
Ad Hoc Networks 151 (2023) 103289

Available online 6 September 2023
1570-8705/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A delay-tolerant network approach to satellite pickup and
delivery scheduling

Christopher John Lowe a, Ruaridh Alexander Clark a, Ciara Norah McGrath b,
Malcolm Macdonald a,*

a Applied Space Technology Laboratory (ApSTL), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow, G1 1XW,
United Kingdom
b Space Systems Research Group, School of Engineering, University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom

A R T I C L E I N F O

Keywords:
Scheduling
Tasking
delay-tolerant networks
Satellite networks
Contact Graph Routing

A B S T R A C T

An approach to job scheduling and task allocation in delay- and disruption-tolerant satellite networks, called
Contact Graph Scheduling (CGS) is introduced. This method aims to minimize latency between the arrival of
requests for satellite data products, and the delivery of those products, identifying efficient pickup and delivery
paths through a resource- constrained time-varying network. Requests for goods are processed as soon as they
arrive, resulting in the discovery of task distribution and product delivery routes, while being aware of both
resource and operational constraints. CGS sits at the interface between Contact Graph Routing (CGR), the dy-
namic pickup and delivery problem (dPDP) and satellite scheduling. CGS provides a combined scheduling-
routing solution, such that the route to be taken by data toward their destination informs the allocation of
pickup tasks to network nodes. Results show that CGS can increase the number of fulfilled customer requests,
while maintaining acceptable levels of delivery latency, compared to other, less burdensome methods. This study
highlights the impact of contact reliability on CGS performance, suggesting that as uncertainty increases, so does
the benefit of employing locally, rather than centrally, defined data routing strategies.

1. Introduction

Tasking of satellites to acquire data has been an active field of op-
erations research and combinatorics for many years. The objective is
typically to assign data acquisition tasks to satellite nodes in a manner
that maximizes (or minimizes) some value metric across the whole
mission. The exact nature of this value metric is application-dependent,
but is often closely related to data delivery, either throughput or latency,
or task-specific profit.

In this work, an approach to satellite scheduling, called Contact
Graph Scheduling (CGS), is introduced that provides task allocation in
response to the submission of pickup and delivery requests, for systems
that exhibit delay- and disruption-tolerant network (DTN) characteris-
tics. This approach schedules requests immediately, upon their arrival,
considering the full product life-cycle including; request, task distribu-
tion, data pick-up and data delivery. Scheduling in this manner, using a
DTN shortest-path inspired approach, offers an alternative, more
compute-efficient solution compared to traditional, linear

programming-based methods for satellite scheduling, in which requests
are grouped and solved for some global optimality. This method, which
integrates both task scheduling and data routing at its core, is optimal at
the task-level and could be deployed in a decentralized manner without
significant overhead on resource-constrained nodes. Furthermore, the
impact of handling requests immediately, rather than as a group, en-
ables the provision of a service level guarantee to the request provider,
which could offer benefits in certain situations, including commercial,
scientific or defence applications.

CGS offers the first known method of task scheduling in satellite
networks via a delay-tolerant network data routing approach. This
approach drastically reduces computational overhead in comparison to
more traditional, linear programming approaches to satellite task
scheduling, offering a viable solution for large scale networks with
intermittent connectivity between space and ground nodes.

* Corresponding author
E-mail address: malcolm.macdonald.102@strath.ac.uk (M. Macdonald).

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

https://doi.org/10.1016/j.adhoc.2023.103289
Received 13 April 2023; Received in revised form 3 August 2023; Accepted 2 September 2023

mailto:malcolm.macdonald.102@strath.ac.uk
www.sciencedirect.com/science/journal/15708705
https://www.elsevier.com/locate/adhoc
https://doi.org/10.1016/j.adhoc.2023.103289
https://doi.org/10.1016/j.adhoc.2023.103289
https://doi.org/10.1016/j.adhoc.2023.103289
http://creativecommons.org/licenses/by/4.0/

Ad Hoc Networks 151 (2023) 103289

2

1.1. Task Scheduling in Satellite Networks

The typical lifecycle of data products in satellite networks is: com-
mands (i.e. tasks) are uploaded to the satellite from a ground-based
gateway; data is acquired/generated by the on-board payload when
the satellite makes contact with the target; and, data is downloaded to a
gateway for further processing, before reaching the customer. Inter-
satellite (“cross”) links (ISLs), if available, provide additional data-relay
opportunities that could expedite the transfer of data following its
generation, reducing overall latency between pickup and delivery.

