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Abstract

Automated verification of stochastic models has been proved to be an effective technique for the analysis of a
large class of stochastically behaving systems. In this paper we show how stochastic model-checking can be
effectively applied to the analysis of biological systems. We consider a few models of biological systems taken
from the literature, and we consider both their encodings as ordinary differential equations and Markovian
models. We show that stochastic model-checking verification of biological systems can complement both
deterministic and stochastic simulation techniques when dealing with dynamical properties of oscillators. We
demonstrate how stochastic model-checking can provide exact quantitative characterization of properties
of systems exhibiting oscillatory behavior, providing insights that cannot be obtained with differential
equations models and that would require a large number of runs with stochastic simulation approaches.

Keywords: Biological oscillators, Ordinary differential equations, Markov models, Stochastic model
checking, Simulation

1 Introduction

The quantitative analysis of the dynamics of biological systems is a fundamental
task in systems biology, a new research field that focuses on the systematic study
of complex interactions using an integrative approach rather than a reductive one
[14]. Even simple biochemical networks of interacting proteins can show surprisingly
complex behavior, a behavior that cannot be understood looking at the evolution
of the single components but that instead requires a systemic analysis approach.

Traditionally, the study of time-dependent dynamics of biological systems has
been addressed with deterministic approaches, based on ordinary differential equa-
tion (ODE, hereafter) models. ODEs provide quite an adequate abstraction for
capturing the interactions and transformation of biochemical species, and come
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with a consolidated set of computational tools for model definition and solution
[12]. More recently, stemming from the foundational work of Gillespie [10], a dis-
crete approach to the modeling of biochemical systems has been gaining consensus,
especially to model systems in which the continuous approximation does not seem
to be justified, for instance when only a few molecules exist for some species.

The relationships between the continuous deterministic and the discrete stochas-
tic representation of a given system are quite interesting and still subject of research.
When the number of molecules that constitute a molecular network is low, the
stochastic modeling may represent a more suitable tool to represent and analyze
the dynamics of the system. On the other hand, as the number of molecules grows,
abstracting discrete number of molecules into continuous concentration levels and
representing evolution of dynamics through a system of coupled ODEs provides
very accurate representations and also has the advantage of not suffering from the
state-space explosion problem that plagues stochastic modeling tools. Moreover,
stochastic models are mostly solved via simulation, which may require performing
a substantial number of simulation runs to compute statistically relevant results.

When dealing with biological systems that exhibit complex patterns of behav-
ior, it may be difficult to check whether the dynamics of the system satisfies some
interesting properties. One of such properties, quite often vaguely defined, is the
oscillatory behavior that characterizes a variety of biological systems [4].Whereas
it is comparatively easy to hypothesize the presence of oscillations through visual
inspection of simulated time courses, another matter is to precisely verify whether
the oscillations will continue forever or rather will definitely stop, either by being
progressively damped down or abruptly interrupted. In this respect, the abstraction
adopted by ODE models has some advantages, because the deterministic approach
ensures that any periodic evolution will indefinitely repeat. However, as we will
see in this paper, such properties may appear to hold only because of the contin-
uous approximation. On the other hand, results obtained from discrete stochastic
models can still provide clues about the existence of oscillatory behaviors, but the
noise introduced by stochastic fluctuations may make them appear less pronounced.
Furthermore, when oscillations do exist but their phase, period and amplitude is
also varying stochastically, a multi-run analysis of simulation traces over the time
domain does not help in characterizing the long-range behavior of the system.

