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High-intensity interval training (HIT) is an effective approach for improving a range of 
physiological markers associated with physical fitness. A considerable body of work has 
demonstrated substantial improvements in cardiorespiratory fitness following short-term 
training programmes, while emerging evidence suggests that HIT can positively impact 
aspects of neuromuscular fitness. Given the detrimental consequences of prolonged 
exposure to microgravity on both of these physiological systems, and the potential for 
HIT to impact multiple components of fitness simultaneously, HIT is an appealing exercise 
countermeasure during human spaceflight. As such, the primary aim of this mini review 
is to synthesize current terrestrial knowledge relating to the effectiveness of HIT for inducing 
improvements in cardiorespiratory and neuromuscular fitness. As exercise-induced fitness 
changes are typically influenced by the specific exercise protocol employed, we will 
consider the effect of manipulating programming variables, including exercise volume and 
intensity, when prescribing HIT. In addition, as the maintenance of HIT-induced fitness 
gains and the choice of exercise mode are important considerations for effective training 
prescription, these issues are also discussed. We conclude by evaluating the potential 
integration of HIT into future human spaceflight operations as a strategy to counteract 
the effects of microgravity.

Keywords: high-intensity interval training, cardiorespiratory fitness, neuromuscular fitness, human spaceflight, 
microgravity, physical performance, exercise countermeasure

INTRODUCTION

The prolonged exposure to microgravity (μG) and the space environment associated with 
human spaceflight necessitates effective countermeasures to manage the multi-system adaptation 
that occurs. These adaptations are both short term, including headache, drowsiness, nausea, 
vomiting, and dizziness, collectively referred to as “space motion sickness” (Ortega and Harm, 
2008), and longer term, including fluid redistribution and reductions in maximal oxygen uptake 
(VO2max), muscle size and strength, and bone mineral density (BMD) (Demontis et  al., 2017).
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Exercise training is a fundamental strategy for managing 
adaptation to spaceflight; however, the potential physical (size 
and internal dimensions of vehicle/habitats), logistical (supply 
of food and water and device maintenance/repair), and 
operational (time for exercise, interference with other 
crewmembers’ work) constraints of future space exploration 
missions highlight a need for alternate approaches to 
counteracting μG-induced changes (Scott et  al., 2019). High-
intensity interval training (HIT), involving repeated bouts of 
intense exercise, interspersed with periods of rest or lower 
intensity active recovery, is a widely used training approach 
with demonstrated efficacy for inducing physiological adaptation 
across a range of outcomes. As an exercise countermeasure, 
HIT may offer several operational advantages, including;  
(1) substantial physiological stimulus possible in a short time 
period; (2) the potential to impact multiple components of 
fitness simultaneously; (3) is typically performed using a single 
exercise mode; (4) an ability to target upper- and lower-body 
function. This mini-review aims to highlight the potential for 
HIT as an exercise countermeasure during human spaceflight 
by summarizing the terrestrial evidence base relating to its 
effectiveness and considering exercise programming variables 
in the context of spaceflight.

HIGH-INTENSITY INTERVAL TRAINING

Despite intensifying scientific enquiry over the last 15–20 years, 
HIT is not a new approach to exercise training (Billat, 2001). 
Although terminology varies, HIT can be: high-intensity interval 
training (HIT), performed at “near maximal” or “submaximal” 
intensity (≥80% maximal heart rate), or sprint interval training 
(SIT), often described as low-volume HIT, characterized by 
efforts performed at “all out” or “supramaximal” intensity 
(≥100% VO2max) (Weston et  al., 2014a; MacInnis and Gibala, 
2017). Despite broad protocol dichotomization, HIT exists on 
a continuum, encompassing a wide spectrum of exercise 
intensities, with longer duration HIT intervals (e.g., Wisloff 
et  al., 2007) at the lower end and SIT (e.g., Gibala et  al., 
2006) at the upper end. As exercise intensity is a key mediator 
of training adaptation (Shephard, 1968), it may be the intense 
stimulus induced by HIT is a potent catalyst for physiological 
remodelling (MacInnis and Gibala, 2017). Despite a predominant 
focus on VO2max improvement, the intensity of HIT places 
considerable demands on both the aerobic and anaerobic energy 
systems and the neuromuscular system (Buchheit and Laursen, 
2013a,b), suggesting potential for adaptation across multiple 
physiological systems.

