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Abstract: As an important representation of scenes in virtual reality and augmented reality, image
stitching aims to generate a panoramic image with a natural field-of-view by stitching multiple
images together, which are captured by different visual sensors. Existing deep-learning-based
methods for image stitching only conduct a single deep homography to perform image alignment,
which may produce inevitable alignment distortions. To address this issue, we propose a content-
seam-preserving multi-alignment network (CSPM-Net) for visual-sensor-based image stitching,
which could preserve the image content consistency and avoid seam distortions simultaneously.
Firstly, a content-preserving deep homography estimation was designed to pre-align the input
image pairs and reduce the content inconsistency. Secondly, an edge-assisted mesh warping was
conducted to further align the image pairs, where the edge information is introduced to eliminate
seam artifacts. Finally, in order to predict the final stitched image accurately, a content consistency
loss was designed to preserve the geometric structure of overlapping regions between image pairs,
and a seam smoothness loss is proposed to eliminate the edge distortions of image boundaries.
Experimental results demonstrated that the proposed image-stitching method can provide favorable
stitching results for visual-sensor-based images and outperform other state-of-the-art methods.

Keywords: visual-sensor-based image stitching; deep homography; mesh warping; content-preserving;
edge-assisted

1. Introduction

With the development of charge-coupled device (CCD) visual sensors and digital
visual media, wide-field-of-view panoramic images can provide rich image levels and
exquisite image details, which has received great attention over the past few years. As
a key multimedia technology to produce high-resolution wide-field-of-view panoramic
images, visual-sensor-based image stitching aims at producing multiple images with
overlapping regions by rotating the sensors and stitching images by feature matching and
image blending. It has played an important role in many multimedia applications, such as
photogrammetry [1,2] and remote sensing [3,4]. For instance, some classic image-stitching
software products, e.g., Autostitch 1.0 and Adobe Photoshop CS3 [5,6], have promoted
computer graphics applications. However, when the image acquisition sensors’ rotation is
large or the scene is not coplanar, this may cause obvious artifacts and misalignment. Thus,
ensuring that the wide-field-of-view panoramic image has good alignment and naturalness
qualities still comprises challenging problems in visual-sensor-based image stitching.

With the rapid recent advances in computer graphics techniques and visual sensor
devices, plenty of visual-sensor-based image-stitching approaches have been presented
to obtain high-quality resultant stitching images. Traditional visual-sensor-based image-
stitching methods include the global alignment method and spatially varying warping
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method [7]. Global alignment methods utilize invariant local features to match images
and establish the mapping relationship by a homography matrix to align the images, such
as dual-homography warping [8] and linear transformation stitching [9]. However, some
non-overlapping regions may also suffer serious shape distortions. To address this issue,
spatially varying warping methods are introduced to divide the image into uniform meshes
and optimize the content-based mesh deformation function to obtain the optimal mesh
coordinates, including as-projective-as-possible (APAP) [10] and adaptive as-natural-as-
possible (AANAP) [11]. However, traditional spatially varying warping methods may
cause local structural distortions by using different mesh deformation functions.

In recent years, deep convolutional neural networks (CNNs) have shown their power-
ful ability in feature matching and correspondence estimation, and some deep visual-sensor-
based image-stitching methods have been explored to improve the visual-sensor-based
image-stitching performance [12–14]. An effective deep image-stitching method aims to
estimate the deep mapping relationships between image pairs and blend aligned image
pairs to generate natural-looking panoramic images [15]. Nevertheless, many existing
visual-sensor-based deep image-stitching methods have two limitations: (1) some methods
only depend on estimating a single deep mapping transformation to align image pairs,
which sometimes cannot effectively handle large parallax and may twist the global struc-
tures of panoramic images; (2) some methods ignore the importance of image content
and stitching seams, which easily lead to image content misalignments and discontinuous
stitching seams.

In this paper, we propose a content-seam-preserving multi-alignment network (CSPM-
Net) for visual-sensor-based image stitching, which ensures an accurate alignment of input
image pairs and reduces the content-seam distortions effectively. The major contributions
are summarized as follows:

(a) In order to align input image pairs, a content-preserving deep homography esti-
mation was designed to reduce image content inconsistency, and an edge-assisted mesh
warping was developed to eliminate stitching seam artifacts.