In this paper we consider two examples of models of biochemical systems taken
from the literature, which we use as case studies to demonstrate the advantages of
a formal approach to the definition and verification of properties of biological sys-
tems, including oscillatory behaviors. The major contribution of this paper is the
definition of an approach to the formal specification of properties, based on Proba-
bilistic Computation Tree Logic (PCTL, hereafter) [11] and Continuous Stochastic
Logic (CSL) [1]. PCT/CSL formulas can be used to precisely define properties of
system dynamics, such as convergence of a variable to a fixed value, bound oscil-
lation around a fixed value, perpetual alternation of growth and decrease phases,
relationships among multiple variables. Such formulas define a query-language in
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which a user can encode a property of the systems he intends to verify. Proba-
bilistic model checkers that accept PCTL formulas defined over the variables of a
discrete stochastic model can then be used to verify whether the property holds of
the system. In this paper, we show how the PRISM [15] model checker can be used
for this purpose. We apply our formal approach to the example models to show
how system properties can be characterized and to demonstrate the insights that
can be obtained into system dynamics with the verification with PRISM. We show
the obvious advantages provided by the exact quantitative solutions returned by
a model-checking tool. In contrast, simulation of stochastic models can only pro-
vide statistically approximate solutions. Our proposed approach applies to general
models of biological systems, its current limitation being the fact that only models
having a bounded state space are amenable to analysis.

The rest of this paper is organized as follows: in Section 2 we introduce the
basics about biochemical oscillators illustrating a specific system which will be used
as the running example throughout the remainder of the paper. In Section 3 we
investigate the use of temporal logic as a means to encode relevant features of
oscillating systems. In Section 4 we briefly describe probabilistic model checking.
In Section 5 we analyse the structural properties of the Markovian model of the our
running example, the verification of which by means of the PRISM model checker
is illustrated in Section 6. We summarise our contribution in the final section of the
paper.

2 Biochemical oscillations

A biochemical system consists of a number of correlated (type of) entities, referred
to as reactants, and a number of, time consuming, interactions, referred to as re-
actions. Each reactant belongs to a given species. Reactions are descriptions of
the system’s dynamics and they indicate how the production/consumption of reac-
tants is regulated by other reactants. A biochemical system is fully characterised
by: a description of the system’s reactions (including the timing information of
each reaction, referred to as reaction rate), and the initial amount of reactants of
each species. In this work we are interested in analysing a specific behaviour of
certain biochemical systems, namely oscillation. Informally we say that a biochem-
ical system exhibits an oscillating behaviour when the system’s reactions result in
a (periodic) fluctuation of the level of the reactants, around a given value. To this
aim, we consider a specific example taken from the literature, known as the 3-way
oscillator, which we use as the running example of the paper.

2.1 The 3-way oscillator: transient oscillation

We consider a simple system of three biochemical reactions involving three species
of molecules, namely: A, B and C. The reactions are positive feedback arranged in
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a loop fashion and their chemical equation form is:

A + B
rA−→ B + B B + C

rB−→ C + C C + A
rC−→ A + A (2.1)

where rA, rB and rC are the kinetic constants of the reactions. The meaning of
reactions (2.1) is intuitive. For example, the first equation indicates that a molecule
of A and a molecule of B are consumed in order to produce two molecules of B and
that happens at a constant rate rA

4 . Such system has been introduced in [3] and
it has been referred to as the 3-way oscillator for it can be shown that the level of
molecules of each species oscillates in time. Let a0, b0 and c0 be the initial number
of molecules of the three species. The system enjoys the following properties: first
the total number of molecules in the system INV = a0 + b0 + c0 is invariant, as the
are not synthesis nor degradation reactions, and because of the stoichiometry of the
reactions. Second the system remains alive meaning that the system reactions are
all possible, as long as all reactants are present: as soon as one species get extinct
the system irreversibly enter a terminating path at the end of which INV molecules
have been cumulated into either one of the remaining species. For this reason we
refer to the oscillation of the 3-way oscillator as transient (i.e. it damps off in finite
time). We will see how the oscillation of the 3-way oscillator can be turned into a
permanent one (i.e. one that never stops). Based on our running example we now
briefly describe the two standard modeling approaches used in system biology.