Until the 1980s, the challenge of satellite scheduling was addressed
by human-in-the-loop approaches [8]. Early work aimed at automating
the scheduling process formulated an Integer Linear Programming (ILP)
problem as a single machine scheduling model [22]. They derived a set of
heuristics and dynamic programming solutions to overcome the
computation burden of solving the linear program, which were
addressed shortly after using ILP methods in Bensana et al. [5]. More
recently, the allocation of data pickup tasks has been achieved through
some form of exact or inexact optimization, either Mixed Integer Linear
Programming (MILP) [3,36], Dynamic Programming (DP) [31] or some
combination of the two [10]. Justification for using MILP approaches is
the desire to reach a globally optimal solution for the allocation of a set
of tasks that are known prior to completing the scheduling procedure.
An alternative approach to generating a schedule for satellite operations
makes use of the unrelated parallel machine scheduling with time windows
problem [43]. This approach incorporates a generic MILP formulation to
maximize total mission profit, with problem space reduction achieved
via a pre-processing phase to ease computational demand. Optimal so-
lutions for up to 800 tasks on 20 satellites has been demonstrated in
Wang et al. [43], but with no consideration of inter-satellite communi-
cation, on-board resource constraints, or distribution of task information
(i.e. an assumption is made that tasks can reach the satellites prior to
data acquisition).

Graph-based heuristic approaches have also been implemented to
solve the satellite scheduling problem, and the use of maximum inde-
pendent sets offers an interesting alternative to traditional numerical
optimization [17]. The approach models data acquisition opportunities
as nodes in a network, with adjacent nodes (i.e. pairs that are connected
by edges) representing acquisition events that cannot both be completed.
This reduces the problem to one of finding the maximum independent
set in the graph, that is, finding the set of non-adjacent nodes that exhibit
the maximum node-count. This results in finding the maximum number
of tasks that can be feasibly carried out by the system, limiting the
interpretation of mission “value” to a function of task completion count.

Consideration of the data download activity is often overlooked in
the satellite scheduling literature, such that pickup of data is considered
the end of the process and is the sole contributor to the mission’s
objective. If data latency is important, then the duration between
acquisition and delivery of the acquired data must be included in the
analysis. In some cases, download times are incorporated as a means to
ensure delivery of the data is feasible [24] and in others it forms a key
part of the value proposition [10]. While delivery has been considered in
these cited examples, inclusion of how tasks physically reach the satel-
lites is not. Rather, an assumption is made that tasks can be uploaded
prior to the pickup operations, likely during some prior contact with a
gateway. This is not unreasonable in the sense that one could simply
wait until the next gateway contact before executing the optimization,
however in the dynamic scheduling case, where requests are to be
processed immediately upon arrival, this is insufficient. Furthermore,
consideration of task distribution through multi-hop (ISL-enabled) paths
has not been incorporated in a solution to the satellite scheduling
problem. This extension to traditional direct upload is a key consider-
ation for operators of satellite constellations with inter-satellite
communication capabilities that aim to offer data services with a de-
pendency on delivery latency, and is included in this work.

1.2. The Pickup and Delivery Problem

The Pickup and Delivery Problem (PDP), a sub-set of the more general
Vehicle Routing Problem (VRP) family, aims to minimize distance trav-
elled (or time taken) for one or more vehicles to carry out pickup of
goods from their respective depots and delivery of those goods to their
respective destinations [37]. This has clear similarities to the satellite
scheduling problem being addressed in this work, which considers the
pickup of data by satellites from targets, and delivery of that data by
satellites to gateways. Indeed, mobility patterns in the satellite case are
restricted, that is one cannot simply direct the satellite into a vastly
different orbit at will, such that the problem is constrained. Focus, in the
satellite case, is therefore more on the allocation of pickup and delivery
activities that fit with the satellite trajectory plan.

Extensions to the original PDP provide further correlations, namely
the consideration of goods transfer between vehicles, the PDP with
transshipments (PDP-T), and the consideration of activity-specific time-
windows, the PDP with time windows (PDPTW). Methods addressing
the Pickup and Delivery Problem with Time-Windows and Transshipments
(PDPTWT) have evolved over the years, from an iterative, 2-phase
heuristic method that provides sub-optimal solutions [30], to mixed
integer linear programming formulations that consider a broad set of
system constraints and objectives [28,34,44]. The current state of the
art, discussed in Lyu and Yu [28], demonstrates optimal solutions for
scenarios featuring up to 25 requests and 2 transshipment stations. The
satellite constellation applications being addressed here, are orders of
magnitude greater in terms of both transshipment opportunities and
request count.