EFFECTIVENESS OF HIGH-INTENSITY 
INTERVAL TRAINING

Cardiorespiratory Fitness
Numerous interventions (e.g., Helgerud et al., 2007; Burgomaster 
et  al., 2008; Matsuo et  al., 2014; Astorino et  al., 2017) 
demonstrated HIT as a potent strategy for improving VO2max. 

These experimental findings have been corroborated in several 
meta-analyses in healthy (Bacon et al., 2013; Sloth et al., 2013; 
Weston et  al., 2014b; Milanovic et  al., 2015) and clinical 
populations (Weston et al., 2014a; Liou et al., 2016). Compared 
with moderate intensity continuous training (MICT), HIT may 
elicit adaptations of a similar (Gibala et al., 2006; Burgomaster 
et  al., 2008; Scribbans et  al., 2014) or even greater magnitude 
(Helgerud et  al., 2007; Daussin et  al., 2008; Matsuo et  al., 
2014), despite a substantially reduced time commitment. 
Previous work has reported large improvements in VO2max 
following HIT (Mean  ±  SD; 22.5  ±  12.2%) and SIT 
(16.7  ±  11.6%), compared with a moderate improvement 
(10.0  ±  8.9%) following continuous training (Matsuo et  al., 
2014), while a recent meta-analysis demonstrated a possibly 
small beneficial effect for HIT on VO2max (1.2  ml  kg−1  min−1; 
95% confidence limits ±0.9  ml  kg−1  min−1) when compared 
with continuous endurance training (Milanovic et  al., 2015). 
It may be  that the underlying physiological mechanisms differ 
between HIT and MICT (Daussin et  al., 2008), although this 
remains to be  fully determined.

Exercise at both ends of the intensity continuum, and that 
representing the middle ground (e.g., Little et  al., 2010), can 
induce substantial (e.g., 10–15%) improvements in VO2max 
following short-term training programmes (MacPherson et  al., 
2011; Metcalfe et  al., 2012; Matsuo et  al., 2014). Nevertheless, 
participant-related factors (e.g., baseline fitness; Weston et  al., 
2014b) and protocol-related factors (e.g., repetition duration; 
Bacon et al., 2013) moderate responses, suggesting that effective 
manipulation of programming variables is necessary to maximize 
physiological adaptation (Buchheit and Laursen, 2013a). While 
mechanisms responsible for HIT-induced improvements in 
cardiorespiratory fitness remain elusive, both peripheral (e.g., 
increased mitochondrial content and function) and central 
adaptations (e.g., increased cardiac output) may contribute to 
increased VO2max (Daussin et al., 2007; Burgomaster et al., 2008; 
Jacobs et  al., 2013; Astorino et  al., 2017).

Neuromuscular Fitness
The intensity of HIT induces a substantial acute neuromuscular 
load (Buchheit and Laursen, 2013a) and high levels of muscle 
fiber recruitment (Sale, 1987), therefore providing a stimulus 
for neuromuscular adaptation (Creer et  al., 2004; Martinez-
Valdes et  al., 2017). Although resistance training represents 
the primary strategy for improving muscle morphology, previous 
investigations demonstrated HIT-induced increases in lean- or 
fat-free mass (Gillen et al., 2013; Robinson et al., 2017; Sculthorpe 
et  al., 2017) and muscle cross-sectional area (Osawa et  al., 
2014). Increases in protein synthesis (Bell et  al., 2015) and 
satellite cell activity (Nederveen et  al., 2015) may contribute 
to these observed changes. These findings are not universal 
however (Nybo et  al., 2010), and the potential for HIT to 
increase muscle mass remains largely unknown.

Substantial improvements in mean and peak power output 
(PPO) of ~5–20% have been observed following SIT (Burgomaster 
et al., 2005, 2006; Astorino et al., 2011; Zelt et al., 2014; Sculthorpe 
et  al., 2017), potentially mediated by changes in anaerobic  
enzyme activity (MacDougall et  al., 1998; Rodas et  al., 2000). 
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However, power output determined during short-duration 
cycling bouts (e.g., Wingate test) may primarily represent 
metabolic not neuromuscular power. Nonetheless, emerging 
evidence suggests that HIT increases explosive muscular power, 
assessed via leg extension (Hurst et  al., 2018) and standing 
broad jump (Buckley et  al., 2015). Improvements in muscle 
strength following HIT also occur (McRae et al., 2012; Buckley 
et  al., 2015; Martinez-Valdes et  al., 2017) with small-moderate 
increases (~7%) in knee extensor strength following six sessions 
of cycle-based HIT performed at 100% PPO (Martinez-Valdes 
et  al., 2017). These findings reaffirm the potential for HIT as 
a training strategy capable of improving cardiorespiratory and 
neuromuscular fitness simultaneously.