2.2 Continuous Deterministic Modeling of Biological Systems

A deterministic model of a system is one in which the parameters and variables
are not subject to random fluctuations, so that the system is, at any time, entirely
defined by the initial conditions chosen. Biological systems have been extensively
modeled with systems of coupled ODEs at various abstractions levels, ranging from
molecular interactions [18] up to predator-preys population evolution [20]. Variables
representing biochemical entities of a deterministic model are continuous and their
value X(t) at time t represents the amount of the biochemical entities they repre-
sent, i.e. the state of the system at that time. The state X(t0) of the system at time
t0 defines the initial condition. Changes of the system state along time are described
by a set of differential equations, in the form X ′(t) = F (X(t)) with F : Rn → Rn,
n being the number of variables in the model. The system of ODEs can be solved
either analytically or via simulation (numerical integration) to determine the state
of the system at any time t ≥ t0, and to determine possible stationary solutions.
A continuous deterministic model of the 3-way oscillator can be straightforwardly
derived from the chemical equations (2.1). It has 3 real-valued variables a, b and c,
where x∈{a, b, c} represents concentration of species X ∈{A, B,C}. The changes

4 Similar considerations hold for the other reactions.
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(a) on the phase-space a × b × c (b) on the phase-plane a × b

Fig. 1. ODEs solutions of the 3-way oscillator with (a0, b0, c0)=(100, 200, 10)

in the amount of species is described by the following system of ODEs:

ȧ = −rAab + rCac

ḃ = rAba − rBbc

ċ = −rCac + rBbc

(2.2)

where ẋ= dx
dt denotes the first derivative (with respect to time) of x∈{a, b, c}.

Notice that the rate constants in (2.2) are multiplied by the concentrations
of reactants to account for the concurrent execution of multiple instances of the
same reaction according to the mass-action law. Given the concentrations of the
3 biochemical species at time t = t0, it is possible to solve the system of ODEs
above to obtain the state of the system at time t ≥ t0. Many tools exist that can
perform this task, some of which are also able to automatically obtain the system
of ODEs from the system’s chemical equations form. Figure 1(a), Figure 1(b)
show solutions 5 of the system (2.2) plotted onto the phase-space and phase-plane
respectively. Those plots display that the concentrations of the three species follow
indeed a very regular oscillating behaviour evidenced by the solution trajectories
forming a neat triangular orbit around the initial concentration point.

We observe that, although a useful method to gain insights about a system
behaviour, continuous deterministic modeling has some downsides. For example,
as we will see, oscillation for the system (2.1) is transient but such a fundamental
characteristic cannot be evinced through ODEs analysis. Furthermore, the system
of ODEs (2.2) allows for some trivial fixed points, such as a0 = b0 = c0 (given that
ka = kb = kc). The solution of (2.2) for an initial condition corresponding to any
such fixed point will indicate that the system does not evolve at all, whereas, in
reality, the system will certainly evolve for any initial condition such that a0 > 0,
and b0 >0 and c0 >0.

5 Such solutions are calculated with the following rates values: ka = kb = kc = 1
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Fig. 2. A simulation trace of the 3-way oscillator with initial configuration a0 =b0 =c0 =333

2.3 Discrete Stochastic Modeling of Biological Systems

As the number of entities in biological systems is finite and discrete, it is possible
describing biological systems as a collection of discrete state variables, whose value
over time change as a consequence of interactions that stochastically happen in the
system. It has been proved by Gillespie in [10] that, under homogeneity conditions,
the time to the occurrence of the next reaction in a biochemical system can be very
well approximated through a negative exponential probability distribution. This
result provides the theoretical ground for representing and analyzing the dynamics
of biochemical systems through continuous-time Markov chain (CTMC)[19] models.
Gillespie’s result has lead to the implementation of many software tools for the
stochastic simulation of biological systems (see for example [17,5,7]). Such tools take
as input a description of modeled system and through application of the Gillespie
algorithm they calculate an approximated time course of the system’s reactants.
Figure 2 shows a plot of the output of a single simulation trace for the 3-way
oscillator model (with initial condition a0 = b0 = c0 = 333) obtained through the
Cyto-Sim [17] simulation tool. By observing the simulation trace in Figure 2 we
can evince the following: first, the molecules of the 3 species A, B and C do follow
an oscillating course; secondly, the amplitude of oscillation is not constant; thirdly,
species B is the oscillation damper (i.e. oscillation ends with 999 molecules of
B and none of both A and C). Such observations, however, are true only for that
(very) specific simulation run. Other simulation runs may (and will) provide us with
different insights. Therefore, if we want to use simulation for devising meaningful
information about the general behaviour of a system we need to calculate statistics
over a large number of simulation runs.