A more relevant sub-class of VRPs is the dynamic pickup and delivery
problem (dPDP) [6], in which requests for goods arrive throughout the
operational period and must be processed as they arrive. Such terrestrial
applications include inner-city courier services and the “dial-a-ride
problem” (DARP) associated with taxi allocations [15,33]. As with
traditional PDP applications, the goal is to identify vehicle routes that
maximize some objective function, which typically presents a large,
complex problem space that scales poorly with network size. The dPDP
with transfers (dPDPT) is considered in Bouros et al. [11] and Andini
et al. [2] and with time windows (dPDPTW) in Karami et al. [23]. In
Bouros et al. [11], handling incoming requests that render the original
pickup and delivery plan out of date is treated as a shortest path prob-
lem. However, they show that their conceptual graph, describing the
paths over which vehicles can travel, does not exhibit the principal of
optimality necessary for use of traditional shortestpath algorithms, such
as Dijkstra [16] or Bellman-Ford [4]. This is not the case in the
satellite-specific dPDP, with the deterministic, largely non-changing
relative mobility of satellite and gateway nodes offering a key differ-
ence that enables paths on a time-varying graph to be identified using
these traditional methods. This approach is presented here, offering a
solution to an adapted version of the Dynamic Pickup and Delivery
Problem with Time Windows and Transshipments (dPDPTWT).

1.3. Delay-Tolerant Network Routing

A network that exhibits intermittent and/or disrupted connectivity,
generally with few end-to-end paths between node-pairs at any partic-
ular moment in time, can be referred to as a “challenged” network.
These types of networks present environments in which the use of
traditional protocols, such as TCP/IP, is difficult or indeed impossible.
To overcome this challenge, use of the Delay-tolerant Network Archi-
tecture [39] and Bundle Protocol [12], enables data transfer through
such a network, resulting in the formation a delay-tolerant network
(DTN). DTNs are unlike internet architectures that can be described as
connected graphs, where two-way communication between any
node-pair is generally possible, such that attributes like link-state
establishment and send-receive acknowledgement are expected. Chal-
lenged networks are common in every- day life, with terrestrial

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

3

examples including human movement through public transport systems
and message forwarding through social interactions, and in
non-terrestrial examples including the dissemination of data through
deep-space and low Earth orbit (LEO) satellite networks. In the context
of this work, the networks for which these new methods are developed
are expected to exhibit DTN-like characteristics with quasi-deterministic
mobility1, such that information travels between nodes in a
store-and-forward manner, through paths that can be estimated with a
certain degree of confidence in advance.

Much of the research in DTN routing is focused on opportunistic
contacts, where estimation of future inter-node transfers is based on
some probabilistic approach [1,40]. In satellite networks, however,
mobility is quasi-deterministic, such that an idealistic contact plan can
be prepared in advance, which is subject to uncertainty related to node
availability on an ad-hoc basis [19]. In this environment, the most
widely adopted approach is Contact Graph Routing [18], which is based
on the schedule-aware bundle routing (SABR) framework [14]. In Nag
et al. [32], SABR is used as the routing method for delivering data ac-
quired by a constellation of satellites, working in combination with a
locally-deployed Dynamic Programming (DP) scheduler that plans
pickup operations for flood risk monitoring. Since on-board decision
making is assumed, the delivery of tasks to their respective satellites is
not considered. In other words, requests are not submitted for specific
data pickup, tasks are generated on board based on the satellites’
environmental knowledge. While minimising the latency of delivery for
data generated within a DTN is typically the primary objective, a solu-
tion to maximizing data flow through DTNs is introduced in Li et al.
[25], which could offer an interesting extension to this work.

Numerous enhancements from the baseline Contact Graph Routing
(CGR) approach have been introduced since its original definition. For
example, the issue of congestion (traffic load) is partially addressed in
Madoery et al. [29] and Bezirgiannidis et al. [7] through tracking of
local traffic demands and management of contact over-subscription,
respectively. A mechanism to handle downstream contact uncertainty
is provided in Raverta et al. [35], where a Markov Decision Process is
used to provide a probabilistic approach to deriving routing decisions
based on contact plan expectations. A centrally managed approach to
path distribution is introduced in Caini et al. [13] and extended in Bir-
rane et al. [9], which is of particular interest in this work. That exten-
sion, termed “Moderate Source Routing” (MSR), reduces the risk of route
cycles forming, through the use of pre-computed delivery paths to route
specific bundles. It is shown to be particularly effective where oracle-like
knowledge exists at some central node. Other approaches to traffic
awareness and congestion control, such as the MILP approach intro-
duced in Fraire et al. [21] and the application of reinforcement learning
in Silva et al. [38], offer interesting solutions with high performance, but
either suffer as the network scales due to growth of the problem space
and/or place additional computational demands on potentially
resource-constrained remote nodes.