(b) To ensure accurate image stitching, a content consistency loss was developed to
preserve the geometric structures of image pairs. Meanwhile, a seam smoothness loss is
proposed to eliminate seam distortions of overlapping regions.

(c) The proposed CSPM-Net was proven to be more effective than state-of-the-art
visual-sensor-based image-stitching methods on a real-world database and a synthetic database.

2. Related Works
2.1. Traditional Image-Stitching Methods

In order to improve the image-stitching performance of visual-sensor-based images,
some research works have developed global alignment methods and spatially varying
warping methods to conduct visual-sensor-based image stitching recently [16]. Global
alignment methods were first presented to stitch multiple images captured from different
visual sensors; as a kind of proven and well-adopted technology for estimating global
geometric transformation, homography especially is often applied in several visual-sensor-
based image stitching tasks [17,18]. For example, Lin et al. [19] introduced a smoothly
varying affine field, which was applied to preserve much of the homography ability of
image stitching. In most cases, global alignment methods are robust, but often produce
discontinuous alignment in the overlapping regions between image pairs.

To solve the model inadequacy of global alignment and further improve image de-
formation quality, some spatially varying warping methods have been designed recent
years [20–25]. As a pioneering work, Zaragoza et al. [10] proposed an as-projective-as-
possible method, where a moving direct linear transform (DLT) method was designed to
adjust the projective warp. In addition, Chen et al. [26] attempted to address the image
distortions by a local warp model with a global similarity prior. These methods improve the
performance of visual-sensor-based image stitching by adding different constraints to the
mesh-grids to realize local alignment. To address the problem of large parallax, Li et al. [27]
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designed a robust elastic warping method for image stitching, where a Bayesian model was
used to remove the incorrect local matches. Similarly, Liao et al. [28] also combined a para-
metric warp and a mesh-based warp together to stitch images. In addition, Zhang et al. [29]
proposed a global optimization method with piecewise rectangular boundaries to realize
content-preserving image stitching.

2.2. Deep Image-Stitching Methods

Due to the outstanding feature-extraction and feature-matching capability of CNNs,
the deep homography method has achieved good performance in many fields recently [30].
In [31], DeTone et al. first proposed a deep homography network for transforming images,
where a regression network was applied to estimate the homography parameters and
a classification network was used to generate quantized homographies. Shen et al. [32]
proposed a parametric alignment based on random sample consensus (RANSAC) to can-
didate coarse alignment and a non-parametric alignment to predict a dense flow field. In
contrast, some unsupervised methods [33] have been presented to solve the homography
estimation without true labels. For example, Zhang et al. [34] designed an unsupervised
method for estimating deep homography and a triplet loss to optimize the content-aware
homography network. Ye et al. [35] designed a deep homography flow to align images,
where a low-rank representation block was used to decrease the feature rank and a feature
identity loss was applied to optimize the unsupervised process. In addition, Nie et al. [36]
introduced a contextual correlation layer in a multi-grid homography, which can represent
the transformation in depth-aware images.

Inspired by the idea of deep homography technology, the deep image-stitching method
has been proposed to deal with visual-sensor-based images [37,38]. Nie et al. [39] pro-
posed an image-stitching network via global homography to eliminate image artifacts.
Considering the importance of edge preservation, an edge-preserving deformation mod-
ule was trained to produce the image-stitching results [13]. Similarly, Dai et al. [40] also
proposed a composition method based on edges for stitching visual-sensor-based images.
To address the case of small parallax, Zhao et al. [41] presented a deep homography to
estimate the geometric transformation of image pairs. In [15], a deep image rectangling
solution was designed to preserve linear and non-linear structures of images. In contrast,
an unsupervised image-stitching method [42] was first proposed for image alignment.
However, since a single deep homography network is used to align images, these meth-
ods may fail in scenes with large parallax. Meanwhile, the importance of image content
and stitching seams is often ignored while stitching images, which may cause content
distortions and seam discontinuity. To deal with the above challenges, a novel visual-
sensor-based image-stitching method based on content-seam-preserving multi-alignment
is presented in this paper, which could preserve image content consistency and avoid seam
distortions simultaneously.

