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Abstract
Purpose  Segmentation and reconstruction of arterial blood vessels is a fundamental step in the translation of computational 
fluid dynamics (CFD) to the clinical practice. Four-dimensional flow magnetic resonance imaging (4D Flow-MRI) can 
provide detailed information of blood flow but processing this information to elucidate the underlying anatomical structures 
is challenging. In this study, we present a novel approach to create high-contrast anatomical images from retrospective 4D 
Flow-MRI data.
Methods  For healthy and clinical cases, the 3D instantaneous velocities at multiple cardiac time steps were superimposed 
directly onto the 4D Flow-MRI magnitude images and combined into a single composite frame. This new Composite Phase-
Contrast Magnetic Resonance Angiogram (CPC-MRA) resulted in enhanced and uniform contrast within the lumen. These 
images were subsequently segmented and reconstructed to generate 3D arterial models for CFD. Using the time-dependent, 
3D incompressible Reynolds-averaged Navier–Stokes equations, the transient aortic haemodynamics was computed within 
a rigid wall model of patient geometries.
Results  Validation of these models against the gold standard CT-based approach showed no statistically significant inter-
modality difference regarding vessel radius or curvature (p > 0.05), and a similar Dice Similarity Coefficient and Hausdorff 
Distance. CFD-derived near-wall hemodynamics indicated a significant inter-modality difference (p > 0.05), though these 
absolute errors were small. When compared to the in vivo data, CFD-derived velocities were qualitatively similar.
Conclusion  This proof-of-concept study demonstrated that functional 4D Flow-MRI information can be utilized to retrospec-
tively generate anatomical information for CFD models in the absence of standard imaging datasets and intravenous contrast.
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Introduction

Accurate representation of the arterial geometry and blood 
flow regime plays a fundamental role in clinical practice for 
disease diagnosis, staging, treatment planning, and patient 
outcome monitoring [1–3]. The reconstruction of the aorta 
and main branches, in particular, is inherently challenging 
due to a high variability in diameter, shape, and overall 
geometry within the healthy and patient population [4]. In 
patients wherein a stent-graft has been deployed, metal-
induced artifacts within medical images can further com-
plicate this process [5].

Computational tomography (CT) is the preferred imag-
ing modality for arterial visualization and reconstruction 
in clinical practice, especially where stent-grafts are pre-
sent [6–9]. However, CT scans utilize ionizing radiation, 
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which is well-known to cause long-term health risks 
[10–12]. There is now a growing awareness in medical 
imaging to reduce radiation exposure where possible, 
especially in children and during asymptomatic screening 
[11, 13–21]. Additionally, ethical implications prohibit the 
use of CT to generate anatomical or functional reference 
models within the healthy population.

Magnetic resonance angiography (MRA), a subset of 
magnetic resonance imaging (MRI), is a non-ionizing 
alternative to CT imaging [6, 9, 22]. With the addition 
of intravenous contrast agents, the signal to noise ratio 
(SNR) and contrast to noise ratio (CNR) are increased 
significantly. However, in patients with high sensitivity to 
contrast agents, (e.g. with impaired renal function, which 
is common in those who require stent-grafts), the emer-
gence of non-contrast MRA has been beneficial, including 
techniques such as time of flight (TOF), phase contrast 
(PC), and four-dimensional flow (4D Flow) [23–29].

4D Flow-MRI is a relatively recent development which 
captures the spatiotemporal evolution of 3D blood flow 
with full volumetric coverage throughout a continuous 
region of interest (ROI) at multiple cardiac time steps 
[30, 31]. In this time-resolved, respiratory and ECG-gated 
acquisition, velocity vectors are encoded in all three spa-
tial dimensions, which permits post-hoc, dynamic visu-
alization of the flow regime and quantification of several 
hemodynamic parameters [32]. Generally, arterial recon-
struction from 4D Flow-MRI can be achieved through 
direct volume rendering within specific 4D Flow soft-
ware, or via contour-based segmentation of 4D Flow-MRI 
derived MRA, comprised of 2D image stacks [33]. With 
volume rendering, the user has limited control over the 
final geometry, which may falsely include parts of the sur-
rounding tissue or exclude regions of low velocities, e.g. in 
curvature and branching points. Contour-based segmenta-
tion grants increased user control and has previously been 
performed via supervised (convolutional neural networks) 
and unsupervised (k-means clustering) machine learning, 
atlas-based approaches, deformable model algorithms, and 
blood vessel tracking algorithms [4, 34–40]. To utilize 
these segmentation techniques, the data must first be pro-
cessed into discretized image stacks.

Due to the retrospective nature of this study and data 
availability, the 4D Flow-MRI images were not accompa-
nied by standard and well-established images such as MRA 
or PC-MRA. PC-MRA, for example, is commonly used to 
generate images for blood vessel reconstruction and does 
not require intravenous contrast [41]. These angiographic 
images can, however, be created directly from the retrospec-
tive 4D Flow-MRI data [41]. Due to the complexity of the 
4D Flow-MRI data, translating this information into images 
which clearly portrays the underlying anatomical structures 
is challenging [42]. However, the ability to generate contrast 

within the lumen in these retrospective datasets and pre-
pare images for segmentation is essential for subsequent 
reconstruction.

Therefore, the aim of this paper is twofold. The primary 
aim was to outline a novel methodology to create a phase 
contrast angiogram by retrospectively superimposing the 
instantaneous 4D Flow-MRI-derived velocity profile at 
multiple, user-defined time steps directly onto the magni-
tude image stack. As this methodology creates a composite 
image, the resultant dataset shall be termed as a Composite 
Phase-Contrast Magnetic Resonance Angiogram (CPC-
MRA). To validate this approach, a study was undertaken 
to validate the 4D Flow-MRI reconstructed geometries 
against CT-based reconstructions from a healthy volunteer 
and clinical patients. The secondary aim was to evaluate 
haemodynamics from computational fluid dynamics (CFD) 
models, based on the reconstructed geometries from each 
imaging modality. This secondary study was to investigate 
whether minor changes in the reconstructed geometries had 
a large impact on CFD-derived haemodynamics. In each of 
the two studies, CT-imaging was utilized as the reference 
gold-standard approach. The CFD-derived velocities for 
each patient were then compared to that obtained directly 
from the 4D Flow-MRI data.

Methodology

Temporal Composite and Arterial Reconstruction

Imaging Datasets

4D Flow-MRI and CT data from three patients with arterial 
pathology in the thoracoabdominal region were acquired 
from the Queen Elizabeth University Hospital (QEUH). 4D 
Flow-MRI data was also obtained from a healthy volunteer 
(Table 1). Each clinical patient, hereafter termed patient 1, 
2, and 3, was diagnosed with an abdominal Type B aortic 
dissection. Patient 1 had a previous Anaconda™ stent-graft 

Table 1   Computed tomography (CT) and 4D Flow-magnetic reso-
nance imaging (4D Flow-MRI) datasets obtained from a healthy vol-
unteer and three clinical patients

AD: aortic dissection

Age Sex CT 4D Flow-
MRI

Clinical pathology

Volunteer 33 M – ✓ –
Patient 1 68 M ✓ ✓ Type B AD & 

Anaconda™ 
stent-graft

Patient 2 55 M ✓ ✓ Type B AD
Patient 3 62 M ✓ ✓ Type B AD
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deployed in the distal abdominal aorta, extending into the 
iliac bifurcation.