Despite the advances in nominal data routing performance using
CGR, the route planning focus remains reactive with respect to the arrival
of traffic, rather than being proactive in defining when, and where, data
should enter the network. The work introduced here, offers this capa-
bility of engineering the traffic flow in such a way that fits to available
network resources.

1.4. Article Contribution

The contribution of this work is the introduction of a novel method to
allocate pickup and delivery tasks to satellites in space networks that
exhibit delay-tolerant network behaviour and deterministic (or quasi-

deterministic) mobility patterns. Triggered by the arrival of a request
for goods, the output of the method is one or more tasks that are
delivered to remote nodes, via one or more relays (transshipments), and
provide instructions for the pick-up and delivery of data products. Re-
quests are processed immediately upon arrival, with the objective of
providing earliest delivery of the data to be acquired in order to satisfy
the request. The approach ensures feasibility through consideration of
the route taken by the task (i.e. for it to travel from scheduler to the
pickup assignee), the route taken by the data post-pickup, and
(optionally) network resource availability.

2. Problem Definition

The full problem life-cycle includes a data acquisition request being
submitted by a customer to a scheduler node, triggering the creation of a
task that details the data pickup requirements. Following pickup, the
data is delivered to its destination. The time period between task crea-
tion and data pickup is referred to as the “Pickup Phase”, and the time
period between pickup completion and delivery is the“Delivery Phase”.
This process is illustrated in Fig. 1, which shows a highly simplified
Earth observation satellite example.

The Gateway (or Ground Station) acts as both a scheduler that re-
ceives the request and the data destination, these need not be the same
Ground Station but, for simplicity is, in Fig. 1. Connections between
nodes are illustrated by vertical lines joining each node’s respective
horizontal line.

Consider the situation (Fig. 1) where two imaging satellites (X, Y)
orbit the Earth and are capable of servicing customer requests through
acquisition of images over certain locations. A request is submitted, by a
customer, for an image to be taken of a particular location (the
“Target”). Despite Satellite X being the first to fly over the Target, Sat-
ellite Y is designated as the Assignee as it offers the earliest opportunity
for delivery. The optimal path, therefore, is highlighted by the bold line
going from the Gateway → Satellite Y → Target → Satellite Y →
Gateway. Now, consider hundreds of satellites, thousands of image re-
quests, inter-satellite communication for data-relay, resource limita-
tions, and a large network of ground-based gateways for tasking and
data download, and the problem becomes difficult to comprehend, let
alone solve. The use of a delay-tolerant network (DTN) architecture to
represent the above-described scenario can formalize the problem. The
reader is directed to Fraire et al. [18] for a thorough overview of much of
the terminology used in the sections that follow.

3. Network Model

The network considered in this work is dynamic, with pair-wise
contacts between nodes that are formed and lost at times that are
known a priori, or can be predicted with a reasonable level of certainty.
Exactly how this intermittent connectivity arises is arbitrary in terms of
the methods being introduced, as it is the changing topology that is of
interest, rather than the cause of it. That being said, in the satellite
network application, contacts generally occur as a result of the relative
position and attitude of satellites and ground nodes.

3.1. Contacts

A contact (Ct1 ,t2
ij), represents a unidirectional contact between two

network nodes, i and j, with a start time t1 (i.e. C.start)2 and end time t2
(i.e. C.end). Each contact is an opportunity for data transfer, during
which data may, but are not required to, be forwarded from the contact’s
sending node i (i.e. C.snd) to its receiving node j (i.e. C.rcv). A contact has

1 It is not necessary to have full knowledge of future mobility, but mobility
estimation to a reasonable level of accuracy is required to develop contact
schedules in advance

2 “dot” notation is used to retain consistency with CGR definitions in Fraire
et al. [18]

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

4

a specific data transfer rate (C.rate) and, as a result has a maximum
transfer volume capacity (C.volume) on the amount of data that could be
transferred. Assuming a constant data rate, this volume is simply C.rate
(C.end− C.start). Time taken for data to reach C.rcv after departing C.snd,
i.e. the propagation delay, is termed the one-way light time (OWLT), C.
owlt.

While it is not necessary to remove expired contacts from whatever
Contact storing mechanism is being employed (e.g. a Contact Table),
this is recommended as a way to reduce computational burden, unless
required for future analytics or network behaviour predictions.