Alternative approaches to the simulation of discrete stochastic models, are given
by Markovian analysis techniques [19] and/or probabilistic/stochastic model check-
ing [11],[1]. In the following section we introduce the basics about temporal logic
and model-checking and we will show how relevant properties of systems of bio-
chemical reactions can be stated as (probabilistic) temporal logic queries which can
be automatically verified against a discrete stochastic model. First, though, we
introduce a permanent oscillation variant of our running example.
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2.4 The 3-way oscillator with doping: permanent oscillation

In [3] Cardelli shows that in order to make the oscillation of the simple 3-way
oscillator, perpetual, it suffices to add a doping reaction for each of the 3 species
A, B and C, where a doping reaction is one that is able to produce a molecule of a
species X∈{A, B,C} from a molecule of a doping substance DX and one of another
species. Practically speaking the chemical equations form of the 3-way oscillator
with doping is:

A + B
rA−→ B + B B + C

rB−→ C + C C + A
rC−→ A + A

DA + C
rC−→ A DB + A

rA−→ B DC + B
rB−→ C

(2.3)

where DA, DB and DC are the doping substances for A, B and C respectively. The
role of the doping reactions (the bottom three reactions in (2.3)) is to avoid that
the system blocks once a species get extinct: the presence of at least one molecule
of each doping species is enough to guarantee that a species will not get extinct (a
species may have zero molecules at some point in time, but it is guaranteed that from
there new molecules of the species will be generated through doping). As a result
it can be shown that oscillation, for the “doped” version of the 3-way oscillator, is
never ending. We will use this model to illustrate, in a comparative fashion, how
model checking techniques can be used for the analysis of both non-perpetual and
perpetual oscillating behaviours.

3 On the logical characterisation of oscillation

We consider temporal logic to express oscillation related queries. Given a model’s
variable v we describe as oscillation (with respect to v) those evolutions for which v

fluctuates around a value v=k. In logical terms (permanent) oscillation of a system
may be expressed through the following temporal property: “always in the future,
the variable v departs from and reaches the value v=k infinitely often”. We consider
branching-time temporal logic CTL [8] and its probabilistic extensions PCTL [11]
and CSL [1] as formal means to expressing oscillation related properties. In the
following we briefly introduce CTL and PCTL/CSL: for a detailed treatment the
reader is referred to the literature [8,11,1].

In CTL, formulae are built upon a set of atomic propositions (AP ) and are
evaluated against Kripke structure models. Two basic temporal operators are used
in combination with propositional logic’s conjuntion (∧), disjuntion (∨) and negation
(¬): a next-state operator (X), for referring to properties of successor states (i.e.
X (a) is true in s, denoted s |= X (a), if a is true in some successor of s), and an
until operator (U) for referring to properties which hold in future states (i.e. (ψ Uφ)
is true in s if and only if from s it is possible to reach a future state s′ |= φ through a
sequence of states satisfying ψ). Eventually in the future (F (a) ≡ (true U a)) and
always in the future (G ≡ ¬F (¬a)) are special cases of until formulae. CTL temporal
operators are path quantified, either existentially (EX, EU) or universally (AX,
AU). Existentially quantified formulae must be satisfied by at least a path starting
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from the current state, as opposed to universally quantified formulae, which must
be satisfied by every path starting from the current state. Permanent oscillation
(with respect to a variable v) can be characterised in CTL by the following formula:

φCTL ≡ AG(((v=k) → EF (v �=k)) ∧ ((v �=k) → EF (v=k))) (3.1)

which states that, at any point in the future, if the system’s evolution reaches a
state such that v = k then it has to be possible to reach a future state such that
v �=k and vice versa.

