increase the scaling factor to η = 0.1, the solution be-
comes much noisier especially as time increases. This is expected 
as the SPH accuracy decreases significantly for irregular distribu-
tions. However we demonstrate that the algorithm still works by 
using unequally spaced particles. This is closer to the general SPH 
problem formulation – it is a step towards a more complicated 
setup where we keep track of freely-moving SPH particles at each 
time step.

We note that to calculate the second derivative of u, we di-
rectly take the second gradient of the kernel as opposed to using 
the Laplacian operator discussed in Morris et al.’s work [65]. This 
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Fig. 10. Schematics of quantum algorithm. Classical (quantum) procedures in orange 
(purple). Note that we simulate the ‘quantum’ steps on a classical computer.

choice may also explain the noise observed in Fig. 9b for increased 
particle disorder, as the direct second kernel gradient is known 
to introduce oscillatory behavior. Implementing a quantum dis-
cretization of the Morris Laplacian is indeed possible using this 
framework. However the test cases in this work offer a funda-
mental and in-principle demonstration of our quantum discretiza-
tion approach. Investigations into the many different SPH operators 
(first gradients and Laplacians) under this quantum framework will 
be the subject of future work. This analysis would involve more 
practical two-dimensional fluid flow test cases where the use of 
different SPH operators has greater benefit.

4. Discussion

The numerical simulations illustrate the potential power of us-
ing quantum computers to perform SPH calculations. When calcu-
lating a function’s derivatives, a small increase in the number of 
qubits in the quantum register allows the computation to contain 
many more SPH particles and therefore significantly increase the 
accuracy. This is seen in Fig. 4 and 5 when comparing the m = 4
and m = 8 approximations. For the second derivative approxima-
tion (Fig. 6), the increase in accuracy with the quantum register 
size is still evident despite the approximation being somewhat less 
accurate than for the first derivative and the function itself. The 
RMS error for approximating eq. (19) decreases rapidly as we in-
crease the register size (Fig. 7). The function approximation (and 
derivatives) continues to increase in accuracy as the register size 
increases until we reach the SPH discretization error limit.

Similarly, our method can solve the advection and diffusion 
equations, two fundamentally important PDEs that underpin many 
physical processes across science and engineering applications. We 
show the schematics of our proposed algorithm in Fig. 10, out-
lining the classical and quantum subroutines. The classical parts 
involve preparing the quantum registers and updating the solu-
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tion u at each timestep. Both are computationally expensive. The 
(anticipated) quantum computer contains a quantum RAM (QRAM) 
and quantum processing unit (QPU) to calculate the inner prod-
uct. This is book-ended by a quantum encoding and readout, both 
potentially expensive procedures that transfer quantum informa-
tion between the classical and quantum hardware. Hence we have 
shown a successful proof-of-concept for a quantum SPH method. 
The next step is increasing its efficiency.

The method presented in section 3.1 is general. It allows for any 
kernel function (including derivative functions) to be used in the 
approximation and for arbitrary domains, functions and register 
sizes. By encoding the function, spatial discretization and kernel 
function into a quantum register, it is possible to significantly in-
crease the number of SPH particles. Although our results imply 
that any quantum advantage relies on some efficient method for 
creating the encoded registers |a〉 and |W 〉, the reality is that such 
a method may not exist. If there are exponentially many classi-
cal values of a j and W j in the state, then it is faster to calculate 
the inner product using multiplication and addition. An efficient 
method for generating the quantum registers would only be useful 
when those states are prepared from a previous quantum process 
that does not use exponentially many amplitude values to prepare 
the state. This is relevant for example, if we devise a method to 
iterate over the timesteps using only quantum methods.

4.1. SPH particle positions

When constructing the quantum register in section 3.1, we fix 
the SPH particles in space for simplicity - they remain in posi-
tion rk , but can have non-uniform or uniform size �xk (Fig. 3). 
In comparison, classical SPH is a Lagrangian method where the 
particles can move freely in space. Future work will involve gen-
eralizing our method to account for different particle locations to 
be more aligned with the classical SPH formulation. This would 
potentially introduce another quantum register to store the extra 
degree of freedom. Classical SPH uses special neighbor-searching 
subroutines to efficiently calculate the kernel W i, j and solutions. 
Hence we must also use a neighbor-search quantum equivalent to 
minimize any numerical bottlenecks in Fig. 10. There are numerous 
available algorithms that may be adapted for SPH neighbor search-
ing. For example Grover’s landmark search algorithm [66] provides 
a database search in O (

√
N) (over N entries). Grover search can 

also be implemented as a quantum walk algorithm [22,67]. Both 
could offer an effective search method when combined with ex-
isting SPH neighbor-list approaches, e.g. cell-linked or Verlet lists 
[68].