PROGRAMMING CONSIDERATIONS FOR 
HIGH-INTENSITY INTERVAL TRAINING 
DURING SPACEFLIGHT

While HIT can simultaneously improve cardiorespiratory and 
neuromuscular fitness, acute training responses and subsequent 
adaptations are determined by the interaction of several 
programming variables (Buchheit and Laursen, 2013a,b; MacInnis 
and Gibala, 2017). The following section discusses programming 
considerations relevant to the operational use and potential 
advantages of HIT during spaceflight.

Exercise Volume
Low-volume HIT, typically involving four to six repetitions of 
30–60  s exercise performed at “all-out” intensity, induces 
substantial improvements in cardiorespiratory fitness (Sloth 
et  al., 2013; Weston et  al., 2014b) and may offer potential for 
rapid fitness gains in a short time period. However, despite 
the potent effects of this training stimulus, the intensive nature 
of this exercise protocol necessitates substantial recovery periods 
between intervals (~4  min), meaning that session duration is 
often ~30  minutes. Reducing the volume of exercise does not 
necessarily lessen the magnitude of adaptation following SIT, 
and improvements in VO2max can be  enhanced with fewer 
repetitions (Vollaard et  al., 2017). For example, a protocol of 
3  ×  20  s all out cycle sprints performed three times per week 
for 6  weeks (Gillen et  al., 2014) or 12  weeks (Gillen et  al., 
2016) increased peak oxygen uptake (VO2peak) by 12 and 19%, 
respectively. Reducing exercise volume further, improvements 
of 10–15% in VO2peak can occur following 6  weeks of three 
sessions per week involving only 2  ×  20  s all out sprints 
(Metcalfe et  al., 2012, 2016). Importantly, a reduced exercise 
volume does not appear to have a detrimental effect on anaerobic, 
as well as aerobic performance, given that improvements in 
PPO were not different following 2–4  weeks of SIT intervals 
of either 15 or 30  s (Zelt et  al., 2014) or 10 or 30  s (Hazell 
et  al., 2010) duration. Even with a reduced exercise volume, 
HIT maintains the potential to induce rapid fitness gains.

Exercise training programmes typically involve a combination 
of resistance and endurance training and are termed “concurrent” 
(Fyfe et  al., 2014) or “combined” training (Hurst et  al., 2019). 

Although resistance and endurance training represent effective 
strategies for improving muscular and cardiorespiratory fitness 
respectively, concurrent training may induce an “interference 
effect” whereby improvements in muscular fitness are attenuated 
compared with performing resistance training alone 
(Fyfe et al., 2014). Incorporating SIT into a concurrent training 
programme may help to mitigate any observed interference 
effects (Cantrell et  al., 2014), as these may largely be  exercise 
volume rather than intensity dependent (Fyfe et  al., 2016).

Differentiation of High-Intensity  
Interval Training
As HIT incorporates a broad spectrum of intensities, performing 
exercise across this range is an effective strategy to induce a 
differential adaptive response (Barnes et  al., 2013; Rønnestad 
et al., 2015). Exercise bout duration represents a key programming 
variable because of the inverse relationship between duration 
and intensity (i.e., shorter intervals typically involve higher 
intensity exercise). Therefore, manipulating exercise duration 
alters energy system contribution (Gastin, 2001) as well as the 
degree of neuromuscular loading (Buchheit and Laursen, 2013b). 
Shorter (30 s) compared with long duration cycle-based intervals 
(300 s) have been demonstrated to result in a higher training 
intensity (363  ±  32  W vs. 324  ±  42  W) and lead to significant 
increases in VO2max (8.7  ±  5.0%) and PPO (8.5  ±  5.2%) 
(Rønnestad et al., 2015). Furthermore, following uphill running-
based HIT, improvements in aerobic fitness and performance 
variables were optimal around the middle intensity (100% 
velocity at VO2max; 10% gradient; 1:2 work:rest ratio) with 
increases in neuromuscular measures (e.g., peak power, maximum 
rate of force development) greatest at the highest intensity 
(Barnes et  al., 2013). Repeated-sprint training (RST), typically 
defined as a series of short sprints (3–7 s in duration), separated 
by recovery periods of less than 60  s (Buchheit and Laursen, 
2013a), is another HIT derivative at the highest end of the 
intensity spectrum. As with SIT, RST induces considerable 
acute metabolic and neuromuscular demands (Buchheit and 
Laursen, 2013b), thereby highlighting potential as a 
multicomponent training tool. This supposition was supported 
in a recent meta-analysis that reported clear beneficial effects 
of RST on measures of countermovement jump height, sprint 
times, repeated sprint ability, and high-intensity running 
performance (Taylor et  al., 2015). Manipulating HIT exercise 
intensity therefore promotes a differential training response, 
with these findings further demonstrating potential for HIT 
as a combined training tool for inducing adaptation across 
multiple physiological systems. Ultimately, varied HIT 
prescription within a training programme (e.g., Wright et  al., 
2016) is necessary to maximize metabolic and neuromuscular 
adaptations (Buchheit and Laursen, 2013a,b).