The probabilistic CTL [11] (PCTL) and the Continuous Stochastic Logic [1]
(CSL) are logic to state properties of, respectively, discrete time and continuous time
Markov chains models. PCTL and CSL formulae are of the same form as in CTL
except that path operators are continuously quantified, rather than existentially
or universally. Hence, for example, the formula P�p(ψ U φ) is satisfied in a state
s of a Markov chain model if the measure of probability of those paths satisfying
(ψ U φ) is bounded by p (with �∈ {≤, <,>,≥} and p ∈ [0, 1]). Relying on basics
propositional equivalence the CTL expression of oscillation (3.1) can be reformulated
in PCTL/CSL terms resulting in the following probabilistic formula:

φPCTL ≡ P≤0[
 U ((((v=k)∧P≤0(
 U (v �=k))))∨ (((v �=k)∧P≤0(
 U (v=k)))))]
(3.2)

which states that “evolutions for which once a state v = k is reached then it can-
not be left” have a null probability. Other important aspects of oscillation can be
coded in temporal logic, noise filtering and periodicity or, more generally, regularity
being two such examples. Fluctuations whose amplitude is below a certain (well
defined) threshold classify as noise, and should not be detected as oscillations. If n

is the noise threshold for a given system then existence of noise filtered oscillations
permanence can be encoded in CTL as 6 :

φCTL ≡ AG(((v=k) → EF ((v>k+n)∨(v<k−n))∧((v>k+n)∨(v<k−n) → EF (v=k)))
(3.3)

Oscillation regularity aspects, on the other hand, regard the periodicity as well
as the amplitude of fluctuations around k. Plots in Figure 3 are examples of different
cases of oscillation. Figure 3(a) shows the most regular type of oscillation, one whose
amplitude and periodicity are both always constant. Two examples of irregular
oscillations are depicted in Figure 3(b) and Figure 3(c). Encoding of oscillation
regularity aspects in temporal logic terms, is not a trivial task.

4 Probabilistic Model Checking

Probabilistic model checking is a formal technique for the verification of systems
that can be modelled in terms of stochastic processes. It extends classical model

6 PCTL version of (3.3) is straightforward

P. Ballarini et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 3–1910



(a) permanent, regular oscillation (b) irregular transient oscillation (c) irregular transient oscillation

Fig. 3. Examples of regular vs irregular oscillation

checking [6], to the probabilistic framework. The basic idea behind (probabilis-
tic) model checking is as follows: an algorithm is developed which takes as input
a (stochastic) model M of the considered system (often expressed through some
formal modelling language, such as, for example, stochastic process algebras or
stochastic Petri Nets [16]) and a property φ expressed as a (probabilistic) temporal
logic formula. The algorithm then automatically check φ against M , and provides a
positive output, if M satisfies φ (denoted M |= φ) or a negative one if that is not the
case (denoted M �|= φ). The verification of φ against M is achieved through an ex-
haustive exploration of M , hence the output of model checking is exact, as opposed
to the output of (stochastic) simulation which is inherently approximated. The
main difference between classical and probabilistic model checking is in the nature
of the model they are referred to, and, as a consequence, in the type of verification
they allow for. In classical model checking, a model is given by a labelled tran-
sition system, a graph which captures the system’s evolutions without expressing
any timing information. With probabilistic model checking models are Markov pro-
cesses (i.e. labelled transition systems enriched with stochastic information), thus
inherently contain timing and probabilistic information. As a consequence classi-
cal model checking is suitable for qualitative verification of a system’s model, such
as, for example “does the oscillation of a system eventually stop?”. On the other
hand probabilistic model checking allows for quantitative verification of a model:
properties such as “what is the probability that the oscillation will stop within time
T?” can be stated and verified through probabilistic model checking. Finally the
expressiveness of probabilistic model checking analysis is further enhanced by the
possibility of reward based verification. A Markov chain model may be enriched
with meaningful state rewards and/or transition rewards, and reward-based prop-
erties, such as, for example, “what is the expected amplitude of oscillation within
time T?”, may then be verified against it. Before proceeding with the probabilistic
model checking verification of the 3-way oscillator model (Sec. 6), we first set the
basics about reasoning on oscillations with temporal logic.
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Fig. 4. State space of the 3 species oscillator with initial state a0 = b0 = c0 = 3