3. Proposed Method
3.1. Framework Overview

The proposed visual-sensor-based image-stitching method via a content-seam-preserving
multi-alignment network is described in this section. Figure 1 gives the flowchart of the
proposed method, which includes content-preserving deep homography estimation, edge-
assisted mesh warping, content consistency loss, and seam smoothness loss. As global and
local deep matching features can provide a transformation relationship between image
pairs, a content-preserving deep homography is firstly designed to pre-align the input
image pairs and reduce content inconsistency. Then, considering that grid-based local
transformation can refine the image details, an edge-assisted mesh warping is introduced
to further align image pairs and eliminate seam distortions. Finally, in order to preserve
the image content and seam information, a content consistency loss is designed to keep
the geometric structures of image pairs, and a seam smoothness loss is employed to elimi-
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nate seam distortions of overlapping regions. Next, we will introduce the proposed deep
image-stitching method in detail.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 15 
 

 

between image pairs, a content-preserving deep homography is firstly designed to pre-

align the input image pairs and reduce content inconsistency. Then, considering that grid-

based local transformation can refine the image details, an edge-assisted mesh warping is 

introduced to further align image pairs and eliminate seam distortions. Finally, in order 

to preserve the image content and seam information, a content consistency loss is de-

signed to keep the geometric structures of image pairs, and a seam smoothness loss is 

employed to eliminate seam distortions of overlapping regions. Next, we will introduce 

the proposed deep image-stitching method in detail. 

 

Figure 1. The flowchart of the proposed method. (a) Content-preserving deep homography estima-

tion, (b) edge-assisted mesh warping, and (c) content consistency loss and seam smoothness loss. 

3.2. Content-Preserving Deep Homography Estimation 

Image stitching aims to obtain seamless and clear images with a wide field-of-view 

by composing multiple images with overlapping regions. However, the inconsistency of 

the object position between the reference and target images easily leads to alignment arti-

facts and content distortions. In order to obtain high-quality image-stitching results with 

large parallax, a content-preserving deep homography estimation is constructed to pre-

align image pairs and enhance the image content consistency. 

For input image pairs, the reference image and target image ( )1 2
I I,  both, with a size 

of U×V, are fed into a symmetric convolutional layer unit to generate the basic visual fea-

ture maps of reference and the target branches. Each unit with shared weights consists of 

two convolutional layers and a max-pooling layer. 

Generally speaking, if there is no texture region, repeated patterns, or illumination 

change in the input image pairs, the homography alignment model is inaccurate due to 

the insufficient number of matching feature points or uneven feature distribution. In order 

to align the images and preserve image content accurately, a content-preserving-based 

attention is introduced into each of the two convolutional layer units to find the correct 

matching features and eliminate the wrong matching features. The details of the content-

preserving-based attention module are shown in Figure 2. For the reference image and 

target image, considering that the original contents in the non-overlapping regions should 

be preserved well, the spatial attention is first applied to select the original spatial features 

of the different contents in a non-overlapping region. Besides, in order to preserve the 

similar content in the overlapping region, the spatial attention is further injected into each 

to capture common spatial features of the same content in the overlapping region. Each 

spatial attention consists of two max-pooling layers, two avg-pooling layers, a shared FC 

layer, and a sigmoid layer. The output feature maps of each content-preserving-based at-

tention are defined as follows. 

( )0

R R T

i S s
G G M G= 

 
(1) 

Figure 1. The flowchart of the proposed method. (a) Content-preserving deep homography estima-
tion, (b) edge-assisted mesh warping, and (c) content consistency loss and seam smoothness loss.

3.2. Content-Preserving Deep Homography Estimation

Image stitching aims to obtain seamless and clear images with a wide field-of-view by
composing multiple images with overlapping regions. However, the inconsistency of the
object position between the reference and target images easily leads to alignment artifacts
and content distortions. In order to obtain high-quality image-stitching results with large
parallax, a content-preserving deep homography estimation is constructed to pre-align
image pairs and enhance the image content consistency.

For input image pairs, the reference image and target image (I1, I2) both, with a size
of U × V, are fed into a symmetric convolutional layer unit to generate the basic visual
feature maps of reference and the target branches. Each unit with shared weights consists
of two convolutional layers and a max-pooling layer.