4.2. Inner product

In Fig. 10, we calculate an inner product of two quantum reg-
isters using brute force vector multiplication. One alternative is to 
use the swap test [69,70] or one of its variations [71] to speed 
up the calculation. The swap test combines quantum phase es-
timation algorithm and Grover searching to find the probability 
of some desired quantum state. Compared to classical algorithms, 
the swap test achieves exponential acceleration. However it must 
be repeated multiple times and each measurement result is used 
to approximate the probability which partly offsets the quantum 
speedup. Alternatively, we may use a quantum algorithm for ap-
proximate counting with variants available with [72] and without 
[73] using a quantum Fourier transform.

For a more efficient implementation on NISQ devices, we may 
use the Bell-basis algorithm [74], a constant circuit-depth algo-
rithm for computing state overlap. It has significantly lower error 
and better scaling than the swap test (linear scaling). From the 
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machine learning toolbox, quantum mean estimation and support 
vector machine are used to calculate the state overlap [75].

4.3. Time stepping

It is computationally expensive to use classical time stepping 
when solving the advection (eq. (33)) and diffusion equations 
(eq. (38)). In these recurrence relations, the solution u at timestep 
n relies on the solution at previous timesteps (Fig. 10). We use 
classical for-loops to iteratively find solution u at a final time t f . 
This is a major bottleneck because Fig. 10 implies that the quan-
tum registers must be rebuilt for each timestep. In addition, the 
difficulty in converting the classical data into quantum registers 
(and vice versa) is the same order of magnitude as the timestep-
ping.

Ideally we want to perform the calculation for multiple time 
points simultaneously using a single quantum operator. Alterna-
tively, we could develop a method for classical data-to-quantum 
conversion at the start of the algorithm, and quantum-to-classical 
to output the result at the final time. Including a quantum 
timestepping subroutine could significantly reorganize the proce-
dure shown in Fig. 10. However the core algorithmic components 
such as taking the inner product and quantum encoding procedure 
should remain the same.

4.4. Quantum encoding and readout

Programming quantum computers is challenging due to their 
quantum nature and hardware limitations. One key difference to 
classical computing is how we handle the data. Quantum comput-
ers do not currently have access to databases or quantum version 
of RAM [76]. Therefore we load data into quantum computers by 
encoding it into the qubit state. There is no broad consensus on 
how best to encode classical data into qubits before loading into a 
quantum random access memory (QRAM).

The research community considers quantum encoding one of 
the grand challenges of building viable quantum computers. In any 
quantum computation, a fast algorithm for initializing the quantum 
data is critically important for reducing the runtime. The encoding 
procedure should be designed with quantum circuit elements since 
the circuit model provides systematic and efficient instructions to 
achieve universal quantum computation. Current devices contain 
error-prone quantum gates and a limited number of qubits with 
short decoherence times. Hence encoding methods are a trade-off 
between two major factors: number of required qubits and run-
time complexity. In addition to the quantum no-cloning theorem 
[77], these factors dominate the overall computational cost due to 
the quantum measurement postulate: we often repeat the same al-
gorithm many times to retrieve measurement statistics while each 
measurement destroys the quantum state. In the worst case, load-
ing the data requires exponential time. To efficiently encode a large 
amount of data, a logarithmic or linear runtime is still ideal.