5 Markov Chain model of the 3-way oscillator

Based on the chemical equations (2.1) a CTMC model of the 3-way oscillator can
be obtained straightforwardly. Figure 4 illustrates the state-space of the CTMC
model of the 3-way oscillator corresponding to the initial conditions: a0 = b0 =
c0 = 3. Each state in Figure 4 is given as a triple of integers (a, b, c) representing
the corresponding number of molecules of each species in the state, whereas the
labels on each arc represent the transitions rate 7 . We observe that the CTMC
in Figure 4 enjoys a specific structure: each path along the perimeter of a given
triangle corresponds to oscillations of constant amplitude 8 . We refer to the set
of states on the perimeter of such a “triangle” as level k states , formally: Lk =
{(a, b, c)∈S : min(a, b, c) = k} ⊂ S and to the set of states contained in the level
k triangle as L≥k = {(a, b, c)∈ S : min(a, b, c) ≥ k} ⊆ S. Counting the number of
states in L≥k is necessary in order to perform significant reward based analysis of
the 3-way oscillator CTMC model (see Section 6). The total number of states in
the CTMC is proportional to the system invariant (INV =a0 +b0 +c0) and is given
in the the following proposition. Furthermore an iterative rule for computing the

7 Note that each transition rate is marking dependent, i.e. its value depends on the distribution of molecules
on that state.
8 Note that states in each such “k-triangular” path are such that the minimum between A, B and C is
equal to k.

P. Ballarini et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 3–1912



INV |S|
10 66
20 231
50 1326
100 5151
200 20301
500 125751
1000 501501
2000 2003001
5000 12507501
10000 50015001

(a) total number of states

k ≤ n |L≥k|
10 1
9 10
8 28
7 55
6 91
5 136
4 190
3 253
2 325
1 406

(b) number of k-level
states for 1 ≤ k ≤ 10

Fig. 5. Total number of states and k-level states in the 3-way oscillator CTMC

number of states in L≥k is also defined.

Proposition 5.1 Let M = (S, Q, s0) be the CTMC model of the three species os-
cillator with state-space S and initial state s0 = (a0, b0, c0) = (n, n, n) and INV =
a0 + b0 + c0.

• the number of states in S is given by:

|S| =
(INV + 2) · (INV + 1)

2
(5.1)

.
• the number of states contained in the level-k triangle can be iteratively calculated

as follows:

|L≥(k−1)| = |L≥(k)| + 9 · k ∀k : 1 ≤ k ≤ n (5.2)

and the number of state on level-k triangle’s perimeter is given by |Lk|=9(n−k).
Note that, trivially, |L≥n|=1.

Through (5.1) we can straightforwardly assess the state-space explosion as a function
of the model initial state (i.e. as a function of INV ). On the other hand (5.2) will
be used to normalise the reward models described in the next section (Section 6)
and which allow us to quantify the likelihood of the system to oscillate within level
k as a function of the number of states in the model. Tables in Figure 5(a) and
Figure 5(b) shows sample values obtained by application of (5.2) and (5.1).

