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Abstract—Power systems must maintain the frequency within
acceptable limits when subjected to a disturbance. To ensure this,
the most significant credible disturbance in the system is normally
used as a benchmark to allocate the Primary Frequency Response
(PFR) resources. However, the overall reduction of system inertia
due to increased integration of Converter Interfaced Generation
(CIG) implies that systems with high penetration of CIG require
more frequency control services —which are either costly or
unavailable. In extreme cases of cost and scarcity, regulating
the most significant disturbance magnitude can offer an efficient
solution to this problem. This paper proposes a Machine Learning
(ML) based technique to regulate the disturbance magnitude
of the power system to comply with the frequency stability
requirements i.e., Rate of Change of Frequency (RoCoF) and
frequency nadir. Unlike traditional approaches which limit the
disturbance magnitude by using the Centre Of Inertia (COI)
because the locational frequency responses of the network are
analytically hard to derive, the proposed method is able to
capture such complexities using data-driven techniques. The
method does not rely on the computationally intensive RMS-Time
Domain Simulations (TDS), once trained offline. Consequently,
by considering the locational frequency dynamics of the system,
operators can identify operating conditions (OC) that fulfil
frequency requirements at every monitored bus in the network,
without the allocation of additional frequency control services
such as inertia. The effectiveness of the proposed method is
demonstrated on the modified IEEE 39 Bus network.

Index Terms—Converter Interfaced Generation (CIG) Inte-
gration, Frequency Stability, Machine Learning, Power Systems
Dynamics, Smart Grid.

I. INTRODUCTION

As the race to net-zero continues, the integration of more
Converter Interfaced Generation (CIG) into the power system
is forthcoming. This leads to the reduction of inertia due
to the disconnection of Synchronous Generation (SG). In
the Primary Frequency Response (PFR) phase, the frequency
response of the network is determined by the available system
inertia and the disturbance magnitude. The reduction of system
inertia in the smart grid reduces the available immediate
energy that resists the rapid frequency deterioration of the
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network following a disturbance [1]. In addition, it is reported
that in some real networks with high integration of CIG,
the frequency response dynamics have been observed as a
local phenomenon rather than a global phenomenon [1]–[3].
Consequently, in a high-CIG-integrated smart grid, system
operators are faced with two main challenges, i.e., i) large
volumes of frequency control resources, such as inertia, are
required to maintain the PFR of the system within acceptable
margins, and ii) the need to consider the locational aspects of
the changing system frequency dynamics instead of relying on
the traditional Centre Of Inertia (COI), which poses the risk
of unforeseen local protective relay activation.

To ensure the safe and reliable operation of power systems
including those with high CIG penetration, [4], introduced
a sequential optimisation-simulation model for optimising an
operating condition (OC) with nadir considerations. In this
iterative process, the method determines the minimum reserve
requirement by each SG in order to adhere to frequency nadir
requirements at every bus in the network. Based on the initial
active power set point of the SGs, a step response is performed
on every SG iteratively to accurately determine the ramp rates
of the SG. The system’s dynamic response is then assessed
through RMS-Time Domain Simulations (TDS) within the
loop. If the OC is unstable, the generator(s) dispatch is
adjusted in minor increments until the minimum required ramp
rate is achieved. In this work, it was effectively demonstrated
that by considering the unique governor response of each SG,
the approach can be economically efficient as compared to the
allocation of resources based on the global minimum inertia.
However, incorporating TDS within the loop can make the
process computationally intensive, especially for large-scale
power systems. In [5], a system optimisation model includes
a set of hyperplanes describing the system frequency response
requirements, i.e., nadir and Rate of Change of Frequency
(RoCoF), as a function of system inertia and maximum
contingency magnitude. The optimisation model is constrained
using a linearised equation of the system frequency. Although
this work enables the identification of OCs which, based on the
system-wide response, do not violate frequency requirements
without additional inertia, it cannot capture the locational
frequency dynamics —which are increasing due to high pene-
tration of CIG. Moreover, from an economic perspective, using
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the aggregated system frequency inertia without considering
the location aspect on the network, may lead to higher costs
as demonstrated by [3], [4].