3.2. Contact Graph

A Contact Graph is a directed acyclic graph representation of a time-
evolving network that captures connections between node-pairs occur-
ring during some time horizon. Consider the Contact Graph CG = (V, E),
where V is the set of vertices and E is the set of edges connecting adjacent
vertices. Each vertex Ci ∈ V represents a discrete Contact between two
nodes, as described in Section 3.1. An edge eij ∈ E connecting two
Contacts Ci and Cj represents the sojourn period between the two con-
tacts. That is, the period of time a node would store and carry data be-
tween adjacent contact opportunities in which it is the receiver of the
first (during which the data is added to its local database) and sender in
the second (during which it offloads the data and subsequently removes
it from the local database). It follows, therefore, that a Node m, repre-
sented as the carrier of data on Edge eij is defined as m = Ci.rcv = Cj.snd ∀
i, j ∈ [0, |V − 1|].

3.3. Routes

A Route RB
A between two nodes, A and B, is represented by an ordered

sequence of contacts (or hops) {C0, C1, ..., CH}, where C0.snd = A, CH.rcv
= B and the number of hops is H + 1. For two adjacent hops to be
considered feasible, it must be possible for data to reach the receiving
node, after being transmitted from the sending node. That is, Ci.start+Ci.
owlt ≤ Ci+1.end ∀ i ∈ [0, H − 1]. Similarly, the sending node in a contact
must equal the receiving node in the previous hop, that is Ci.rcv = Ci+1.
snd ∀ i ∈ [1, H − 1].

Each Route has additional attributes that can be derived from the
properties of its contacts. A Route has a Best Delivery Time (R.BDT),
which is the earliest opportunity for payloads to begin arriving at the
final node. The R.BDT is more formally defined as the maximum across
all contacts of their earliest arrival time (C.arr time) plus the time taken
for the data to traverse the contact (C.owlt), that is max(Ci.arr time + Ci.
owlt) ∀ i ∈ [0, H − 1], where Ci.arr time = max(Ci.start, Ci− 1.arr time)+
Ci− 1.owlt. This definition captures situations of contact overlap, where a
later contact in the Route’s hop sequence may begin prior to that of an
earlier one, such that earliest arrival at the final node may come later
than the start of the final contact. A Route also has a nominal volume, R.

volume, that is the maximum amount of data it can carry from source to
destination.

While nominal contact volume, as described in Section 3.1, is simply
a function of the contact’s transfer rate and start/end times, Route
volume is dependent on the relative start and end times of its contacts
with respect to each other, as well as their respective transfer rates and
OWLTs. Fig. 2 provides an illustration of how contact overlap can impact
Route volume and best delivery time. The reader is directed to Fraire
et al. [18] for a full definition of how volume is modelled in Contact
Graph routes, which goes into more detail than is considered necessary
for the purposes of this work. Note that the contact “blocks” in Fig. 2
indicate times during which bundles (i.e. the Bundle Protocol specific
term used for data packets at the BP layer) can be “sent”, rather than
“received”, hence why the fourth bundle is shown as arriving after the
final contact ends.

3.4. Requests

Submission of a request, Q, for pickup and delivery is the mechanism
by which the Contact Graph Scheduling process is initiated. A request
includes identification of the Target endpoint identifier (EID) Q.target
from which the data must be collected and the Destination EID Q.dest to
which the data must be delivered. Note that the Target EID and/or
Destination EID may reasonably map to more than one Node. For
example, delivery of the data to any one (G) of a set of gateways (G) may

Fig. 1. Satellite pickup and delivery example. A single Gateway provides scheduling and task distribution, as well as acting as the destination to which the data must
be delivered, while two satellites offer pickup opportunities from a Target node. Dashed lines represent gateway-satellite contacts, solid lines represent pickup
opportunities, grey lines represent unused contacts. Time progresses from left to right.

Fig. 2. Illustration of a route from node A to D. Diagonal dashed lines represent
the movement of data (i.e. bundles, in this context) from one node to another,
during a contact. In this example, the one-way light time (OWLT), or propa-
gation delay, is 1 time unit for each contact, and the time between the trans-
mission of each bundle is also 1 time unit. Given overlap between contacts C8,14

B,C

and C4,12
C,D the route can accommodate 4 bundles, with a best delivery time (R.

BDT) of 10.

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

5

be acceptable, such that these gateways would all share an EID. That is,
in the destination scenario, Gk.EID = Q.dest ∀ Gk ∈ G. A pickup deadline
(Q.pu) may be defined, as can a delivery deadline (Q.del) by which the
data must reach its destination and/or a maximum time to live (Q.ttl) in
case data age is important.