6 Property specification and verification with PRISM

In this section we present results of probabilistic model checking verification of the
PRISM model of the 3-way oscillator both in its standard and “doped” version. For
the sake of space we omit the PRISM code, the interested reader can find it in [2].
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(a) The 3-way oscillator without doping has a non-null
probability of never returning into state a = j

(b) Probability of oscillation to terminate in A

Fig. 6. Probability of permanent oscillation and probability of oscillations to terminate in a given state

6.1 Verification of the 3-way oscillator, with and without doping

The following queries, first described informally in natural language, then encoded
as PRISM formulae, have been considered for verification.

A. What is the probability that the oscillation will never terminate ?

P=?[
 U((((a �=j)|P≥1(
 U(a �=j)))&((a=j)|P≥1(
 U(a=j))))] (6.1)

Results of verification of (6.1) (referred to the initial state a0 = b0 = c0 = 5), are
shown in Figure 6(a). They confirm that oscillation is permanent for the 3-way os-
cillator with doping whereas it is not for the standard version of it: the probability
of ever returning into state a = j is less than 1 ∀j ∈ [0, INV ] (note that for a = 5
such probability is equal to 1 simply because of the initial state a0 =5). It should
be noted that (6.1) provides a formal means to automated verification of oscillation
termination, something which cannot be achieved through simulation.

B. What is the probability that oscillation terminates in species X∈{A, B,C}?

P=?[
 U(a = INV )] (6.2)

Results for (6.2) are depicted in Figure 6(b). Specifically the probability that oscil-
lation ends in A is plotted against the initial number of A molecules (a0), and for
different (equal) initial number of B and C molecules (b0 =c0). Plots in Figure 6(b)
reveal a maximum corresponding to a0 =2, which indicates a particular probabilis-
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(a) Probability of oscillation to terminate in species A
within time T

(b) Probability of oscillation to terminate within time T

Fig. 7. Probability of oscillation to terminate within a time bound T

tic tendency of the 3-way oscillator, that is: the smaller the initial value of species
X, the higher the probability that oscillation terminates in X.

C.1 What is the probability that oscillation terminates in species X within time T?

P=?[
 U≤T (a = INV )] (6.3)

C.2 What is the probability that the oscillation eventually terminates within time
T?

P =?[
 U≤T ((a = INV ) ∨ (b = INV ) ∨ (c = INV ))]) (6.4)

Results of verification of (6.3) and (6.4) are shown in Figure 7(a) and Figure 7(b)
respectively. They show a rather counter intuitive peculiarity of the oscillator which
is: the higher is the initial population, the faster the oscillator will reach its ab-
sorbing state. Note that because these experiments are referred to uniform initial
population (i.e. a0 = b0 = c0), then the limit probability in Figure 7(a) is 1/3.
Finally, plots in Figure 7(a) and Figure 7(b) provide a quantification of the time to
absorbtion: oscillation stops certainly within time T = 2.

D What is the probability of an oscillation of amplitude k?

P =?[((a = k) ∧ (b > k))U((a = k) ∧ (b = k) ∧ (c = (3 · a0 − 2 · k))) (6.5)

An oscillation of amplitude k corresponds to the path on the perimeter of the level-k
triangle (see Figure 4). Each side of the level-k triangle can be characterised by a
CSL formula. For example (6.5) identifies the “height” of the triangle. Through ver-
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(a) Steady-state probability of A as a function of doping
DA

(b) Steady-state probability of B as a function of doping
DA

Fig. 8. Oscillator with doping: steady-state probability of A and B as a function of doping DA

Fig. 9. Probability of oscillation of amplitude k

ification of (6.5) (and similar formulae for the remaining two sides of the triangle),
we can get a quantification of the likelihood of an oscillation of amplitude k. Fig-
ure 9 shows results of verification of (6.5) for different initial amount of molecules.
The U-shaped plots in Figure 9 indicate that (very) small and (very) large ampli-
tude oscillations are more likely than those whose amplitude is in between.