Machine Learning (ML) models are capable of establishing
complex relationships and have been used to solve different
problems in power systems with a high degree of accuracy
[6]–[11]. Unlike model-driven methods, ML models are data-
driven approaches that do not rely on solving the Differential
Algebraic Equations (DAE) of the power system to make an
estimation. Consequently, ML models can make fast estima-
tions at a very low computational budget, which arrays them
as ideal candidates for real-time applications even in large-
scale systems, where RMS-TDS would be computationally
slow [12].‘

This paper proposes an ML-based approach to address the
two aforementioned key challenges. The proposed method
identifies OCs that do not violate frequency requirement
limits at every monitored bus in the network, without the
allocation of additional inertial response. This is achieved
by employing two ML models; the first model captures the
locational frequency dynamics of the system, while the second
model captures the unique SG governor dynamic response
following a disturbance. While it is analytically hard to derive
the power system’s locational frequency dynamics, the pro-
posed method establishes these complex relationships using
data-driven techniques. Consequently, once trained offline, the
proposed approach can accurately, and with low computational
burden, capture the hard-to-model frequency dynamics of the
network, thereby reducing the risks associated with COI-based
methods of unforeseen local relay activation.

II. METHODOLOGY

This section presents the methodology of applying the
proposed ML-based technique to regulate the maximum dis-
turbance magnitude in a power system in order to meet the
conditions for locational frequency stability. With the proposed
approach, operators can identify OCs that meet the frequency
stability requirements without the allocation of additional
inertial response. The approach can capture the locational
frequency response dynamics, elusive to COI-based methods,
without the use of RMS-TDS (after offline training). This leads
to fast decision-making which renders it ideal for real-time
or close to real-time frequency stability monitoring even for
large-scale power systems.

A. Proposed Method Overview

The outline of the proposed three-staged methodology for
ensuring conditions of locational frequency stability being met
using ML-based disturbance magnitude regulation is presented
in Fig. 1. Firstly, in the Initialisation Stage, the most economic
OC is generated by the standard system optimisation model,
such as Optimal Power Flow (OPF) —without the disturbance
magnitude regulating constraints. This is then passed to the
first ML model which predicts the locational frequency stabil-
ity metrics of the system by estimating the nadir and RoCoF
following a given disturbance. Given the fulfilment of the

Fig. 1. A three-stage methodology for the ML-based regulation of the
maximum disturbance magnitude for locational frequency stability

frequency requirements, the process is terminated, otherwise,
the OC is passed to the second stage. In this stage, the second
ML model predicts the unique SG governor response following
the disturbance and time to nadir, i.e. governor ramp rate
(prr,i) and (tNadir,i) respectively. The data from the first
and second stages is then passed to the third stage which
numerically estimates the maximum disturbance magnitude to
ensure that there is no frequency requirement violation at any
of the monitored locations in the network. This information
is used to limit the disturbance magnitude in the optimisation
problem by generating an updated OC. The process can be
terminated after this stage, however for validation purposes,
the first ML model which predicts frequency stability metrics
can be re-engaged to ensure that there is no violation.

B. System Frequency Response Dynamics

The power system frequency is expected to always be within
the required limits following a disturbance. The rotating inertia
of a power system —mainly offered by SG is the available
immediate energy, Ei, that is injected into the power system
before the activation of reserves [1]. For any given SG i in
the system, this is stored in the rotor and can be expressed as;

Ei =
1

2
Jiω

2
i (1)

where; Ji is the moment of inertia of the shaft in kg.m2.s
and ωi is the rotational speed in rad/s. The total amount of
kinetic energy, Esys, available at any particular moment in a
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power system is the sum of total rotational energy available
in all the N online SG i.e.,

Esys =
N∑
i=1

1

2
Jiω

2
i (2)

To operate at a stable frequency, the power system is
expected to maintain a balance between generation and de-
mand. The power system dynamics of the system following a
disturbance can be represented as a swing equation as follows;

df(t)

dt
=
Pm(t)− Pe(t)

MH
(3)

where Pe represents the electric power in the system, Pm

represents the generator’s mechanical power and MH is the
inertia coefficient.