4D Flow‑MRI Scan Sequence

4D Flow-MRI images were acquired using an MRI 
research 4D flow sequence (WIP 785A), from Siemens: 
80 × 160 × 60 mm3 imaging volume, 3.6 × 2.4 × 2.6 mm3 
acquired resolution, TR/TE (Repetition Time/Echo 
Time) = 3.8/2.8 ms, integrated parallel acquisition technique 
(iPat) 3. Velocity encoding (VENC) was 150 cm/s, with a 
scan time of ~ 8 min and 20-time frames between each R-R 
interval. Contrast media was not utilized. The acquisition 
used retrospective electrocardiogram (ECG) gating and res-
piratory gating navigator. CT images were obtained via a 
contrast-enhanced CT angiography (CE-CTA) helical scan, 
with no cardiac gating, using iodinated contrast material 
(100 ml).

Blood Velocity Visualization

The 4D Flow-MRI datasets were imported into Circle Cardi-
ovascular Imaging Software (cvi42®, Calgary, Canada) and 
excess volume surrounding the aorta and its main branches 
was removed manually [43]. Thereafter, a mask (based on 
detected areas of flow) was applied to the 4D Flow-MRI 
magnitude images, and the threshold was set to ensure that 
the entirety of the aorta and branches were rendered. A mask 
correction was then employed to differentiate between static 
tissue, air filled regions, and regions of blood flow. From 
this mask, a rough, 3D volume render of the aorta was gen-
erated. To visualize the velocity streamlines, the aorta and 
main branches were isolated from the heart and surrounding 
vasculature using a vessel centerline, created from multi-
ple user-defined control points within the lumen. Figure 1a 
illustrates the velocity streamlines in the thoracic aorta of 
the healthy volunteer throughout a single cardiac cycle, 
while Fig. 1b shows the abdominal aorta and iliac arteries of 

Fig. 1   Velocity streamlines at consecutive time  steps throughout A 
the thoracic aorta of a healthy volunteer, and B the abdominal aorta 
and common iliac arteries of patient 1 with an Anaconda™ stent-
graft. This was obtained from analysis of 4D Flow-MRI data on cir-
cle cardiovascular imaging software, cvi42®. All images are shown 

between a velocity scale of 0–50 cm s−1 at time points throughout the 
cardiac cycle, where T is the cardiac period (0.21 T: Systolic accel-
eration (SA); 0.26 T: Peak systole (PS); 0.36 T: Systolic deceleration 
(SD))
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patient 1. It was evident that the instantaneous 3D velocity 
profile highlighted different regions of the lumen depend-
ing on the stage of the cardiac cycle. For example, the sig-
nal intensity in the ascending aorta, supra-aortic branches, 
and abdominal aorta was greatest during systolic accelera-
tion (SA), peak systole (PS), and systolic deceleration (SD) 
respectively. Blood flow gradually became non-directional 
and low in magnitude as diastole was approached.

Geometry Reconstruction from 4D Flow‑MRI

Figure 2 outlines the process of geometry reconstruction 
from 4D-Flow MRI images from multiple user-defined time 
steps, at SA, PS, and SD. Centerlines were utilized only for 
streamline visualization (Fig. 2b) and removed thereafter. 
Subsequent steps in the methodology therefore encompassed 
blood flow through all vasculature within the ROI to reduce 
inter- and intra-user variability. For the healthy volunteer 
and clinical patient, the 3D instantaneous velocity profile of 
blood at multiple (SA, PS, SD), discrete time points were uti-
lized to generate contrast within the vessel lumen. This data 
was extracted retrospectively from the 4D Flow-MRI data. 
To do this, the continuous ROI was first discretized to cre-
ate a finite number of image slices in the transverse (axial) 
plane (n = 1200 slices), coronal plane (n = 500 slices), and 
sagittal plane (n = 500 slices) at SA, PS, and SD. At each of 
these three time steps, the discretized slices within the image 
stack were separated by a slice gap thickness of 0.35 mm 
(Fig. 2C), which was the minimum possible gap thickness 
which could be created on cvi42®. The final resolution was, 
however, limited to 3.6 × 2.4 × 2.6 mm3 due to the acquisi-
tion sequence. The 3D velocity profile at SA, PS, and SD, as 
calculated on cvi42®, was overlaid directly onto each image 
within the DICOM stack via superimposition. In regions of 
non-zero blood velocity (i.e. within the lumen), the velocity 
signal was converted to a greyscale image, where pixel inten-
sity within each slice of the image stacks was proportional 
to the instantaneous velocity magnitude of blood (Fig. 2C). 
This generated additional contrast against the surrounding 
static tissue. The adopted velocity threshold for signal inten-
sity for DICOM generation was 25 cm s−1. A composite 
DICOM image, hereafter termed a Composite Phase-Con-
trast Magnetic Resonance Angiogram (CPC-MRA) stack for 
each person was then created from images by combining the 
velocity-enhanced DICOM stacks (Fig. 2D) at SA, PS, and 
SD (i.e. SliceN

CPC−MRA
= SliceN

SA
+ SliceN

PS
+ SliceN

SD
) , 

where N is the slice number in the transverse, coronal, or 
sagittal plane. Crucially, superimposition and alpha blend-
ing were used to combine the images from each time step 
to ensure uniform intensity within the lumen. The contrast 
was then enhanced on the final DICOM stack by re-mapping 
the intensity values in the initial grayscale image to new 
values to fill the entire available intensity range using the 

Matlab® imadjust function [44]. This process of combining 
the image stacks was performed with an in-house Matlab® 
script (https://​doi.​org/​10.​15129/​2db50​4b8-​3736-​4ba0-​9829-​
b7cc0​c5db3​8a) and is shown in Fig. 2D for a single slice of 
the thoracic aorta.

The rationale behind the CPC-MRA images was as fol-
lows: if the user was to utilize only one time step, the result-
ant diameter in more distal regions of the aorta would be 
underestimated due to the temporal lag in arterial pulse 
waves which exhibit a reduced velocity and therefore 
reduced contrast. SA, PS, and SD were chosen as they gen-
erated the greatest degree of contrast throughout the entire 
aorta and branches when combined. Blood flow at previ-
ous and subsequent time steps was too low in magnitude to 
generate sufficient contrast for segmentation of the lumen. 
For each clinical patient and the healthy volunteer, the CPC-
MRA DICOM stacks (generated from SA, PS, and SD) were 
then imported into the open-source software SimVascular® 
(https://​simva​scular.​github.​io/) [45]. Path lines were gener-
ated for each branch vessel via user-defined control points, 
whereafter Fourier smoothing was performed. 2D segmenta-
tions were created via manual image intensity thresholding 
to determine the vessel lumen contours along each path. To 
create a solid 3D model (Fig. 3), a lofted surface was gener-
ated based on the group of 2D segmentations along each ves-
sel path. Finally, the lofted surfaces for each branch vessel 
were stitched together to create a single solid model which 
was subsequently smoothed (10 iterations of constrained 
smoothing and decimation). The reconstructed geometries 
were compared with the 4D-Flow MRI and CT images to 
ensure that the surface smoothing had no or minimal effect 
on the lumen dimensions.