There are numerous ways to represent classical data in a Hilbert 
space (Fig. 10). In section 2.1, we introduced the idea of quantum 
registers which is amenable to quantum amplitude encoding. This 
method represents a data vector by the amplitudes of a quantum 
state [78]. The embedding uses fewer qubits than other meth-
ods like basis encoding and Hamiltonian encoding, making it ideal 
for NISQ era devices where qubits are in short supply [25,79]. 
One example of amplitude encoding uses quantum Fourier trans-
forms (QFTs) [80]. It is possible to use the method in the Grover-
Rudolph [81] approach to load probability distributions and hence 
efficiently encode polynomials [82] and binary strings (zero ampli-
tudes are zeroes and non-zero amplitudes are ones). The divide-
and-conquer algorithm [83] uses controlled swap gates and ancilla 
qubits. It recursively breaks down the encoding problem into many 
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sub-problems so that they are simple enough to be solved directly, 
before recombining to form the whole register. Another option is 
to use a quantum random access memory (QRAM) architecture 
comprising flip-flop QRAM (FF-QRAM) procedures to register the 
classical data structure into quantum format [84,85]. Domain-wall 
encoding is a highly active area of research in quantum annealing 
and optimization [86,87] which can also be applied to our prob-
lem.

After performing the swap test on QPU, we want to output val-
ues to the classical computer and update the solution u at time 
t + �t (Fig. 10). The aim of quantum state tomography (QST) is to 
estimate an unknown quantum state when many identical copies 
are available so that we can perform different measurements on 
each copy [88,89]. Homodyne tomography is an early example that 
reconstructs the density matrix ρ of an unknown state, however 
it is too computationally expensive for practical problems. Further 
improvements include the “maximum likelihood, minimum effort” 
method which introduces an optimization algorithm to increase 
the fidelity [90]. Alternatively, a machine learning approach uses 
a variational algorithm and swap test as cost function [91]. An-
other option is quantum principal component analysis (PCA) [92]. 
This uses density matrix exponentiation and quantum phase esti-
mation to provide the eigenvectors of ρ . It is simpler and faster 
than other strategies for performing entangled measurements on 
many copies of ρ such as the quantum Schur transform [93].

4.5. Benchmarking procedure

To show that the quantum register scheme is useful, we need 
a robust benchmarking procedure to quantify any quantum ad-
vantage. It is possible that our method provides an advantage for 
three-dimensional systems, whereas one-dimensional systems are 
more useful for developing the method. This is an important issue 
to consider in the long term.

5. Conclusions and future work

This work has shown a scheme for encoding the SPH approxi-
mation method in a quantum register. We demonstrated classical 
simulations of the quantum scheme for both the Gaussian and 
Wendland kernel functions using different registers sizes to ap-
proximate a function and its first and second derivatives. This 
scheme demonstrates that the error in the approximation de-
creases exponentially with the number of qubits in the register.

Quantum computing promises to revolutionize many scientific 
fields and none more so than numerical analysis and computa-
tional modeling. A method combining SPH and quantum compu-
tation could allow us to perform accurate continuum mechanics 
simulations with complex geometries for problems which are cur-
rently intractable.

5.1. Future work

There is much to do before the method presented in our work 
can have any practical uses. There are two broad areas of research 
opportunities that we classify as short- and long-term projects.

In the short term, we can extend the method to two- and three-
dimensional systems, then demonstrate its use in science and en-
gineering problems. Other research avenues involve incorporating 
more general boundary conditions in the algorithm; checking that 
the method works in the presence of significant non-linearity; 
exploring other initial solutions that are not as well-behaved as 
Gaussian profiles; allowing the (currently fixed) SPH particles to 
move freely in space; performing stability analysis; and develop-
ing benchmarking techniques. Of course in the short term, some of 
these should show the same behavior as classical SPH, while we 
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still work classically. How they look with the inner product done 
on a QPU is of course different and interesting, and essential to 
investigate in the longer term.

In the long term, we must address the issue of quantum en-
coding, as discussed above. Our method uses classical means to 
construct the quantum registers |a〉 and |W 〉, and simulate the SPH 
approximation at consecutive timesteps (Fig. 10). Finding quantum 
alternatives for these subroutines is ideal, as well as using a quan-
tum method to calculate the inner product 〈a|W 〉 and to convert 
the quantum outputs into classical information. It is possible that 
quantum readout is not necessary, especially if the time-stepping 
can be done in a quantum way. This could allow our method to 
be fully quantum, so that only the initial time t = 0 encoding and 
final time t f decoding would require converting between classical 
and quantum domains (Fig. 10).
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