1) RoCoF Formulation: The frequency evolution in a net-
work with high penetration of CIG at bus i, in a network with
N buses, following a disturbance can be stated as [2], [3];

dfi(t)

dt
=
dfCOI(t)

dt
+Aiωi, ∀i = 1, ..., N (4)

where; fCOI is the average frequency response from N
online SG, while Aiωi represents the oscillations or deviations,
at the ith bus, from the COI frequency response due to
distinct SG generator response in the system. In [2], it was
demonstrated that it is analytically impossible to analytically
derive such oscillations at every location. In this study, the ML
model that predicts locational frequency stability metrics, i.e.,
The Locational Frequency Stability Metrics Prediction Model,
effectively captures the frequency oscillations, Aωi, at every
location. This factor is dependent on the system operating
condition variables including; damping, inertia distribution,
locational CIG levels, generator dispatch, etc. By neglecting
these oscillations while using the COI during frequency con-
trol resource allocation, unforeseen local frequency violations
may occur as demonstrated in [1], [3]. Reformulating (4) to
estimate individual SG responses, can be stated as;

dfi(t)

dt
=

∆Pifn
2HiSni

, ∀i = 1, ..., N (5)

where Hi and Sni are the ith SG inertia constant and base
power in MVA respectively, while fn is the nominal system
frequency. ∆Pi is the power imbalance at the generator
bus i following the disturbance. The ∆Pi of the ith SG is
determined by the governor ramp rate (prr,i) and time to
nadir, tNadir, derived from the Post-disturbance SG Gover-
nor Response Prediction Model. This power injected by the
SG directly determines the rotor response of the generator
following the disturbance. The prr,i and tNadir are calculated
as follows;

prr,i =
PNadir,i − P0,i

tNadir,i − t0
, ∀i = 1, ..., N (6)

tNadiri =
∆Pi

prr,i
+ tD,i, ∀i = 1, ..., N (7)

where P0,i is the generator output power immediately before
the disturbance. PNadir,i is the power output of SG i at
tNadir,i. t0 is the disturbance time (which is universal), tD,i

is the governor dead-band time. The more the SGs connected,
the higher the prr. By monitoring and regulating ∆Pi, the ith

SG response can be limited to observe the required minimum
RoCoF, RoCoFlimit, as estimated below.

RoCoFlimit =
∆Pi − ψmin,i

∆Pi
.RoCoFi, ∀i = 1, ..., N (8)

The ψmin,i is the minimum power reducing the ith SG’s
imbalance ∆Pi to observe the frequency requirements. This
is the power that is redistributed to other SG in the system by
the system optimisation model following a reduction of the
maximum disturbance magnitude.

2) Nadir Formulation: The frequency nadir at the ith bus
while incorporating the SG unique governor response can be
expressed as follows;

∫ tNadir,i

t0

dfi(t)

dt
= f0 − fNadir,i (9)

f0 − fNadir,i =

∫ tD,i

t0

∆Pi

MHi
dt+

∫ tNadir,i

tD,i

(prr,i.t−∆Pi)

MHi
dt

(10)

where f0 is the frequency before the disturbance, while
∆Pi is the imbalance experienced by the ith SG. By using
(6),(7),(10), the minimum nadir, f limit

Nadir,i, at bus i can be
attained by observing the maximum imbalance, ∆Pmax

i =
∆Pi − ψmin,i, as follows;

f limit
Nadir,i = f0−(

∆Pmax
i (t0 − tNadir,i) + prr,i(t

2
Nadir,i − tD,i

MH,i
)

(11)
The maximum power imbalance, ∆Pmax

i , is estimated by;

∆Pmax
i = P0,i − prr,i.(tNadir,i −

f0 − f limit
Nadir,i

f0 − fOld
Nadir,i

.tNadir,i)

(12)
This enables the frequency nadir of the system (even at

a locational level) to improve from the previous value i.e.,
fOld
Nadir,i, to a value that is equal to or greater than the required

threshold i.e., f limit
Nadir,i.