Validation with Computed Tomography

The 4D Flow-MRI based reconstruction methodology 
required validation against CT-derived models. As CT 
images were only available for clinical patients, this meth-
odology was validated using the three clinical cases outlined 
in Table 1. CT and 4D Flow-MRI scans were performed on 
the same date for each patient. This validation comprised of 
five elements: (1) qualitative visual comparison of the 3D 
reconstructed arteries; (2) quantitative comparison of vessel 
centerline metrics including (i) Radius: Maximum inscribed 
sphere radius, (ii) Curvature: Inverse of the radius of the 
osculating circle [46], (iii) Tortuosity: The relative increment 
in length of a curve deviating from a straight line [46], and 
(iv) bifurcation angle; (3) Hausdorff distance (HD): The dif-
ference between two geometries by measuring their mutual 
proximity and the maximal distance between corresponding 
points of one relative to the other [47]; (4) Dice Similarity 
Coefficient (DSC): A spatial overlap index reflecting both 
size and localization agreement [48] ; and (5) quantitative 

https://doi.org/10.15129/2db504b8-3736-4ba0-9829-b7cc0c5db38a
https://doi.org/10.15129/2db504b8-3736-4ba0-9829-b7cc0c5db38a
https://simvascular.github.io/
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comparison of near-wall hemodynamics from CFD simula-
tions. Figure 4 illustrates this process as a flow chart.

Quantification of the inter-modality differences between 
the CT and 4D-Flow MRI-derived models was performed at 
the iliac bifurcation and common iliac arteries. This region 

provided a reference point common to both modalities and 
remained generally free from dissection. These aspects were 
important as the specific 4D Flow-MRI sequence utilized 
was not optimized for the analysis of a false lumen or small 
vessels. Bifurcations also generate complex hemodynamics 

Fig. 2   An illustration of the proposed CPC-MRA extraction from 
4D Flow-MRI data of the thoracic aorta of the healthy volunteer. A 
4D Flow-MRI data acquisition at the thoracic aorta. B 3D velocity 
encoding permitted analysis of velocity at any point in the region of 
interest (ROI), from which the aorta itself can be isolated for visuali-
zation. C The 3D velocity profile was superimposed directly onto the 

magnitude images and the ROI was discretized along the axial plane 
to create a DICOM stack at SA, PS, and SD. D The images at SA, PS, 
and SD were combined on a slice-by-slice basis to create CPC-MRA 
composite images in the axial, sagittal, and coronal plane. Velocity is 
directly proportional to signal intensity
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Fig. 3   3D greyscale render of the velocity-derived contrast at SA, PS, and SD, the 4D Flow-MRI CPC-MRA, and the final SimVascular recon-
struction for the A healthy volunteer, B patient 1, C patient 2, and D patient 3

Fig. 4   Flow chart to highlight the processing of the 4D Flow-MRI images to create the temporal composite (CPC-MRA) image stacks (blue) and 
subsequent geometric analysis of the 4D Flow-MRI and CT-derived reconstructed models (green), and CFD analysis (orange)
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and are inherently challenging to reconstruct, so geomet-
ric and hemodynamic comparisons at this region permit a 
robust analysis to be performed.

Curvature, κ(s), of the centerline, c(s), was defined as 
shown in Eq. 1 [46].

As the arc length, L, of the centerline and the Euclidean 
distance between the end points, D, was known, tortuosity, 
� , was calculated as per Eq. 2 [46].

If A represents the 4D Flow-MRI derived geometry and 
B represents the CT-derived geometry, the mathematical 
formulation for HD, H(A,B), is given in Eq. 3 [49]. As HD 
is a measure of boundary similarity between two objects, a 
comparison between two identical objects would result in a 
HD of zero.

 where

 where d represents the Euclidean distance between the 
points of the sets, h(A,B) is the forward HD, and h(B,A) is 
the backwards HD [49]. To ensure the 4D Flow-MRI and 
CT-derived models were oriented in the same plane, two 
points in the centerlines, the bifurcation reference point and 
the end point of the left iliac artery, were aligned. The HD 
between the boundaries of the 4D-Flow MRI and CT derived 
models was then analyzed at equally spaced, horizontal 2D 
planes (n = 1000) throughout the reconstructed models. The 
gap between each discrete plane was extremely small, so this 
tended towards a continuous analysis over the full model. 
The 95th percentile of the HD was utilized to handle outli-
ers [50].

The formulation for the DSC is given in Eq. 6 [48]. DSC 
ranges from 0, indicating no spatial overlap between the 3D 
models, and 1, indicating a complete overlap [48].

When applied to discrete data, |A| and |B| are the cardi-
nalities (number of elements) of the two sets, and ∩ is the 
intersection. Therefore, to compute the DSC, the cardinali-
ties of the 4D Flow-MRI and CT-derived models, and the 

(1)�(s) =
|c�(s) × c��(s)|

|c�(s)|3

(2)� =
L

D
− 1

(3)H(A,B) = max (h(A,B), h(B,A))

(4)h(A,B) = max
a∈A

(
min
b∈B

d(a − b)

)

(5)h(B,A) = max
b∈B

(
min
a∈A

d(b − a)

)

(6)DSC(A,B) =
2|A ∩ B|
|A| + |B|

respective Boolean intersection |A ∩ B| , for each patient 
were generated in Ansys SpaceClaim®.

The open-source Vascular Modelling Toolkit (VMTK) 
was used to compute vessel centerlines [51]. These center-
lines were then resampled at 3 mm intervals and smoothed 
with a factor of 0.5 and 100 iterations to remove noise 
which can generate localized parameter errors. A bifurca-
tion reference system was generated within the software, 
following the methodology of Piccinelli et al. [46]. There-
after, bifurcation angles were obtained for each geometry, 
calculated from the difference between the in-plane angle 
of the common iliac vessels [52].

The abdominal aorta was truncated immediately 
upstream of the bifurcation reference point for both the 
4D Flow-MRI and CT-derived models. This was to ensure 
that all 3D models began at a common anatomical land-
mark. Centerline measurements were performed distally to 
the bifurcation reference point. Patient 2 exhibited a small 
region of dissection in the left common iliac artery, result-
ing in a true lumen (TL) and false lumen (FL), so radius, 
R, was presented as R = RTrueLumen + RFalseLumen.

Computational Fluid Dynamics Model

The 4D Flow-MRI and CT-derived models for patients 1, 
2 and 3 were discretized to create a tetrahedral computa-
tional mesh in Ansys ICEM®. To capture the viscous sub-
layer, the initial prism layer height ( Δy1 ) on the boundary 
was estimated at Δy1=2.5e−3 m, such that y +  < 1 [53]. 
To resolve the boundary layer, 10 prism layers were gen-
erated from this initial estimate, with an expansion ratio 
of 1.25. Further information on y + can be found in the 
Supplementary Material.