Generally speaking, if there is no texture region, repeated patterns, or illumination
change in the input image pairs, the homography alignment model is inaccurate due to
the insufficient number of matching feature points or uneven feature distribution. In order
to align the images and preserve image content accurately, a content-preserving-based
attention is introduced into each of the two convolutional layer units to find the correct
matching features and eliminate the wrong matching features. The details of the content-
preserving-based attention module are shown in Figure 2. For the reference image and
target image, considering that the original contents in the non-overlapping regions should
be preserved well, the spatial attention is first applied to select the original spatial features
of the different contents in a non-overlapping region. Besides, in order to preserve the
similar content in the overlapping region, the spatial attention is further injected into each
to capture common spatial features of the same content in the overlapping region. Each
spatial attention consists of two max-pooling layers, two avg-pooling layers, a shared FC
layer, and a sigmoid layer. The output feature maps of each content-preserving-based
attention are defined as follows.

GR
i = GR

S ⊗Ms

(
GT

0

)
(1)

GT
i = GT

S ⊗Ms

(
GR

0

)
(2)

with  GR
s = GR

0 ⊗Ms
(
GR

0
)

GT
s = GT

0 ⊗Ms
(
GT

0
) (3)
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where R and T represent the reference image branch and target image branch. GR
0 and

GT
0 are the input feature maps of the reference and target images. GR

s and GT
s are the

spatialwise feature maps of the reference and target images. Ms(·) is the spatial attention
mask. ⊗ is elementwise multiplication. Finally, the DLT method [10] is applied to transform
the selected features into the corresponding homography H.
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Figure 2. Diagram of content-preserving-based attention module. (a) Content-preserving-based
attention, where ⊗ denotes elementwise multiplication and (b) the spatial attention, where ⊕ denotes
elementwise addition, � denotes the sigmoid function.

3.3. Edge-Assisted Deep Mesh Warping

Existing deep image-stitching methods mostly only rely on estimating a single ge-
ometric mapping transformation relationship (e.g., homography) to align the reference
and target images. However, a single homography cannot align the overlapping regions
accurately when the parallax is too large. In addition, if image fusion happens at the over-
lapping regions with large seam differences, the stitched image may also suffer from seam
structure inconsistency artifacts. Thus, an edge-assisted deep mesh warping is proposed to
further align image pairs and eliminate seam distortions.

In the edge-assisted deep mesh warping, the deep mesh warping is expressed as a
multi-grid-mesh-warping problem, in which different homographies are assigned to differ-
ent pixels in the pre-aligned target image. Specifically, a contextual correlation method [36]
is used to take the feature maps of pre-aligned image pairs

(
Ip
1 , Ip

2

)
as the input and outputs

a feature flow, which can predict the mesh-grid from the reference image to the target image.
Additionally, considering that the edge information of image pairs can be applied as an
additional constraint that preserves the seam information, we explored an edge-assisted
network that can automatically extract the edge feature maps for eliminating seam distor-
tions. As shown in Figure 3, the edge-assisted network mainly consists of a convolutional
layer, three multi-scale residual blocks [43], an upsample layer, and a bottleneck layer. After
that, in order to preserve the structurally meaningful edge information of the image pairs,
the edge feature maps are further concatenated with the corresponding basic feature maps.
Finally, the predicted feature flow of pre-aligned image pairs is computed by the contextual
correlation method. The aligned reference and target images Ia

1 and Ia
2 can be expressed as:

Ia
1 = Wcon

(
CCL([F1c, F2c]), IP

1

)
(4)

Ia
2 = Wcon

(
CCL([F1c, F2c]), IP

2

)
(5)
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with 
F1c =

[
F1conv, F1edge

]
F2c =

[
F2conv, F2edge

] (6)

where F1conv and F2conv are the basic feature maps of pre-aligned image pairs Ip
1 and Ip

2 ,
F1edge and F2edge are the edge feature maps of the pre-aligned image pairs, F1c and F2c
are the fusion feature maps, [·, ·] is the concatenate operation, CCL(·, ·) is the contextual
correlation, and Wcon(·, ·) is the deep mesh warping.
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purple blocks mean the convolutional layer, the multi-scale residual block, the upsample layer, and
the bottleneck layer, respectively.