C. Dynamic Simulations and Dataset Generation

ML models are trained and tested using a dataset of results
generated from the RMS-TDS simulations. Frequency nadir,
RoCoF, time to nadir (7) and SG governor response (6)
following the disturbance, are recorded as regression targets
of the respective ML models. System OCs are generated by
varying the number of SG units committed, CIG generation
and the system demand. The CIG is connected to one bus
and each of the SG is an equivalent generator comprising
four equal-sized units. Consequently, each SG is displaced by
CIGs in four stages. The rating of SGMVAnew is based on
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the number of remaining units, u, where u ∈ [1,..., 4] and is
then rated to SGMVAold as represented by (13). Similarly, the
penetration of CIG is therefore scaled inversely as represented
in (14) [13].

SGMVA,new = u.(SGMVA,old/4) (13)

CIGMVA = r.
(5− u).SGMVA,old

4
+ s.(SGMVA,old) (14)

Consequently, the penetration level is up to 40% of the
overall system generation. The system loading ranges from
0.6 to 1.025 p.u. in steps of 0.25 p.u. The CIGs are all set
to operate at fixed maximum active power dispatch. All the
SGs maintained the default active and reactive power output
limits of 0.2 to 0.85 p.u. and -0.3 to 0.7 p.u. respectively,
as per rating. The initialisation of OCs was achieved by the
Newton-Raphson method in DIgSILENT PowerFactory.

D. Machine Learning Model For Capturing Frequency Dy-
namics

1) Data Pre-processing and Model Training: In this study,
two ML models have been used to 1) predict the locational
frequency dynamics of the system i.e., RoCoFn and Nadirn,
and 2) the SG governor dynamic response i.e., ramp rate (prr,i)
and time to nadir (tNadir,i). From the generated dataset, a 70-
30% train-test split was adopted. The number of features, M,
used by the two ML models include the physical and steady-
state characteristic variables of the network. At the time t− 1
prior to the disturbance, the input vector x of size (M × 1)
is utilised by a model p̂ to estimate the RoCoF, R̂, and nadir,
N̂ , of the N buses of the network as shown below;

R̂n, N̂n = p̂(lt−1, gt−1, dt−1, ot−1), ∀n = 1, ..., N (15)

where; l is system loading, g is CIG output, d is SG dispatch,
and o are generator ratings. Assessment of model performance
was conducted using Cross − V alidation (5-fold) which
randomly splits the training set into k − fold, whereby each
k − 1 set is used for training, with the remaining set used
for testing [14]. The sklearn − GridSearchCV function
[14], is used to optimise the performance of each ML algo-
rithm. Standardisation of the dataset is achieved by using the
Standard − Scaler function which scales every variable to
unit variance. The stored mean and standard deviation, through
Inverse-Transform, are used to re-scale the data, for testing and
evaluation. The scaling process is represented as;

zi = si.
xi − µi

σi
, ∀i ∈ {1, ...,M} (16)

where; zi is the standard score, xi is the value, µi is the mean,
σi is the standard deviation and si is the scaling factor of the
ith feature or regression target. M represents the total number
of dataset features and targets.

2) Multilayer Perceptron (MLP): The proposed method
utilises two MLP neural networks to capture locational fre-
quency dynamics and unique SG governor response. This data
is used to determine the maximum disturbance magnitude of
the system to satisfy the conditions for locational frequency
stability. MLP is a feed-forward Artificial Neural Network
(ANN) that contains a minimum of three layers; the input
layer, the hidden layer with σv neurons each, and the output
layer. For an MLP model with hidden layers, v, feature vector
x, weights matrix Wv of size (σv × σv+1) and bias vector bv

of size (σv × 1), it can be represented by (17-19).

z1 = W1
T x + b1 (17)

ẑv+1 = Wv+1
T zv + bv+1, ∀v = 1, .., V − 1 (18)

The Rectified Linear Unit (ReLU) activation function, Θ,
which easily overcomes numerical problems associated with
the sigmoid is chosen. ReLU is expressed as Θ(ẑv) =
max(0, ẑv), ∀v = 1, .., V −1. The predicted frequency stability
metrics (N̂ , R̂) vector, y (1× 2N ), is therefore given as;

y = WT
V+1zV + bV+1, y = [R̂n, N̂n], ∀n = 1, ..., N (19)