Grid convergence was then established for wall shear 
stress by performing several steady state Reynolds-aver-
aged Navier Stokes (RANS) simulations in Ansys Flu-
ent®, employing a shear stress transport (SST) k-ω tur-
bulence model (Supplementary Material) [54]. The shear 
stress distribution was analyzed at the iliac bifurcation 
upon convergence of the solution, and a surface integral 
over the entire geometry was performed to yield a single 
quantitative metric. Upon satisfying grid convergence, 
the RANS output simulation results were examined to 
ensure the mesh was compliant with the y + criteria. Flow 
extensions were applied at the inlet (5D) and outlet (10D), 
where D was the inlet diameter of the respective patient 
vessel [55].

Transient aortic haemodynamics were computed within a 
rigid wall model with a no-slip boundary condition. Blood 
flow was modelled by solving the time-dependent, 3D, 
incompressible RANS equations for continuity and momen-
tum, according to the following equations, respectively [56]:
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 where u is the fluid velocity, p is the pressure, ρ is the fluid 
density, and v is the kinematic viscosity. Reynolds decom-
position was performed to separate velocity and pressure, 
into mean ( u , p) and fluctuating ( u′ , p′ ) components, such 
that u = u + u� , p = p + p� , and �ij = u�

i
u�
j
 [56].

The governing equations were solved numerically via 
a finite volume method on Ansys Fluent® through a Pres-
sure-Implicit with Splitting of Operators (PISO) algorithm 
with a second-order upwind scheme [57]. On average, each 
simulation required around 13 hours for 5 cardiac cycles 
on 35 Intel(R) Xeon(R) Gold 6138 CPU cores. Due to high 
shear rates within the aorta, blood was assumed to be a 
Newtonian fluid, with density 1060 kg m−3 and dynamic 
viscosity, μ, 0.004 Pa s [58, 59]. Time-periodicity was 
reached after five consecutive cardiac cycles for the CT 
and 4D Flow-MRI-derived models. For each patient, a 4D 
Flow-MRI derived flow waveform (Fig. 5) was extracted 
immediately upstream of the bifurcation reference point, 
i.e., the same location at which the 3D geometries were 
truncated. This flow waveform was then converted to a 
parabolic velocity profile (dt = 0.001 s) [60]. To ensure 
the shape, phase and peak of the inlet profile was consist-
ent for numerical analysis, these velocity profiles were 
prescribed at the inlet of the computational domain for 
both the 4D Flow-MRI and CT-derived CFD models. 

(7)
�ui
dxi

= 0

(8)
�ui
�t

+ uj
�ui
�xj

= −
1

�

�p

�xi
+ v

�2ui
�xj�xj

−
d�ij

dxj

Raw inlet flow rate data is presented as mean ± sd over 5 
planes of analysis for each patient (Fig. 4). The mean and 
peak (mean/peak) Reynolds number (Re = ρUD/μ [61]) in 
the iliac arteries for patients 1, 2 and 3 was 453/1397, 
389/1246, and 436/1260, respectively. At each outlet, a 
flow weighting was prescribed for the left and right (left/
right) iliac arteries as 0.47/0.53, 0.65/0.35, and 0.53/0.47, 
respectively for patients 1, 2, and 3.

Haemodynamic analysis was performed only on the 5th 
cycle upon achieving a time-periodic solution, where the 
time-averaged wall shear stress (TAWSS) and OSI were 
investigated [62], defined as:

 where 𝜏𝜔 represents the instantaneous wall shear stress vec-
tor, and T is the time for one cardiac cycle [62]. The upper 
5% and lower 5% of TAWSS and OSI (NElements ~ 1100) 
were compared between modalities for each patient. These 
extremes were chosen for analysis since elevated TAWSS 
can be indicative of platelet activation and thrombus forma-
tion, while low and oscillatory regions can create stagnant 
flow and graft limb occlusion [63].

Finally, based on the normalized vessel centerlines and 
CFD simulations, a correlation and Bland-Altman plot for 
CT and 4D Flow-MRI derived vessel radius, curvature, 
TAWSS, and OSI was generated for each patient.

Sensitivity Analysis

An intra-user dependence study was performed to inves-
tigate the variability in arterial reconstruction resulting 
from manual segmentation of a single user. Thus, the CT 
and 4D Flow-MRI data for patient 3 were repeatedly seg-
mented and reconstructed 5 times on SimVascular® by 
a single user. For each model, the previously described 
methods in Section 2.2 and 2.3 were employed to inves-
tigate vessel radius, curvature, and near-wall hemody-
namics. To facilitate these simulations, only the forward 
flow was considered at the inlet to reduce computational 
demand.

(9)TAWSS =
1

T

T

∫
0

||𝜏𝜔||dt

(10)OSI =
1

2

⎛
⎜⎜⎝
1 −

���∫ T

0
𝜏𝜔dt

���
∫ T

0

��𝜏𝜔��dt
⎞⎟⎟⎠

Fig. 5   4D Flow-MRI derived flow waveforms extracted from the 
abdominal aorta, immediately proximal to the iliac bifurcation. 
At each time point (n = 20) throughout the cardiac cycle, the cross-
sectional flow rate was calculated from 5 planes of analysis for each 
patient. These planes were equally spaced in the axial direction to dis-
cretely sample a volume of blood flow, from which a mean flow rate 
could be calculated. For each patient, this flow rate is presented as 
mean ± sd. Flow rate was then interpolated between each time point 
with a cubic function to generate a waveform with a time step of 
0.001 s for CFD analysis
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Results

Reconstruction of Healthy Aortae and Great Vessels 
from 4D Flow‑MRI

Figure 6 illustrates the 4D Flow-MRI-derived model of 
volunteer 1 (thoracic aorta, Fig. 6a) and clinical patients 
(abdominal aorta, Fig. 6b–d). These are proof of concept 

examples which demonstrate that, with the proposed 4D 
Flow-MRI derived CPC-MRA images, it is possible to 
reconstruct the thoracic and abdominal aortae of a both 
healthy volunteers and clinical patients. With 4D Flow-MRI, 
the stent struts of patient 1 were not visible and therefore 
could not be reconstructed. Further, as this study focuses on 
the flow lumen, the struts of the Anaconda™ stent were not 
segmented from the CT images.

Fig. 6   A computational model of A the thoracic aorta, reconstructed 
from the healthy volunteer, and the abdominal aorta and common 
iliac arteries, reconstructed from the 4D Flow-MRI CPC-MRA 
images for B patient 1, C patient 2, and D patient 3. The 3D mod-
els were created from the 4D Flow-MRI CPC-MRA images. Slices 
from the transverse, sagittal, and coronal planes from each case illus-

trate the arterial lumen from each DICOM dataset (CT, standard MRI 
magnitude image, 4D Flow-MRI CPC-MRA). CT images were not 
available for the healthy volunteer due to ethical considerations. The 
stent struts of patient 1 are not visible in the reconstructed model as 
4D Flow-MRI yields data only on the flow lumen
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Figure 6 compares the standard magnitude images, which 
come as part of the 4D sequence, against the CPC-MRA 
images derived from the proposed methodology. For the 
clinical patients, CT images are also included. Images were 
acquired from the same locations in the transverse, sagittal, 
and coronal planes for each modality to permit a direct com-
parison. As evidenced, the image quality of the magnitude 
images was very poor due to low SNR and contrast, hence 
they can generate only a very rough and ambiguous outline 
of the vessel lumen. Often, the lumen was indistinguishable 
from surrounding tissue. The CPC-MRA images, however, 
yield a much clearer lumen with high and uniform signal 
intensity, which distinctly contrasts against surrounding 
static tissue and air-filled regions. CT images portrayed a 
more accurate representation of true and false lumen of the 
abdominal aorta in patients 2 and 3. This is because a single-
VENC MRI sequence was utilized for 4D Flow-MRI and 
therefore it was not possible to capture flow (and therefore 
signal intensity) in both the true and false lumen simultane-
ously. By altering the velocity threshold of the CPC-MRA 
images, it was possible to retrospectively increase the signal 
within the false lumen, but the limited spatial resolution of 
the sequence prohibited delineation between the true and 
false lumen.