3.4. Content Consistency Loss and Seam Smoothness Loss

Image stitching aims at producing panoramic images by stitching multiple images
with overlapping regions, which are captured from different visual sensors. In order to
obtain high-visual-quality stitched images, a content consistency loss and a seam smooth-
ness loss are constructed to reduce the region deformation artifacts and seam discontinuity
distortions, respectively. More specifically, to reduce the global alignment and local de-
formation distortions of image pairs, a content consistency loss is proposed to constrain
the shape and position consistency of the objects in the overlapping regions. In addition,
to search for the most-accurate stitching seams between image pairs and eliminate lin-
ear structures’ distortions, a seam smoothness loss is designed to reduce the visual seam
artifacts caused by the local misalignment regions in the image-stitching results.

Content consistency loss: To keep the natural appearance of the stitched image while
reducing projective distortions between image pairs, a content consistency loss is designed
to encourage the stitched image to have similar pixels and geometry structures to the
corresponding ground truth. The content consistency loss Lcont includes the photometric
loss Lphoto and the structural loss Lstruc. To be specific, the photometric loss is applied to
minimize the pixel difference between the stitched image and the ground truth, in which the
L1-norm is adopted to regularize the photometric consistency. Meanwhile, the structural
loss is implemented to encourage the stitched image and the ground truth to have similar
feature representations, where the first few convolutional layers of the CNNs are used to
provide low-level structural information. The content consistency loss Lcont is defined as:

Lcont = Lphoto + Lstruc (7)
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with  Lphoto = ‖IF − IG‖1

Lstruc = ∑2
i=1‖ϕi(IF)− ϕi(IG)‖2

2

(8)

where IF and IG are the final stitched image and the ground truth, respectively, and
ϕi denotes the function of conv1i in the VGG-16 network, in which the receptive field of
each pixel in conv11 and conv12 covers a 5 × 5 neighborhood.

Seam smoothness loss: Image stitching must consider both the image content consis-
tency and seam structure continuity. To this end, a seam smoothness loss is designed to
reduce seam artifacts in the overlapping regions of the stitched image. Specifically, in order
to search for the seam with the minimum differences and further correct the deformation
discontinuity of linear structures, the value of each pixel on the object edge for the overlap-
ping regions in the aligned reference image should be closer to that of the aligned target
image. Here, we made the edge image of aligned image pairs close to the ground truth
edge image of the aligned image pairs. It is worth noting that the curvature formula is
applied to obtain the edge image pairs (E1G, E2G) from aligned image pairs

(
Ia
1 , Ia

2
)
, which

can accurately describe the change in the gradient domain. The seam smoothness loss Lseam
is defined as:

Lseam = ‖E1 − E1G‖1 + ‖E2 − E2G‖1 (9)

with 

E1 = Enet
(

Ia
1
)

E2 = Enet(Ia
2)

E1G = div

(
∇m Ia

1√
1+|∇Ia

1 |
2 , ∇n Ia

1√
1+|∇Ia

1 |
2

)

E2G = div

(
∇m Ia

2√
1+|∇Ia

2 |
2 , ∇n Ia

2√
1+|∇Ia

2 |
2

)
(10)

where E1 and E2 are the edge image of the aligned image pairs, E1G and E2G are the edge
images of the ground truth, Enet(·) denotes the edge-assisted network, m and n represent
the horizontal direction and vertical direction, and ∇ and div(·) denote the gradient and
divergence operations, respectively.

Finally, the content consistency loss Lcont and seam smoothness loss Lseam are combined
together; thus, the overall loss LAll is derived as:

LAll = αLcont + βLseam (11)

where α and β are the weights for the content consistency loss and seam smoothness loss.

4. Experimental Results and Analysis
4.1. Experimental Setup

Implementation details: In order to validate the performance of the proposed deep
image-stitching method, we tested the proposed model on two databases. The first one is
the real-world database from PTIS [21], where the samples are some challenging image pairs
with large parallax. The second is the synthetic database from Warped MS-COCO [39],
where the image pairs are without parallax. These two databases contain numerous
scenarios, which offer the trained model robustness and generalization. The parameters are
shared between the reference and target branches. We used the adaptive moment estimation
(ADAM) optimizer method and the initial learning rate 10−4, which was divided by 10
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after every 10 k iterations. The batch size and momentum were set to 4 and 0.9. The weight
α and β were set to 0.5 and 0.5. After many trials, these were the optimum parameters.