The first step in MLP is to propagate the features up to the
output layer, a step known as forward propagation. Thereafter,
based on the output, an error, E, is calculated whereby the
weights in the hidden layer(s) are adjusted to minimise the
same (back-propagation) [14]. This is achieved through the
calculation of the error derivative of each weight at a specified
learning rate, η, in (20).

wi ← wi − η∇E (20)

Finally, these steps are repeated several times over epochs
to establish the best model parameters with two outputs, i.e.,
RoCoF and nadir. In the study, the fully connected MLP
architecture used had three hidden layers with 100 neurons
each, 0.001 alpha, 0.01 learningrate and a maximum it-
eration of 2000 which was determined during sklearn −
GridSearchCV hyperparameter tuning.

E. Model Accuracy Evaluation
The performance of the two ML models is evaluated using

the Root Mean Squared Error (RMSE) metric. For J OCs in
the testing dataset, the RMSE between the actual variable (y)
and the predicted variable (ŷ) is given by (21).

RMSEi =

√∑J
n=1(yn,i − ŷn,i)2

J
(21)

Where; J is the total number of OCs in the dataset and
i is the regression target. Errors in critical cases, i.e., those
close to the stability boundary, impact key decisions, such
as ancillary service procurement. An overestimate of RoCoF
and/or nadir may result in the operator over-procuring costly
ancillary services. Conversely, an underestimate may result in
the operator procuring insufficient ancillary services, leaving
the system potentially vulnerable.
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III. RESULTS

A. Case Study

AC OPF was implemented in MATPOWER (using MIPS
algorithm) and RMS-TDS were conducted in DIgSILENT on
a modified IEEE 39-bus network as a test bed [13]. The
penetration of CIG is achieved through the connection at bus
16 in the highlighted Area 2 of Fig.2. The Western Electricity
Coordinating Council (WECC) Type 4 Wind Turbine Gener-
ator control model [7] is used to connect the CIG to the grid
through a full converter interface.

Each of the SG [4, 5, 6, 7] is displaced by the CIG in
four levels as shown by (13) and (14). The instantaneous
penetration of CIG ranges from 100 MW to 1000 MW, repre-
senting close to 40% of the system generation. The generator
outage event is SG 5 which makes a significant generation
contribution in the region of up to 25%. The thresholds
for RoCoF protection and protective Under Frequency Load
Shedding (UFLS) are considered to be -0.5 Hz/s and 59.6 Hz
respectively [15]. All simulations were carried out on an 11th
Gen Intel (R) Core (TM) i7-11700 @ 2.50 GHz with 16 GB
installed RAM, which took close to 6.5 hours to execute 2,200
simulations and generate the database, extract key features and
targets for the training and testing of the two ML models.
The Python programming language was used for data pre-
processing, extracting useful features of interest, training the
ML algorithms, and data analysis.

Fig. 2. The modified IEEE 39-Bus Network highlighting the region with the
CIG location at Bus 16

B. Accuracy of the ML Models in Predicting Frequency Dy-
namics

The RMSE is used to evaluate the accuracy of the two ML
models in predicting the locational frequency metrics of the
system i.e., RoCoF and Nadir and the SG governor dynamic
response i.e., governor RampRate and TimeToNadir. Ac-
curate prediction of the locational frequency stability met-
rics ensures the correct estimation of the network distur-
bance/imbalance propagation, ∆Pi. This information is essen-
tial to determine the permissible maximum disturbance that
ensures no locational frequency limit violations. In Table I it