Inclusion of some limit on delivery time is recommended, as a way to
limit the time horizon over which the search must be carried out, but is
not strictly necessary. Finally, a list of “excluded” nodes that are
forbidden from acquiring, relaying or delivering the data (Q.excl) may
be included without negative impact on the method, but are not
considered in this work for reasons of clarity. Data volume (Q.vol) may
also be defined as part of the request, if it is not implied by some other
method. This must account for any overhead required to encapsulate the
payload data within one or more bundles (Section 3.6), such that
resource consumption modelling is accurate. Regarding data priority,
requests are handled on a first-come first-served basis, such that arrival
time defines priority in relation to scheduling. Once resource has been
assigned during the scheduling process, within the Scheduler’s internal
network model, it is assumed that this resource cannot be re-allocated in
response to a later request. Note that this resource allocation may not
actually be realised during the routing of data to its destination, since
the allocation of data packets along specific routes is the responsibility
of the local routing mechanism, e.g. CGR.

3.5. Tasks

For every Request that is deemed feasible, i.e. requests for which
pickup and delivery is expected to be completed prior to their respective
deadlines, a Task object (T) is created. As a minimum, a Task must
include details of the Target EID from which the payload data is to be
picked-up, the destination EID to which the data must be delivered, the
deadlines for pickup and delivery and the node assigned to execute the
pickup (T.assignee). Additional (optional) attributes include the specific
time of pickup (T.pu) and the route along which the data would ideally
travel once acquired. If no feasible pickup or delivery opportunity exists,
however, a task should not be generated since it would be a waste of
resources. This would be the case if, for example, there are no acquisi-
tion opportunities prior to Q.pu or valid delivery opportunities prior to
Q.del.

Each Task object has a status attribute (T.status), which takes one of
the following values; “pending”, where the data is yet to be picked up,
“acquired”, where the associated data has been collected, but not yet
delivered, “delivered”, where the associated data has successfully been
delivered to its destination, “failed”, where the task is no longer able to

be completed before either the acquisition or delivery deadlines,
whichever is relevant to its current state, and “re-scheduled”, where
there is no possibility for the current task to be completed, but a new,
equivalent, task has been generated with potential to be completed. A
Task would transition to the “re-scheduled” state, if for example a
dedicated pickup operation was missed by the assignee, but sufficient
time remains prior to Q.pu for pickup by the same, or different, node. In
some situations, it may be more appropriate to edit an existing Task,
rather than creating a new one, however care would need to be taken to
ensure any Task conflicts (due to the existence of multiple, different
versions of the same Task in circulation at one time) are handled. This
issue is considered an implementation matter, and is not critical to the
methods being introduced here. Transition between these various states
can be described in terms of a finite state machine (Fig. 3). Note that
“delivered”, “failed” and “re-scheduled” are final states, from which no
further activity can take place, and “pending” acts as an initial state for a
Task.

In this work, Task objects are assumed to be negligible in size, such
that they can be flooded through the network without significant impact
on contact capacity. As such, it is assumed that tasks are shared between
Nodes as part of a handshake operation, in which each node updates their
set of tasks based on the most up to date information from both parties.
While flooding maximises the probability of Tasks reaching their
Assignee in good time, in situations where the resources consumed by
Tasks is non-negligible, Tasks could be delivered to their respective
Assignee using CGR (or some other routing method) without any loss of
generality. The Task Assignee EID would, in this case, act as the Task
destination in the routing process.

3.6. Bundles

The result of a successful pickup operation is the introduction of data
to the network, for example a message, or image file. Once acquired, this
data is encapsulated into one or more bundles (as defined in the Bundle
Protocol Burleigh et al. [12]) so that bundle-specific properties can be
exploited during the delivery phase. To avoid confusion, whenever
discussing transfer of “data” through the network, this refers to bundle/s
that store the files (e.g. an image) associate with a specific request. Each
bundle (b) includes a destination endpoint (b.dst), which maps to one or
more nodes to which the bundle can be “delivered”, a level of priority (b.
p) that can be used to order bundles for routing precedence, and a size (b.
size), which indicates the amount of network resource consumed by the
bundle during storage and node-transfer (this equates to the requested
data volume, Q.vol). Other attributes may exist on the bundle, such as a

Fig. 3. Finite state machine diagram for a Task object

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

6

list of nodes to which the bundle should not be forwarded (b.excl), an
expiry date after which the bundle is considered to have zero value and
should therefore be dropped from the network (b.deadline) and a
pre-defined route over which the bundle should be delivered, if possible
to do so (b.route).

4. Contact Graph Scheduling

Contact Graph Scheduling (CGS) is a deterministic, shortest-path
approach to solving an adaptation of the dynamic pickup and delivery
problem with time windows and transshipments. CGS identifies the
network nodes best suited to execute tasks based on some reques-
tspecific objective, which in this article is minimising the time taken
from request arrival to data delivery. Constraints must be adhered to,
such as pickup and delivery prior to their respective deadlines. An
optional feature of CGS is the consideration of network resource con-
sumption during the task generation process, as a way to decrease the
risk of network congestion through contact over-subscription. Here, the
consumption of contact transfer capacity is considered, as a reasonable
first look at the impact of resource-awareness.