4.2. Visual Comparison Evaluation

In this section, we compare the proposed image-stitching method with six other
methods, i.e., the APAP method [10], NISwGSP method [23], REW method [24], SPSO
method [16], JVCIR method [39], and NC method [41]. The APAP method [10], NISwGSP
method [23], REW method [24], and SPSO method [16] are traditional image-stitching
methods, while the JVCIR method [39] and NC method [41] are deep image-stitching
methods. It is worth noting that the results of the APAP method [10], NISwGSP method [23],
REW method [24], and JVCIR method [39] were obtained by running the public source
code, and the results of the SPSO method [16] and NC method [41] were obtained by the
implementation by us. For space limitations, only the image-stitching results of some
typical scenes and the challenging scenes are presented in this section.

Real-world images: Figure 4 shows the visual examples of different image-stitching
methods on the PTIS [21] test database. The APAP method [10] obtains natural scenes
by utilizing a 2D projective warp with a moving DLT. However, the APAP method [10]
degrades the quality of repetitive textures in the final stitched images. For instance, the blue
people in the overlapping regions show serious ghosting in the second line of Figure 4b. In
contrast, the NISwGSP method [23] preserves the structure of the overlapping regions by
the integration of global similarity transformation, but it causes significant artifacts in the
non-overlapping regions, such as the street lamp, which has an obvious inclination in the
third line of Figure 4c. As given in Figure 4d, the salient objects in the overlapping regions
are preserved by the REW method [24], but there is misalignment at the stitching seam in
some cases. In addition, the SPSO method [16] is basically able to align image content by the
hybrid warping model, but it causes the ghosting of objects in overlapping regions, shown
in Figure 4e. Compared with traditional image-stitching methods, the JVCIR method [39]
and NC method [41] both show better stitched images in keeping parallax. However,
they cannot retain the original proportion of objects due to the limitation of a single deep
homography. For example, the pavilion is smaller than the original one in the fifth line of
Figure 4f, and the white building is obviously inclined in the fourth line of Figure 4g. In
contrast, as shown in Figure 4h, with the help of the integration of content-preserving deep
homography and edge-assisted mesh warping, the proposed deep image-stitching method
can align the original structure and eliminates the ghosting of the visual-sensor-based
images in varying scenes.

Synthetic images: To further verify the performance of the proposed image-stitching
method, we further compared the proposed model with different state-of-the-art mod-
els on the synthetic image datasets [39]. Figure 5 shows some challenging images that
contain some regions with poor or repetitive textures. The APAP method [10], NISwGSP
method [23], and REW method [24] provide natural-looking panoramic images in most
cases. However, from the stitched image results, the APAP method [10] enlarges the re-
gions of the scooter in Figure 5b. In addition, the NISwGSP method [23] causes inaccurate
alignment in the overlapping regions of the train in the fifth line of Figure 5c, and the
REW method [24] contains evident artifacts, such as the middle part of the hair being very
fuzzy in the third line of Figure 5d. Similarly, the SPSO method [16] causes distortions
in non-overlapping regions. For example, the number on the train is obviously distorted
in the second line of Figure 5e. In contrast, for the deep-learning-based image-stitching
methods, the JVCIR method [39] obtains desirable image-stitching results with reasonable
parallax. However, it fails to align both of the line structures. For example, the curtain is
tilted in the fifth line of Figure 5f. Similar to the JVCIR method [39], the NC method [41]
also considers the role of deep global homography in image stitching. Therefore, some
satisfactory stitched images with fewer parallax distortions are shown in Figure 5g. How-
ever, some shape distortions exist in the non-overlapping regions. In contrast, the proposed
deep image-stitching method shows superior abilities in avoiding the artifacts, as shown
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in Figure 5h. This validates the effectiveness of the proposed deep CNN-Net for the
image-stitching task.
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church, and pavilion. From left to right: (a) the input images, (b) APAP method [10], (c) NISwGSP
method [23], (d) REW method [24], (e) SPSO method [16], (f) JVCIR method [39], (g) NC method [41],
and (h) the proposed method.
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method [23], (d) REW method [24], (e) SPSO method [16], (f) JVCIR method [39], (g) NC method [41],
and (h) the proposed method.