Maintenance of High-Intensity Interval 
Training-Induced gains
Although short-term fitness gains are well documented 
following HIT, maintaining fitness over an extended time 
period represents another challenge. To date however, only 
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a limited number of studies evaluated the effects of manipulating 
session frequency on the maintenance of HIT-induced fitness 
improvements. Following a 2-week SIT intervention, which 
increased VO2max (3%) and high-intensity intermittent running 
performance (17%), participants completed a single weekly 
SIT session for 5  weeks (Macpherson and Weston, 2015). 
Interestingly, this maintenance phase induced a 4.2% 
improvement in VO2max, indicating that reduced training 
frequency can be an effective strategy to maintain SIT-induced 
fitness improvements (Macpherson and Weston, 2015). In 
another investigation, performing 24 HIT sessions at either 
moderate frequency (MF; three sessions per week) or high 
frequency (HF; eight sessions per week) led to a 10.7% 
increase in VO2max in the MF group with no statistically 
significant improvement (3.0%) in the HF group (Hatle et al., 
2014). Following the intervention, participants completed a 
9-week detraining period involving no training with both 
groups demonstrating increased VO2max at 12  days post-
intervention and a return to baseline 4  weeks after highest 
measurement (Hatle et  al., 2014). These data support the 
idea that lower frequency training may be  as effective as 
higher frequency training for maintaining fitness, although 
there remains only limited evidence to support this assertion, 
particularly in well-trained individuals.

Exercise Mode
Traditionally, HIT has been delivered using a single exercise 
mode with treadmill walking/running and cycle ergometry, 
the most commonly used approaches. However, despite the 
logistical advantages of this approach, these exercise modes 
deliver a predominantly lower-body training stimulus. In the 
context of spaceflight, this is likely to be  suboptimal because 
the performance profile of astronauts necessitates a synergy 
of upper- and lower-body fitness. Recently, however, there has 
been an increased desire to move beyond the exercise modes 
typically associated with HIT. Alternative exercise modes for 
performing HIT include body-weight resistance exercise (McRae 
et al., 2012), non-weight bearing all-extremity ergometers (Hwang 
et al., 2016), hydraulic resistance machines (Hurst et al., 2018), 
a combination of strength and endurance exercises (Buckley 
et  al., 2015), and high-intensity circuit-type training (Sperlich 
et  al., 2017). These modes provide a whole-body training 
stimulus, inducing substantial improvements in VO2peak (~8%), 
lower-body muscle power (6–15%), upper- and lower-body 
1RM strength (27%), and muscular endurance (40–280%) 
(McRae et al., 2012; Buckley et al., 2015), following short-term 
training programmes.

As well as the need for upper- and lower-body fitness, 
exercise interventions delivered using a single exercise mode 
are desirable because of physical constraints during spaceflight. 
Performing combined upper- and lower-body HIT using a 
hydraulic resistance machine for 12 weeks improves explosive 
leg power (~10%) and predicted VO2max (8.4%) (Hurst et  al., 
2018), while 8 weeks of HIT performed using a non-weight-
bearing ergometer improves aerobic fitness (11%) and cardiac 
systolic function (Hwang et  al., 2016). While these findings 
are encouraging, it should be  noted that both of these studies 

involved older adults with relatively low baseline fitness who 
typically demonstrate greater training-induced improvements. 
Collectively, however, these data highlight potential for innovative 
approaches to training delivery and should encourage researchers 
to explore alternative exercise modes.