As the temporal CPC-MRA images combine SA, PS, 
and SD, this ensures all areas of the lumen demonstrate 
maximum signal intensity, overcoming the temporal lag of 
blood velocity through cardiac cycle, as distal regions are 
not underestimated due to low blood velocity. Consequently, 
segmentation was simple to perform via threshold-based 
segmentation. It was also possible to increase the signal 
intensity by decreasing the velocity threshold on cvi42®. A 
range between 25 and 40 cm s−1 produced the best results, 
with low noise. At < 25 cm s−1, it became difficult to dis-
tinguish the lumen due to noise, and at > 40 cm s-1, there 
was a risk of underestimating lumen diameter. This range is 
expected to change according to the initial signal-to-noise 
ratio of the acquisition sequence, presence and stage of 
pathology, and the anatomical site of interest.

To highlight the CPC-MRA images in more detail, Fig. 7 
was produced with false color on Matlab®. Regions in white 
indicate areas of the lumen common to each time step, while 
regions in magenta and green indicate where signal inten-
sity varies during PS and SD respectively. Taking Fig. 7c 
as an example, this shows the lumen of the ascending and 
descending aorta. As the phase of the cardiac cycle transi-
tions from SA to SD, a noticeable notch of decreased signal 
intensity develops in the descending aorta (white arrows). 
Thus, if images from PS or SD were viewed independently, 
one may assume this dark region was a kink in the geom-
etry, or simply a narrowed area of the lumen. However, 
this dark region was not observed during SA. Analysis of 
the velocity streamlines on cvi42® confirmed this was a 

region of recirculating flow which began at PS, leading to 
slow moving flow and reduced velocity magnitude [64]. 
Hence, the final temporal CPC-MRA image, which com-
bined all three time-steps, filled in this region to create a 
more representative lumen. Figure 7d–f highlight the CPC-
MRA images created from patient 1 at the region of the 
Anaconda™ stent-graft. Though they are MRI-compatible, 
the Anconda™ nitinol rings induced noise from metal beam-
hardening artifacts during data acquisition which degraded 
the image quality of the corresponding 4D Flow-MRI CPC-
MRA somewhat [65].

Validation on Patient‑Specific Iliac Arteries

The mean tortuosity, radius and curvature were calculated 
from both the left and right iliac arteries of each of patients 
1, 2, and 3, and were grouped (Table 2) according to imaging 
modality for statistical analysis. Statistical analysis discussed 
in this work is made in relation to the comparison of CT vs 
4D MRI-derived reconstructions and not regarding patient 
statistics. A Wilcoxon Signed Rank test was performed to 
evaluate inter-modality differences in radius and curvature 
along the length of the centerline. No statistically significant 
inter-modality variation existed for either variable (p > 0.05). 
There was an insufficient number of data points to determine 
the statistical significance for differences in vessel tortuos-
ity and bifurcation angle as these were not sampled along 
the vessel centerlines. The bifurcation angles calculated 
in VMTK for CT and 4D-Flow MRI were, respectively: 
10.1°, 27.6° for patient 1, 78.3°, 65.4° for patient 2, and 
62.4°, 57.5° for patient 3. Individual values of tortuosity for 
CT and 4D-Flow MRI were, respectively: 0.465 ± 0.0657, 
0.517 ± 0.0792 for patient 1, 0.325 ± 0.0584, 0.353 ± 0.0359 
for patient 2, 0.0792 ± 0.0111, 0.0907 ± 0.00520 for patient 
3.

While there was no statistically significant difference in 
overall radius and curvature, there was a degree of variability 
between the CT and 4D-Flow MRI derived models. Figure 8 
illustrates the quantitative differences in vessel anatomy. The 
radial interquartile range (IQR) was consistently smaller for 
the 4D Flow-MRI models, illustrating less variability in the 
data compared to CT. Moreover, the median values for 4D 
Flow-MRI were typically larger than that of CT, indicating 
that the 4D Flow-MRI derived model may tend to overesti-
mate the vessel radius.

Qualitatively, the geometry of the CT and 4D Flow-MRI-
derived models were similar, as shown in Figs. 8 and 9. DSC 
and HD were also included in the analysis as both are widely 
used to evaluate medical image segmentations to reflect 
both the lumen size and localization agreement [66, 67]. 
The DSC was 0.681, 0.736, and 0.736, for patient 1, 2, and 
3, respectively. The mean inter-modality HD for patients 1, 
2, and 3 was calculated as 5.62 ± 1.44 mm, 7.38 ± 2.56 mm, 
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Fig. 7   Individual time steps at systolic acceleration, peak systole, 
and systolic deceleration used to create the CPC-MRA image. False 
color images are used for visualization while greyscale for segmen-
tation. Healthy volunteer: A Supra-aortic branches, B Aortic arch, C 
Ascending and descending aorta. Clinical patient 1 with Anaconda™ 
stent-graft: D Abdominal aorta, E Common iliac arteries (more prox-

imal), and F Common iliac arteries (more distal). White regions in 
the false color CPC-MRA image show where the three time steps 
exhibit the same lumen intensity. Magenta and green regions dem-
onstrate where the intensities differ. All images were obtained at a 
velocity threshold of 25 cm s−1 on cvi42®
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and 5.18 ± 1.11 mm, respectively. Notably, patient 2 reported 
the highest pattern of curvature and the largest inter-modal-
ity HD. From this preliminary study, it is possible there is a 
relationship between these metrics, but more data is required 
to ascertain whether this correlation exists to be considered 
a clinical limitation.