4.3. Quantitative Comparison Evaluation

To further evaluate the performance of the proposed image-stitching method compre-
hensively, the structural similarity (SSIM) metric [44] and peak-signal-to-noise ratio (PSNR)
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metric [45] of the overlapping regions were compared between different image-stitching
methods. In general, for image stitching, the maximum value of the SSIM metric is 1 and
the minimum value of the SSIM metric is 0. Meanwhile, the maximum value of the PSNR
metric is infinite and the minimum value of the PSNR metric is 0. The SSIM metrics of
the final stitched images from seven different methods are illustrated in Table 1. As can
be seen, the SSIM metrics of the APAP method [10], NISwGSP method [23], and REW
method [24] are smaller than those from the proposed method, because these traditional
image-stitching methods depend on the accuracy of feature detection and matching, which
are easily affected by various environments. Unlike these feature-based methods, the
performance on the SSIM metric of the JVCIR method [39] and NC method [41] works
on dense pixels and achieved high alignment accuracy on some test images. However,
the geometric mapping transformation of the JVCIR method [39] and NC method [41]
may fail for insufficient feature matching of a single homograph; thus, a few stitched
images are bad. In contrast, benefiting from the multi-alignment during the stitching of
the images, the proposed method is superior at improving the alignment accuracy of the
visual-sensor-based images.

Table 1. Quantitative comparison between different image-stitching methods. ↑ denotes the larger
the value of SSIM and PSNR metrics, the better the quality of image stitching results.

Method SSIM ↑ PSNR ↑
APAP method [10] 0.8245 20.0453

NISwGSP method [23] 0.8545 20.835
REW method [24] 0.8953 22.3405
SPSO method [16] 0.9198 24.4924
JVCIR method [39] 0.9153 24.5678

NC method [41] 0.9403 26.6984
The proposed method 0.9526 26.7321

The PSNR metrics of different image-stitching methods are also reported in Table 1. As
the baseline spatially varying warping method, it can be seen that the APAP method [10]
has the highest PSNR metric, because it showed significant artifacts in the highlighted
areas. In addition, the NISwGSP method [23] and REW method [24] provide higher PSNR
metrics, as the NISwGSP method [23] yields severe parallax artifacts around the foreground
objects, and the REW method [24] ignores the shape-preserving of the overlapping regions.
Moreover, the deep-learning-based image-stitching methods, i.e., JVCIR method [39] and
NC method [41], exhibit relatively smaller PSNR metrics than the proposed method. Ad-
ditionally, the proposed visual-sensor-based image stitching model works significantly
better than the other methods at aligning the geometry structure and reducing visual arti-
facts because the proposed network learns more-accurate matching features and mapping
relationships, which leads to better robustness.

4.4. Ablation Studies

In this section, the ablation studies are conducted to compare the effectiveness of dif-
ferent key components of the proposed model. The qualitative and quantitative evaluation
experiments are shown in Figure 6 and Table 2. Specifically, “w/o homography” refers to
the proposed method without content-aware deep homography estimation, “w/o warping”
refers to the proposed method without edge-assisted mesh warping, and “w/o content”
and “w/o seam” refer to the proposed method without content consistency loss and seam
smoothness loss.
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Figure 6. Qualitative comparison results of different cases. From top to bottom: building, plane,
bridge. From left to right: (a) the input images, (b) results without content-preserving homography,
(c) results without edge-assisted mesh warping, (d) results without content consistency loss, (e) results
without seam smoothness loss, and (f) results of the proposed method.

Table 2. Ablation studies. Data represent the average SSIM and PSNR on 1000 test data. ↑ denotes
the larger the value of SSIM and PSNR metrics, the better the quality of image stitching results.