Note that Contact Graph Scheduling is not a method that seeks global
optimality. Relaxing the search for globally optimal solutions, by
handling requests as they arrive (rather than as a collection), offers
request-specific service-level guarantees such that infeasible requests
can be declined immediately, or negotiation can be made as to the
request performance. As such, CGS is not presented as a competitor to
the traditional linear programming approaches to satellite scheduling,
but instead offers an alternative method that lends itself well to appli-
cations needing low computational demand, rapid request feedback and
the potential for decentralized deployment on-board resourcecon-
strained platforms.

The CGS procedure is illustrated in Fig. 4 and defined in detail in the
following text and algorithm (Algorithm 1). The arrival of a request Q
initiates the process, which aims to find the path that travels via the
request target (Q.target) and reach the request destination (Q.dest) at the
earliest opportunity. These can be considered two separate paths, the
“acquisition path” from source (S) to target (T), completed during the
the pickup phase, and the “delivery path” between the target and desti-
nation (D), completed during the delivery phase. It is a necessary con-
dition for at least one pair of acquisition:delivery paths to be identified,
prior to the generation of a task. In other words, for a request to be

accepted, it must be possible to both pickup the associated data prior to
the acquisition deadline and deliver that data prior to its expiry. Contact
opportunities with the request target location (Cij ∈ C: j = Q.target) are
computed either a priori, if possible, or in response to request submis-
sion. For example, the contact opportunities associated with a request
for satellite image acquisition over a specific location on Earth, will
likely need computing in response to the request submission, using an
orbital propagation model.

4.1. Algorithm Overview

A pseudo-code implementation of the CGS process is provided in
Algorithm 1, making use of the notation already introduced in previous
sections and the Contact Graph implementation of Dijkstra’s algorithm
introduced in [18]. The CGS process begins by resetting all contacts in
the Contact Plan (line 1), which involves resetting Contact attributes
related to shortest path discovery that may have been set during a

Fig. 4. Flow-chart illustration of the Contact Graph Scheduling process

Algorithm 1
Contact Graph Scheduling

Data: source S, target T, destination D, contact plan CP, request Q
Result: pickup path R∗

pu delivery path Rdel

1 Clear(CP) // reset all contacts
2 EDT = ∞ // preset the earliest delivery time
3 R∗

pu = None,R∗
del = None // preset the selected paths

4 while True do // Iterate over the CGS main loop
/* find the shortest pickup path */
5 Rpu = DIJKSTRA(Ct,Q⋅pu

S,S ,T,CP,Q.pu,0)
6 if Rpu is None then // if no acquisition path found, exit
7 break
8 if Rpu. bdt ≥ EDT then // if pickup later than EDT, exit
9 break
10 A = Rpu ⋅ hops[− 1].frm ⋅ // identify the assignee
/* Suppress all contacts between the assignee and the target */
11 for C ∈ CP do
12 if C.frm = A & C.to = T then
13 C.suppr = TRUE
/* find the shortest delivery path from this pickup event */

14 Rdel = DIJKSTRA(CRpu⋅bdt,Rpu⋅bdt
T,A ,D,CP,Q.del,Qνol)

15 if Rdel is None then // if no valid delivery paths, skip
16 skip
17 if Rdel.bdt < EDT then
18 EDT = Rdel. bdt // update the earliest delivery time
19 R∗

pu = Rpu,R∗
del = Rdel // assign "selected" paths

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

7

previous execution, and initialising the earliest delivery time (EDT) (line
2), selected pickup route (R∗

pu) and delivery route (R∗
del) (line 3). Then,

the discovery process begins (line 4) with identification of the earliest
arriving pickup path (line 5). That is, the shortest path that concludes at
a contact with the target node (T), which can be considered the moment
at which the requested (payload) data would be acquired. It is assumed
that Dijkstra’s algorithm is used, but any shortest path algorithm would
suffice. If no valid pickup path exists, the process can be terminated
(lines 6-7). If a pickup path is identified, but its arrival at the Target is
later (or equal to) the current EDT (line 8), the process is also terminated
(line 9). If the arrival at the target is earlier than our current EDT, there’s
a chance we will find an improved complete solution, so the Assignee A
can be identified as the sending node of final hop in Rpu (line 10). This is
the node that makes contact with the Target and, therefore, acquires the
payload data. Lines 11-13 provide the procedure to remove any later
contacts between the Assignee and the target, from the Contact Plan,
since they will add no improvement over the pickup path already
discovered and potentially result in unnecessary computations during
future iterations. At this point, it is necessary to identify the best delivery
path (Rdel), considering a starting point for this search as the BDT of the
pickup path, since that is the earliest time at which the payload data is
received by the Assignee from the Target. Rdel can also be discovered
through execution of a shortest path algorithm (line 14), considering the
payload data size (Qvol) as the minimum route volume required to suc-
cessfully traverse this path. If no feasible delivery path is found from the
current pickup opportunity (line 15), the procedure moves on to the next
CGS iteration, which will investigate the next best pickup path. In the
event that a valid delivery path is found, the best arrival time at the
Destination should be checked against our current EDT (line 17) and, if
an improvement, update the EDT (line 18) and assign both this delivery
path (Rdel), and the associated pickup path (Rpu) to R∗