The heterogeneous TAWSS and OSI distribution across 
the CT and 4D Flow-MRI-derived models are shown in 
Fig. 9. A Signed Rank test and a Wilcoxon Signed Rank 
test compared the inter-modality differences in maxima 
(top 5% of values) and minima (bottom 5% of values) 
TAWSS across each entire geometry. A significant 

difference between CT-derived and 4D Flow-MRI derived 
TAWSS and OSI was present at both extremes within the 
CFD models (p < 0.05). Localized differences in TAWSS 
were most apparent in regions of high curvature and at 
the bifurcation point. The absolute TAWSS values in the 
CT models ranged from 0.199–1.56Pa, 0.0289–2.16Pa, 
and 0.0856–0.899  Pa in patients 1, 2, and 3, respec-
tively. Similarly, for the 4D-Flow MRI cases, these val-
ues ranged from 0.177–1.43 Pa, 0.0635–2.55 Pa, and 
0.0862–0.948 Pa. Figure 10 illustrates a correlation plot 
and Bland-Altman plot for the vessel radius, curvature, 
TAWSS, and OSI data obtained from each patient for 

Table 2   Mean parameters 
obtained from the left and right 
iliac arteries of clinical patients 
(n = 3) for the CT and 4D-MRI 
derived models

Left Iliac Right Iliac

CT MRI CT MRI

Tortuosity 0.291 ± 0.174 0.307 ± 0.185 – 0.289 ± 0.232 0.333 ± 0.256 –
Curvature (m−1) 0.207 ± 0.0704 0.232 ± 0.0757 (p > 0.05) 0.290 ± 0.163 0.279 ± 0.125 (p > 0.05)
Radius (m  × 10−3) 6.62 ± 0.0691 6.77 ± 0.0256 (p > 0.05) 6.72 ± 0.0725 6.91 ± 0.0426 (p > 0.05)

Fig. 8   A Curvature and B radius of the left and right iliac arteries for CT (light blue) and MRI (white) derived models. These parameters were 
calculated from the vessel centerlines of patients 1, 2, and 3
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Fig. 9   A, B TAWSS and C, D OSI distribution across the CT and 
4D-MRI derived models of the iliac bifurcation of patients 1 (left), 
2 (middle) and 3 (right) calculated from the final cardiac cycle of 
a patient-specific CFD simulation. TAWSS was normalized with 

respect to the value calculated at the outlet of the CT cases for each 
patient (Supplementary Material). Visible for patient 2 is a small 
region of dissection which extended into the proximal section of the 
left common iliac artery
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both CT and 4D Flow-MRI derived models. The Pearson 
correlation coefficient for each metric was, respectively, 
0.46, 0.69, 0.77, and 0.98 (p < 0.05). Due to non-normally 
distributed data, the Bland-Altman limits of agreement 
were presented as ± 1.45 × IQR of the inter-modality 
difference.

4D Flow MRI vs CFD

The specific 4D Flow-MRI sequence (WIP 785A) used in 
this study was not calibrated to extract wall shear stress. 
Therefore, blood velocity streamlines calculated from the 
CT and 4D Flow-MRI derived CFD models were com-
pared against the in vivo streamlines of velocity magnitude 
obtained directly from 4D Flow-MRI imaging (Fig. 11). 

Fig. 10   (Left) Correlation and (Right) Bland-Altman plots for patients 1, 2, and 3 at the iliac bifurcation and common iliac arteries, displaying A 
vessel radius, B vessel curvature, C TAWSS, and D OSI

Fig. 11   Blood velocity streamlines through the iliac bifurcation and 
proximal iliac arteries of patients 1, 2, and 3, extracted from A CFD 
models reconstructed from CT images, B CFD models reconstructed 

from 4D Flow-MRI images, and C in vivo 4D Flow-MRI (measured 
in cvi42®). The same value range of 0–0.5  ms−1  was used for all 
cases
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Qualitatively, the overall velocity profiles are similar 
between the CFD models and in vivo data. However, there 
were quantitative differences regarding, for example, the 
maximum through-plane velocities observed at multiple 
locations throughout the iliac branches. Between patients 2 
and 3, the CT-derived CFD models underestimated veloc-
ity by 12% and 29% on average during peak systole and 
systolic deceleration, respectively. Conversely, the MRI-
derived models overestimated blood velocity by 9.1% and 
0.1%, respectively. Thus, the MRI-derived CFD models 
demonstrated a smaller discrepancy with the in vivo data. 
Regarding patient 3, these discrepancies were amplified, 
where differences in velocity of 48% to 90% were observed 
between the CFD models and in vivo data, likely due to 
significant noise and signal artefacts introduced within the 
4D Flow-MRI images by the metal-alloy rings of the Ana-
conda™ stent-graft.

Sensitivity Analysis

Intra-user errors, introduced during manual segmentation, 
were statistically significant for vessel radius and near-wall 
hemodynamics for both CT and 4D Flow-MRI (p < 0.05). 
However, there were no significant user-dependent varia-
tions concerning the curvature of the vessels (p > 0.05). The 

localized differences in radius are evident from Fig. 12a and 
b where, for example, the 4D Flow-MRI derived models 
underestimated the lumen of the proximal left iliac, and 
subsequently overestimated the distal portion. Additionally, 
the variance in radial data in the 4D Flow-MRI models was 
consistently lower than that of CT.

Intra-user variations at regions of maximum TAWSS 
was ± 0.29  Pa for CT and ± 0.24  Pa for 4D Flow-MRI 
(Fig. 12e and f). Consequently, the user may induce an error 
of up to 0.53 Pa in CFD simulations due to differing percep-
tions of the lumen during segmentation. Contour plots of 
TAWSS and OSI distributions for each of the reconstructions 
can be found in the Supplementary Material. Intra-user CT-
derived tortuosity for the left and right iliac was 0.40 ± 0.002 
and 0.54 ± 0.014, respectively. Similarly, tortuosity as calcu-
lated from the 4D Flow-MRI models was 0.44 ± 0.002 and 
0.60 ± 0.013 for the left and right iliac arteries.

Discussion

The purpose of this study was to develop a novel dataset 
for the segmentation and reconstruction of patient-specific 
aortic geometries from retrospective 4D Flow-MRI images. 
The geometric and CFD-derived hemodynamic parameters 

Fig. 12   Intra-User Dependence (n = 5) results for vessel geometry 
and near-wall hemodynamics for both CT (light blue) and 4D Flow-
MRI (black) derived models of patient 3. A Left and B right iliac 
radius, and C left and D right iliac vessel curvature, where results are 

presented as mean ± sd. E Box plot of TAWSS and F OSI evaluated 
over the entire iliac geometry for CT (light blue) and 4D Flow-MRI 
(white)
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obtained from this approach were then compared against 
CT-derived models, as CT is the gold-standard imaging 
modality.

CPC‑MRA Composite Images

With the CPC-MRA DICOM stack demonstrated in this 
study, a clear lumen with uniform signal intensity was 
observed, distinctly contrasting with surrounding static tis-
sue. Signal intensity within the lumen was proportional to 
blood velocity magnitude, meaning no ionizing radiation or 
intravenous contrast agents were required to generate con-
trast. The boundaries of the vessel lumen were generally well 
defined, but due to low near-wall velocities which are typical 
of internal flows, a small region of reduced signal intensity, 
and hence contrast, was observed around the vessel wall. 
The creation of these composite image stacks was required 
to segment the arterial lumen directly from retrospective 4D 
Flow-MRI data due to the absence of accompanying images 
such as conventional MRA or PCA.

In some cases, it may be possible to segment the ves-
sel lumen directly from the magnitude images which form 
part of the 4D Flow-MRI data. In this study however, these 
images demonstrated poor contrast and low SNR to the 
extent that in many regions, the lumen was indistinguish-
able from surrounding tissue. Therefore, it was not possible 
to segment and reconstruct the vessel geometry directly from 
these magnitude images. The CPC-MRA images present a 
significant improvement regarding contrast and signal inten-
sity when compared to the magnitude images (Fig. 5), mak-
ing the lumen relatively simple to segment. This methodol-
ogy is therefore beneficial for extracting the lumen for CFD 
models as an alternative to standard techniques in retrospec-
tive datasets. As the final CPC-MRA images were generated 
by superimposing information on the same slice over mul-
tiple time steps, contrast was generated without sacrificing 
any spatial information along the transverse axis [9, 68, 69].