Model SSIM ↑ PSNR ↑
w/o homography 0.6437 17.394

w/o warping 0.7304 17.659
w/o content 0.8045 18.3921
w/o seam 0.8593 19.0493

The proposed method 0.9153 26.7321

The qualitative comparison results of different cases are illustrated in Figure 6. From
Figure 6b, it can be seen that the case of w/o homography fails to accurately align the
reference image and target image, such as the blue boy in the plane image having obvious
ghosting and the red bridge in the bridge image is destroyed. Compared with the case of
w/o homography, the case of w/o warping has slight visual distortions in Figure 6c. In
Figure 6d, the case of w/o content has some content distortions, and the red plane in the
final results has content artifacts. In addition, the case of w/o seam in Figure 6e suffers
from seam discontinuity, which produces the undesired stitched images. For instance, the
tree in the building image has obvious seams. In contrast, the proposed method obtained
better stitched results for the visual-sensor-based images in Figure 6f. For example, the
original content is preserved well and no visible seams exist in the overlapping regions.

Figure 7 presents the SSIM metric of the loss functions with different parameters on
1000 test data. In this experiment, α was first set as 0 to yield the best β. As illustrated
in Figure 7a, the best SSIM was achieved when β was set as 0.5. Afterwards, β was fixed
at 0.5 to search for the appropriate α. From Figure 7b, it is shown that the best SSIM was
obtained when α was set as 0.5. The quantitative comparison results of the SSIM metric and
PSNR metric are shown in Table 2. From Table 2, the case of w/o homography obtained the
worst results, which illustrates that deep homography plays an essential role in aligning
images. In addition, the case of w/o content gave worse results than the case of ‘w/o edge’,
which validates that the content consistency loss is significant for reducing content artifacts.
Furthermore, the case of ‘w/o mesh’ obtains worse results than the proposed method,
because of the lack of the multiple alignment operation, and the deep model had some
shape and structure distortions. On the other hand, the proposed method outperformed
the other cases in stitching the visual-sensor-based images. The quantitative comparison
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results of the PSNR metric are similar to the trend of the SSIM metric. It can be seen that
the proposed deep image-stitching method can reduce significant distortions and avoid
intolerable artifacts.
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4.5. Computational Complexity and Discussions

To demonstrate the efficiency of the proposed method, the average GPU running
time of different image-stitching methods is compared in this section. The processing
environment was an NVIDIA GeForce GTX 1080Ti GPU. Table 3 shows the running time of
different image-stitching methods. For the ship test data, the proposed deep-learning-based
method took 0.32 s. For comparison, the APAP method [10] took 0.51 s, the NISwGSP
method [23] took 0.5 s, the REW method [24] took 0.95 s, the SPSO method [16] took
0.78 s, the JVCIR method [39] took 0.11 s, and the NC method [41] took 0.12 s. The
APAP method [10], NISwGSP method [23], REW method [24], and SPSO method [16]
had greater running times in calculating several warping objective energy functions. By
comparison, the JVCIR method [39] and NC method [41] took less time than the proposed
method, because they only perform an alignment operation to stitch the image pairs.
Nevertheless, our method performs the multi-alignment operation, which consists of
homography estimation and mesh warping to stitch visual-sensor-based image pairs; thus,
it has higher computational complexity.

Table 3. Running time of different image-stitching methods on ship test data.

Method Running Time (s)

APAP method [10] 0.51
NISwGSP method [23] 0.5

REW method [24] 0.95
SPSO method [16] 0.78
JVCIR method [39] 0.11

NC method [41] 0.12
The proposed method 0.32

5. Conclusions

In this paper, we proposed a content-seam-preserving multi-alignment network for
visual-sensor-based image stitching. Firstly, a content-preserving deep homography es-
timation was proposed to pre-align image pairs and eliminate image content distortions.
Secondly, an edge-assisted mesh warping was conducted to further align image pairs and
preserve the valuable stitching seam information. Finally, a content consistency loss was
designed to preserve the geometric structure of overlapping regions between image pairs,
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and a seam smoothness loss was introduced to reduce the seam distortions of image bound-
aries. The experimental results illustrated that the proposed method outperformed other
state-of-the-art traditional and deep learning image-stitching methods for visual-sensor-
based images and achieved a 0.9526 SSIM and 26.7321 PSNR on a real-world database
and synthetic database. However, the fusion stage of image stitching was not sufficient by
simply applying pixel-level fusion methods, which may decrease the performance of image
stitching. In the future, the image-stitching performance can be guaranteed by exploring
image fusion based on deep feature fusion networks.
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