E (reward based). What is the expected level-k reward cumulated within time T?
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Fig. 10. Expected level-k within T with reward 1
|Lk| given to each level-k state and initial state

a0 =33, b0 =33, c0 =33

R{level k reward} =?[C≤T ] (6.6)

where “level k reward” is a reward model, that assigns a reward of 1
|Lk| to each

level-k state, where the normalising constant |Lk| is defined as in Proposition 5.1.
Verification of (6.6) leads to plots in Figure 10. Those curves indicate that, on av-
erage, the system spend more time in the orbits closer to the initial state a0 =b0 =c0.

F (stready-state). What is the probability that the number of molecules of species
X is j on the long-run?

S =?[(a = j)] (6.7)

such formula is referred to “doped” version of the 3-way oscillator only (i.e. the
standard 3-way oscillator does not allow for a steady-state distribution). Results
for (6.7) are depicted in Figure 8(a). Specifically the steady-state probability for
(a = j) is plotted against the amount of A’s doping (DA) for different (equal) initial
number of B’s and C’s doping (i.e. DB = DC = 1). When the amount of doping
is equal for all three species the probability at steady state decreases linearly when
we move from outer orbits towards inner ones. On the other hand, as we increase
the amount of doping of a species (A in this example) while keeping the doping for
the other species constant, then the more “doped” species becomes less likely to
“dominate” the others. Such rather counter intuitive behaviour may be explained
by looking at the nature of reactions (2.3): in fact the more doping we add, the
more likely we are to synthesis new molecules of A, hence the more likely we are
to consume them in the production of new B. As a result, opposite to what one
would expect, augmenting the doping of species X is actually going to augment
(the average number of molecules of) species X ′, where X ′ is the successor of X,
assuming A < B < C as order.
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7 Conclusion

In this paper we have proposed a comparative study of modelling techniques for
the analysis of biochemical systems. We have focused on a specific class of systems,
ones whose behaviour is characterised by existence of oscillations in the quantities of
reactants they consist of. First we have demonstrated how useful insight about an
oscillating system can be gained by application of standard system biology’s mod-
elling techniques, such as solution of continuos deterministic (ODEs) model and
simulation of a discrete stochastic model. However we have seen that both such
methods lack to fulfil the modeller needs for analysis of the considered system. We
have then argued that formal languages, such as temporal logic, may be applied
to encoding relevant characteristic of an oscillator, providing a formalisation of the
oscillation permanence in terms of two popular logic: CTL and PCTL. We have
then developed a Markovian model of both a transient oscillator, known as the 3-
way oscillator as well as of its permanent oscillation variant. We have demonstrated
the effectiveness of automated temporal logic verification, by coding such models
in the probabilistic model checker PRISM. we have been able to perform a thor-
ough probabilistic analysis of several reachability as well as reward based logical
formulae, which provided us with interesting outcomes which could not be obtained
otherwise. Future developments of this work include the extension of the proposed
methodology to the verification of more complex biological systems, such as the
cell-cycle, a model of which is currently being developed and analysed.

7.1 Related work

Application of model checking techniques to system biology has been proposed in
some other works. In [13], Kwiatkowska et al. developed a non trivial stochastic
model of the complex Fibroblast Growth Factor (FGF) signalling pathway. They
used PRISM to code the FGF pathway and developed a number of probabilistic
properties, some of which reward-based, to verify relevant properties of the sig-
nalling mechanism. In [9] Gilber et al. propose a general overview about formal
modelling techniques suited to the verification of biological systems. Based on Petri
Net model of the ERK signal transduction pathway, they identify what type of
formalisms/verification-technique, is suitable to what type of analysis the modeller
is interested in. Hence in the discrete-state modelling framework non-probabilistic
model checking (i.e. standard temporal logic) has to be used to perform qualitative
analysis, whereas probabilistic/stochastic is needed for quantitative analysis. Fi-
nally in the continuous-state modelling framework, ODEs solution as well as Linear
Time Logic with constraints (LTLc) are to be used for model analysis.
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