The temporal CPC-MRA methodology utilizes the same 
underlying principles as a phase contrast angiogram (PCA), 
where a phase shift due to the movement of blood is pro-
portional to fluid velocity. These PCA images require pro-
spective planning as vessel contrast and signal intensity is 
generated during the scan. The 4D Flow-MRI CPC-MRA, 
however, generated this PCA-type image in a different 
way. The CPC-PCA was generated from the interpolated 
3D velocity profile of retrospective datasets, where these 
instantaneous velocity profiles were superimposed directly 
onto the 4D Flow-MRI magnitude images at multiple, user-
defined timesteps. This meant the signal to noise ratio of 
the final angiogram could be controlled post-hoc by the user 
by simply altering the velocity threshold. Additionally, this 
postprocessing approach suppresses background noise and 
reduces the signal from nearby veins because of the slow 

venous flow. For example, it was possible to increase the 
velocity threshold to suppress the vena cava and enhance 
arterial visibility. The opposite is also true, as this approach 
allows the user to increase signal intensity in branches or 
regions which experience reduced flow, including aneurysm 
sacs and the false lumen of an aortic dissection, potentially 
overcoming a limitation of single-VENC MRI. To validate 
this however, future work is required to assess this meth-
odology with increased spatial resolution against a multi-
VENC sequence [70]. Finally, it is known that in pathologi-
cal situations involving jet flow, such as aortic dissection, a 
signal void can appear in the conventional PCA. With the 
CPC-MRA methodology, regions of jet flow had the oppo-
site effect, as the final signal was enhanced.

The ability to create this temporal CPC-MRA with user-
defined time steps is a significant advantage when operat-
ing with velocity-based contrast, as regions of recirculating, 
oscillatory, or regurgitated flow can result in localized drops 
in signal intensity. As these flow phenomena are often tran-
sient, the previous or subsequent time steps, which exhibit 
a different instantaneous profile, can capture these regions 
when overlaid as a CPC-MRA. These areas of atypical flow 
are, however, important clinically, so they can also be ana-
lyzed on a time-step by time-step basis within the cvi42® 
software. Though there are several advantages to this tech-
nique, it must be noted that only three user-defined time steps 
were utilized to create the final CPC-MRA images, out of 
a total of 20 time points throughout the cardiac cycle. Prior 
to systolic acceleration, and following systolic deceleration, 
blood flow, and therefore signal intensity, was too low in 
magnitude to generate sufficient contrast throughout the 
lumen. Therefore, reconstruction is constrained only to the 
mid-systolic phases, meaning information regarding vessel 
geometry at the end-systolic and diastolic phases was not 
elucidated. It is possible that this was the result of an overes-
timated VENC parameter during the MRI imaging sequence, 
meaning flow was only captured optimally over a limited 
phase shift range (systolic phases).

Clinical Relevance

Due to the inherent safety of 4D Flow-MRI, the methodol-
ogy outlined in this study may be particularly beneficial for 
the reconstruction of arterial geometry in such patients who 
have received a stent-graft, as they require serial examina-
tions and cumulative radiation dosages which cannot be 
avoided with CT, especially in the radiosensitive abdomin-
opelvic region [16, 22]. Additionally, the preliminary func-
tional information may aid in classifying endoleaks and 
locating any intraluminal tears in cases of aortic dissection, 
which can be visualized as regions of high velocity jet flow 
[71–73].
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Consequently, 4D Flow-MRI based models and alterna-
tive ways to generate luminal contrast may become increas-
ingly sought after. Current data cannot yet demonstrate 
that this approach yields a more effective assessment when 
compared to CT imaging. This methodology may also be 
useful for pregnant patients, where there is a lack of clini-
cal data on the usage of Gadolinium based contrast agents 
[74–76]. It must be noted however that the metal stent struts 
were not visible from the 4D Flow-MRI data, meaning this 
methodology could not yield information on stent integrity, 
such as fractures, and therefore could not entirely replace CT 
angiography for post-operative monitoring.

Finally, by utilizing this methodology, it is possible to 
generate reference models which include both anatomical 
and functional flow information within the healthy popula-
tion without ethical concerns. This includes screening of 
asymptomatic patients, where the 3D anatomical models of 
otherwise healthy individuals can be created for geomet-
ric and CFD-based analysis, as it is accepted that near-wall 
hemodynamics can be utilized to predict regions of aneu-
rysm formation and future primary entry sites of aortic dis-
sections [77, 78]. When combined with the raw functional 
information yielded from the same 4D Flow-MRI scan, 
these models may contribute towards the area of preventa-
tive medicine.

Validation

Validation of the 4D Flow-MRI velocity-derived dataset 
against the current gold standard, CT angiography, was 
crucial. A small discrepancy between the geometry of the 
CT and 4D Flow-MRI-derived models was expected due to 
the inherent differences in the acquisition of these imaging 
sequences. The helical CT scan was acquired as a breath-
hold scan, in the absence of cardiac (ECG) gating, whilst 4D 
Flow-MRI was acquired with retrospective ECG and respira-
tory gating. As such, the CT images represent a snapshot 
at an arbitrary point within the cardiac cycle, while the 4D 
Flow-MRI images were created from three well-defined, 
systolic cardiac phases. It is therefore possible that the 4D 
Flow-MRI and CT images were captured at slightly different 
points in the cardiac cycle. This difference may be reflected 
in the HD and DSC metrics, which were utilized in this study 
to compare models from two independent imaging modali-
ties scans for each patient. Consequently, a reduced DSC 
and increased HD was expected, with respect to those same 
metrics applied to segmentations within a single modality. 
Nevertheless, literature suggests a good overlap occurs when 
DSC > 0.7, which was found in the inter-modality compari-
son of patients 2 and 3, with patient 1 ~ 0.7 [48].

Vessel segmentation was performed manually, so the 
observer’s interpretation of the lumen generated a degree of 
geometric variability in the CFD models. Nevertheless, no 

statistically significant differences in vessel radius or curva-
ture were observed between CT and 4D Flow-MRI-derived 
models (p < 0.05). Regarding the latter, the lower standard 
deviation for vessel radius, and lower inter-quartile range 
for TAWSS, indicate the 4D Flow-MRI-based reconstruc-
tion methodology may not elucidate the variability in ves-
sel radius to the same degree as CT. Though no significant 
difference was found, it must be noted that localized inter-
modality differences in the geometric parameters were pre-
sent, most notably concerning the vessel radius, likely due to 
the low near-wall velocities mentioned previously.