TABLE I
RMSE PREDICTION RESULTS OF THE FREQUENCY DYNAMICS AND

GOVERNOR RESPONSE PREDICTION MODELS

Bus RoCoF(Hz/s) Nadir(Hz) Nadir time(s) Ramping(MW/s)
30 0.0009 0.0078 0.2636 0.0480
31 0.0008 0.0084 0.2714 0.3196
32 0.0009 0.0078 0.2788 0.1547
33 0.0014 0.0083 0.2817 0.0305
34 0.0012 0.0078 0.2372 0.4817
35 0.0013 0.0078 0.2798 1.2844
36 0.0014 0.0077 0.2751 0.1364
37 0.0009 0.0082 0.2738 0.0761
38 0.0011 0.0077 0.3037 0.0389
39 0.0006 0.0078 0.2602 0.0000

is observed that the Locational Frequency Stability Metrics
Prediction Model has the maximum RoCoF RMSE of 0.0014
Hz/s at Bus 33 and 36. In addition, the maximum RMSE for
the frequency nadir metric is 0.0084 Hz observed at Bus 31,
thus, demonstrating a high degree of accuracy by this model.

On the other hand, the Post-disturbance SG Governor Re-
sponse Prediction Model, which predicts TimeToNadir and
SG RampRate, portrays a slightly lower accuracy. Over a
simulation window of 60 seconds, the model has the maximum
TimeToNadir RMSE of 0.3037 seconds at Bus 38, repre-
senting 0.5062% error. Similarly, the maximum RampRate
RMSE is 1.2844 MW/s at Bus 35 whose SG is rated 800
MVA, representing 0.1606% error. The accuracy of this
model directly affects the accuracy of the estimated maximum
disturbance magnitude. This accuracy can be improved in
several ways including; utilising separate models in predicting
RampRate and TimeToNadir, and using separate models
at each location as it was done in [13] for transient stability.

Concerning the computational performance for online ap-
plication in frequency stability metrics prediction, a sample of
500 OCs is used. It is found that 300 seconds is required by the
RMS-TDS while 0.0090 seconds is required by the ANN. As
a data-driven technique, the ANN does not need to solve the
DAEs of the network to make an estimation. Consequently, it
is fast at making estimations even at low computation budget,
hence, a good candidate for online applications.

C. Regulation of the Maximum Disturbance Magnitude for
Frequency Stability

RMS-TDS are conducted to evaluate the performance of
the proposed method outlined in Fig. 1. OCs with frequency
violation are sampled from the test dataset and used to evaluate
the dynamic response of the system following the adjusted
maximum disturbance. By implementing the proposed method,
i.e., the Regulated Model, results from the OPF are exported
to DIgSILENT for validation. It can be observed in Table
II that the model without disturbance magnitude regulation,
i.e., the Unregulated Model, has a minimum nadir of 59.37
Hz and maximum nadir of 59.49 Hz —representing 100% of
frequency requirement violations. These violations have the
potential to activate the UFLS relays and lead to large-scale
blackouts. Contrariwise, after implementing the Regulated
Model, better results are achieved with an accuracy improving
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TABLE II
ACCURACY OF THE PROPOSED REGULATED SYSTEM OPTIMISATION

MODEL

Assessment Criteria Value
Nadir Boundary (Hz) 59.60

Regulated Model Minimum Nadir (Hz) 59.59
Unregulated Model Minimum Nadir (Hz) 59.37
Regulated Model Maximum Nadir (Hz) 59.77

Unregulated Model Maximum Nadir (Hz) 59.49
Maximum RoCoF estimation Error (Hz/s) 0.05
Minimum RoCoF estimation Error (Hz/s) 1.12×10−4

Regulated Model Accuracy (%) 98.77

Fig. 3. Comparison of locational frequency response (No disturbance magni-
tude regulation (left), With disturbance regulation (right)) following an outage
of SG 05 with CIG generation of 617 MW at 0.8 system loading

from 0% up to 98.77%. Out of the 1.23% that caused a
violation, the minimum nadir is 59.59 Hz, which is 0.01
Hz within the stability limits. The errors portrayed by the
Regulated Model are attributed to the combined predictive
error of the two ML models. This error can be improved
by slightly overestimating the threshold as done by [3] and
[7] for locational frequency and transient stability problems
respectively. An example of the performance of the two models
is given in Fig. 2. It is observed that the Regulated Model
fulfils conditions for locational frequency stability, unlike the
Unregulated Model. This demonstrates that the former can
effectively identify a feasible OC without the allocation of
additional frequency control resources such as inertia.