INTEGRATION INTO CURRENT AND/OR 
FUTURE HUMAN SPACEFLIGHT 
OPERATIONS

Interval exercise during spaceflight is not new, having been 
previously used during Shuttle missions and on the Mir Space 
Station. More recently, several interval-type protocols have 
been routinely used on the International Space Station (ISS) 
since Expedition 1 (Loehr et  al., 2015). The intensity of 
these treadmill-based protocols was initially limited by 
technological constraints (e.g., maximal belt speed); however, 
the availability of the “T2” treadmill and cycle ergometry 
protocols from Expeditions 20–25 onwards enabled exercise 
at higher intensities (Loehr et  al., 2015). The maximum 
intensity of cycle-based protocols is currently 90% VO2max – 
characterizing them as HIT rather than SIT. However, the 
within-session exercise intensity varies (60 to 90% VO2max), 
thereby differing from typical experimental HIT protocols 
where prescribed intensity within a session remains constant. 
Despite the routine use of interval exercise during spaceflight, 
NASA’s SPRINT study (National Aeronautics and Space 
Administration [NASA], 2018) is the only controlled 
investigation involving HIT in μG to date. Notwithstanding 
positive initial findings, the experimental design and limited 
available data from this study (Goetchius et  al., 2019) make 
it impractical to draw definitive conclusions about the 
effectiveness of this training approach.

Maximal intensity exercise, in the form of maximal oxygen 
uptake (VO2max) assessment, was first incorporated during Shuttle 
Missions (Levine et  al., 1996; Moore et  al., 2001) with tests 
performed on ISS since 2009 (Moore et  al., 2014) and used 
operationally without incident since 2016. This could provide 
a framework for the use of HIT at intensities up to 100% 
VO2max during flight, which have been delivered with low risk 
across a range of healthy and clinical terrestrial populations 
(Rognmo et  al., 2012). While SIT protocols (≥100% VO2max) 
may represent low risk in terrestrial populations, the physiology 
of astronauts is altered (although not apparently compromised, 
e.g., maximum heart rate; Moore et  al., 2014) in microgravity, 
and therefore, the use of SIT for countermeasure exercise 
requires additional consideration.

Although HIT session duration is often ≥30  minutes, this 
is consistent with current continuous and interval-type protocols 
used on ISS and would fit within the current time allowance 
for aerobic exercise (60 min) (Loehr et  al., 2015). However, 
as HIT achieves significant benefits when interval duration 
and/or number is reduced, time savings may well be realized. 
Moreover, if HIT can induce neuromuscular changes, this 
reduces current and future reliance on resistance training, 
potentially achieving further time savings. In addition to 
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potential time savings, lower energy expenditure and elevations 
in metabolism from HIT compared with continuous protocols 
(Matsuo et  al., 2012) offer significant operational benefits 
over the course of a long mission. Specifically, reduced energy 
requirements (i.e., provision of food, which represents 
additional mass) and reduced burden on the environmental 
management systems (i.e., removal of CO2, moisture, heat). 
The effectiveness of short-term low-volume HIT programmes 
might also facilitate the intermittent use of countermeasure 
exercise to achieve further savings in resources and by-product 
management. In this approach, informed by systematic tests 
of function (e.g., VO2max), a degree of adaptation could 
be  allowed with periods of HIT interspersed to manage the 
magnitude of change.

Finally, the potential effectiveness of HIT across different 
exercise modes offers an advantage for exploration. Vehicle/
mission constraints make it likely that only one exercise 
device will be  available to crew and current concepts do not 
include treadmill running (National Aeronautics and Space 
Administration [NASA], 2017; The Danish Aerospace Company, 
2018). However, they do envisage multiple modes of exercise, 
including cycling, rowing, and upper- and lower-body 
resistance-type exercise, all of which could accommodate  
HIT/SIT protocols.

CONCLUSION

Collective evidence suggests that HIT could offer a range of 
operational and physiological benefits during spaceflight making 
it a viable tool within the exercise countermeasure programme. 
Substantial terrestrial findings support the efficacy of HIT as 
a time-efficient tool for cardiorespiratory fitness improvement 
with emerging data indicating potential beneficial effects on 
the neuromuscular system. The potential for HIT to impact 
other physiological markers affected by μG (e.g., BMD) remains 
largely unknown however and further investigation is warranted. 
Furthermore, despite encouraging terrestrial evidence, there 
remains no rigorous evaluation of HIT in μG and the efficacy 
of HIT during spaceflight is still unknown. Finally, consideration 
of astronaut-specific physiology (e.g., μG-induced fluid shifts) 
as well as logistical constraints (e.g., provision of appropriate 
exercise devices) and exercise programming variables is needed 
to maximize the potential application of HIT.
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