CFD analysis indicated these small differences in vessel 
geometry amplified any differences in the blood flow regime. 
This resulted in statistically significant inter-modality dif-
ferences in near-wall hemodynamics at the upper and lower 
extremes of TAWSS and OSI (p < 0.05). For example, a fur-
ther analysis reveals the regions of increased inter-modality 
TAWSS differences are spatially correlated to regions of 
increased radial disparities which subsequently alter blood 
velocity, and therefore TAWSS, for a given flow rate. These 
discrepancies in vessel radius have a marked impact on the 
resultant hemodynamics because blood velocity is non-
linearly related to radius. However, Fig. 10 demonstrates 
that there still exists a strong correlation between the CT 
and 4D Flow-MRI derived TAWSS and OSI, where R2 is 
0.77 and 0.98 respectively. Additionally, Fig. 11 indicates 
that the proposed methodology to create images based on 
retrospective 4D Flow-MRI data does not systematically 
underestimate or overestimate the lumen when compared 
to CT. This can be inferred since blood velocity is not con-
sistently higher or lower in the 4D Flow-MRI-derived CFD 
models when compared to the CT-derived CFD models. It 
is important to note, however, that a larger study is required 
validate this claim.

As the upper and lower extremes of TAWSS and OSI are 
important in clinical applications, the inter-modality discrep-
ancies must be highlighted [58, 63]. Within this study, these 
regions differed by only 0.39 Pa and 0.035 Pa, respectively, 
between CT and 4D Flow-MRI. Further, the sensitivity 
analysis determined that the user may be responsible for up 
to ~ 0.53 Pa of this discrepancy, due to variations in lumen 
interpretation. As such, the true inter-modality difference in 
TAWSS may be negligible. These differences are also low in 
comparison to the high shear stresses (> 5–10 Pa) which can 
induce platelet activation, and therefore may not be clinically 
significant. However, these discrepancies should be noted 
when assessing the risk of thrombosis [63].

CFD vs In Vivo 4D Flow‑MRI

Regarding blood velocity, the MRI-derived CFD models 
demonstrated a superior degree of qualitative similarity to 
the in vivo data when compared to the CT-derived models. 
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However, it is important to acknowledge that disparities per-
sisted, which can be attributed to various factors. Primar-
ily, manual errors introduced by the operator during ves-
sel segmentation likely contributed largely to this, as these 
were regions of challenging anatomy, encompassing features 
such as aortic dissection and a stent-graft. In the case of the 
latter, the presence of metal components in the stent-graft 
likely resulted in local field disruptions, thus causing signifi-
cant artifacts during the acquisition of 4D Flow-MRI [79]. 
Aside from geometric differences and signal artifacts, it is 
important to consider the inherent differences between 4D 
Flow-MRI imaging and CFD modeling. In recognition of 
these differences, quantitative discrepancies between the two 
approaches are commonly observed in literature [80–83]. 
Firstly, the spatiotemporal resolution is very high for the 
CFD models, but very low for the in vivo scan sequence. 
This mismatch of resolution is known to introduce differ-
ences in resultant blood velocity, especially in regions of 
increased flow [80, 81]. Secondly, the scan sequence utilized 
in this study exhibited a coarse resolution of 3.6 × 2.4 × 2.6 
mm3, though literature suggest a minimum resolution of 
1.5 × 1.5 × 1.5 mm3 is desirable [82]. Accordingly, it is rea-
sonable to assume that the lower-resolution 4D Flow-MRI 
scans can induce errors in the flow field since the results 
relies increasingly on data interpolation. Due to the retro-
spective nature of the dataset, this could not be refined [82]. 
Thirdly, it should be recognized that the 4D Flow-MRI scan 
did not incorporate isotropic spatial resolution, thereby caus-
ing the resulting velocity measurements to be directionally 
dependent, unlike the CFD models [82]. Finally, the assump-
tion of rigid walls and the absence of the proximal aorta in 
the numerical domain likely contributed to the differences in 
CFD vs in vivo velocity profiles. To validate these statements 
however, a larger study is required.

Limitations and Future Work

There were several limitations to this study, mainly due to 
the retrospective nature of the 4D Flow-MRI data set. Firstly, 
a low number of geometries (n = 3) were used for valida-
tion purposes due to limited patient data. More data are 
required to ascertain the reliability of the novel methodology 
proposed for dataset generation. This study, however, was 
intended as a proof-of-concept analysis to demonstrate how 
the novel methodology may contribute towards the recon-
struction of 4D Flow-MRI images for use in CFD, particu-
larly for retrospective datasets in the absence of standard 
images such as MRA and PCA.

However, with numerous data points for each modality 
for both radius and curvature, it was possible to determine 
statistical significance in relation to the comparison of CT 
vs 4D Flow-MRI-derived reconstructions, and not regard-
ing patient statistics. Additionally, validation was restricted 

to healthy and stented regions of the clinical patients as 
the 4D Flow-MRI sequence utilized in this study was not 
optimized for visualization of the false lumen. To include 
larger, more complicated regions of pathology, future studies 
would require multi-VENC 4D Flow-MRI imaging, which 
can capture significantly different velocities within the same 
scan. Further, the limited spatial resolution of the research-
based 4D Flow-MRI sequence used to acquire the images 
in this study may have affected the validation study. Due 
to the intrinsic resolution of the dataset, this could not be 
improved.

An unsteady parabolic profile was prescribed at the 
inlet of the CFD domains. It was not possible to extract 
the decomposed spatial velocity profile from cvi42®, and 
therefore this could not be prescribed directly as a Dirichlet 
boundary condition at the inlet.

The rigid wall assumption affects the accuracy of clini-
cally relevant CFD-derived hemodynamic metrics including 
TAWSS and OSI [83, 84]. By omitting the compliance of 
the native arteries for example, TAWSS is generally over-
estimated, particularly due to elevated wall shear stress at 
peak systole [83].

Future work will integrate 4D Flow-MRI time-resolved 
data regarding vessel wall motion into the numerical model 
to improve the accuracy of the CFD simulations by creating 
a moving boundary method (MBM) model [83, 84]. To do 
so, the geometry of the vessel must be captured at all stages 
of the cardiac cycle. Therefore, future prospective studies 
will iteratively reduce and optimize the VENC parameter 
to capture blood velocity, and therefore signal intensity 
during the late-systolic and diastolic phases. These MBM 
simulations can then be performed at a substantially reduced 
computational cost in comparison to fluid-structure interac-
tion (FSI) models, account for external loads applied by sur-
rounding tissue, and utilize data which is measurable in vivo, 
thus limiting the required assumptions [83, 84].

Conclusion

In this study, a novel dataset was created from multiple 
4D Flow-MRI-derived images at reproducible time steps 
throughout the cardiac cycle, yielding a temporal CPC-
MRA image dataset. This study presents proof-of-concept 
examples of how functional 4D Flow-MRI data can be ret-
rospectively translated to generate 3D anatomical models for 
geometric analysis and CFD in healthy and stent-graft cases. 
The blood velocity-based approach yielded uniform signal 
intensity throughout the lumen, clearly contrasting with sur-
rounding static tissue while preserving the 3D relationships 
of overlapping vascular anatomy. Fundamentally, the out-
lined methodology required no ionizing radiation or intra-
venous contrast and could be performed on retrospective 



673Reconstruction and Validation of Arterial Geometries for Computational Fluid Dynamics Using…

1 3

data sets. This processing of the 4D Flow-MRI data pre-
pares it for most image segmentation methodologies, from 
thresholding to machine learning and convolutional neural 
networks. Finally, the proposed pipeline for 4D Flow-MRI 
derived image creation may be used for 3D model generation 
of healthy and stented aortae in cases where 4D Flow-MRI 
is available, for example when screening for aortic disease, 
pregnant women, or children.
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