IV. CONCLUSION

In a system with high penetration of CIG, the requirements
of Primary Frequency Response (PFR) —which are costly
and/or scarce, can be very significant. In this study, we propose
an ML technique-based method to identify stable operating
conditions (OCs), concerning frequency stability, without the
allocation of additional inertia response. The method can fulfil
the conditions for locational frequency stability by capturing
the locational frequency dynamics. This approach captures and
considers the detailed frequency dynamics of the network in
the estimation of the maximum disturbance magnitude, which
is overlooked by COI-based methods, thereby bearing the risk
of unforeseen local relay activation. Two separate Artificial
Neural Networks (ANN) are used to predict the locational
frequency stability metrics, i.e., RoCoFn and Nadirn, as well

as the governor response of online SG, i.e. RampRatei and
TimeToNadiri. By monitoring and regulating the maximum
power imbalance at each bus bar connected to SG i, the max-
imum magnitude of the disturbance necessary to observe the
frequency requirements at the locational level is determined.
Thereafter, the system optimisation model (with disturbance
regulation, i.e., Regulated Model) is used to re-dispatch the
generators. The proposed method does not rely on RMS-
TDS after offline training of the ML models. This makes it
faster and ideal for real-time and/or near real-time analysis
of even large-scale power systems. Using the modified IEEE
39 bus network, results show that the method can effectively
identify stable OCs without the need to allocate more inertia
resources. Nevertheless, an interesting area for future research
work would be the application of the proposed method on real-
world power networks which are larger and more complex.
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F. Gonzalez-Longatt, V. K. Sood, and W. Martinez, “Nadir frequency es-
timation in low-inertia power systems,” in 2020 IEEE 29th International
Symposium on Industrial Electronics (ISIE), 2020, pp. 918–922.

[7] J. Gonzalez, P. N. Papadopoulos, G. P. J. V. Milanovic, and J. Moriarty,
“Risk-constrained minimization of combined event detection and deci-
sion time for online transient stability assessment,” IEEE Transactions
on Smart Grid,, vol. 12, no. 5, pp. 4564–4572, 2021.

[8] Q. Wang, F. Li, Y. Tang, and Y. Xu, “Integrating model-driven and
data-driven methods for power system frequency stability assessment
and control,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp.
4557–4568, 2019.

[9] A. Venzke and S. Chatzivasileiadis, “Verification of neural network
behaviour: Formal guarantees for power system applications,” IEEE
Transactions on Smart Grid, vol. 12, no. 1, pp. 383–397, 2021.

[10] J. Yu, D. J. Hill, J. G. A. Lam, and V. Li, “Intelligent time-adaptive
transient stability assessment system,,” IEEE Transactions on Power
Systems, vol. 33, no. 1, pp. 1049–1058, 2018.

[11] J. Ekomwenrenren, E. Farantatos, M. Patel, A. Haddadi, and L. Zhu,
“Data-driven fast frequency control,” in 11th Bulk Power Systems
Dynamics And Control Symposium (IREP), July 25-30, 2022.

[12] J. Zhao, Y. Tang, and V. Terzija, “Robust online estimation of power sys-
tem center of inertia frequency,” IEEE Transactions on Power Systems,
vol. 34, no. 1, pp. 821–825, 2019.

[13] R. I. Hamilton, P. N. Papadopoulos, W. Bukhsh, and K. Bell, “Identi-
fication of important locational, physical and economic dimensions in
power system transient stability margin estimation,” IEEE Transactions
on Sustainable Energy, vol. 13, no. 2, pp. 1135–1146.

[14] Sklearn. (2019) Scikit learn user guide release 0.21.3., 2019.
[15] Y. Liu, S. You, J. Tan, Y. Zhang, and Y. Liu, “Frequency response

assessment and enhancement of the u.s. power grids toward extra-high
photovoltaic generation penetrations—an industry perspective,” IEEE
Transactions on Power Systems, vol. 33, no. 3, pp. 3438–3449, 2018.

6

Regulation of disturbance regulation magnitude for locational frequency stability using machine learning


	I. INTRODUCTION
	II. METHODOLOGY
	III. RESULTS
	IV. CONCLUSION
	REFERENCES