del and R∗
pu,

respectively.
The Dijkstra algorithm implemented at lines 5 and 14, is similar to

the Contact Graph Routing implementation as described in Algorithm 1
in Fraire et al. [18], with the first three arguments being the root contact
from which the search begins, the destination node that must be the
receiving node on the final contact, and the full Contact Plan. Two
additional arguments are included for CGS completeness, which are the
deadline by which a feasible route must be complete (Q.pu for pickup
and Q.del for delivery) and the volume of data to traverse the route (Q.
vol). In other words, this sub-routine returns the ordered sequence of
contacts capable of accommodating the task/payload traversal, offering
earliest arrival at the target/destination node, respectively.

The CGS algorithm provides recommendations for both the pickup
path (R∗

pu) and delivery path (R∗
del), returning null values in the case of an

infeasible request. If valid routes are returned, a task should be gener-
ated for distribution through the network. Failure to identify a valid
pickup or delivery path could be due to either unavailable resources or a
lack of feasible route to the Assignee or Destination prior to the
respective deadline.

The creation of a task, based on the outputs from the CGS algorithm,
can, if deemed necessary, be followed by modification of network re-
sources that would be consumed by the bundles traversing their delivery
paths. Doing so reduces the risks of contact over-subscription from later
requests (requiring re-routing) and the need to re-schedule tasks that fail
to be completed. If implemented, it should include the reduction of
contact bandwidth for each hop, Ci.vol = Ci.vol − R.size∀i ∈ R∗

del. hops,
but could also include the consumption of on-board storage and/or
energy available for data transfer. For the purposes of this work, storage
capacity and energy are considered to be infinite. Maintaining this log of
Contact capacity is of particular benefit when there is a central node
executing all scheduling operations, since it has full oversight of ideal-
istic traffic flows. In the distributed scheduling case, however, resource
consideration would be challenging to communicate through the
network due to intermittent connectivity generally preventing such real-

time information sharing, such that each node’s opinion on the network
resource state would be unique to them.

Whether or not the pickup and delivery paths are adhered to in
practice, is an implementation matter. Indeed, in the case where no
uncertainties exist and all contacts occur as expected, following the CGS-
defined paths would have benefits. Specifically, adhering to the sug-
gested paths will make good use of the traffic-flow knowledge held only
at the Scheduler node. On the other hand, local routing may send bun-
dles along paths that become over-subscribed. In order to exploit traffic-
flow knowledge from the Scheduler node, Moderate Source Routing
(MSR) [13] can be used for bundle delivery, such that bundles are
assigned a route that should be followed if possible to do so. In reality of
course, where uncertainty exists and contacts may not occur always as
expected, even use of MSR for bundle delivery cannot prevent occasional
failure to traverse preferred routes. If MSR is not used, or the preferred
route defined using MSR is no longer feasible, it is recommended that
CGR is used instead.

4.2. Algorithm Time Complexity

Contact Graph Scheduling consists of potentially multiple iterations
of pairs of shortest paths being computed, one for the pickup phase and
one for the delivery phase. Each of these computations can be achieved
through the application of Dikjstra’s algorithm, which has a worst-case
time complexity of O(|C|log|C|) in its Contact Graph implementation
[18]. The number of iterations is limited to, at most, the number of
unique nodes (|M |) in the network available for carrying out acquisition
operations, since a later acquisition from the same node will offer no
improvement on an earlier opportunity. Therefore, a worst case time
complexity, ignoring constant scale factors, is O(|M ||C|log|C|).

In reality, performance will likely be significantly better than this.
Algorithm exit conditions dictated by acquisition and delivery deadlines
can reduce the time horizon scope dramatically, and the use of pre-
computed contact-list hash tables can reduce the need to explore all
contacts within the Dijkstra implementation.

4.3. Assumptions and Limitations

A number of assumptions have been made in this implementation of
CGS on a delay-tolerant satellite network. First, the assumption that
buffer storage capacity is infinite is common in DTN route discovery,
since consideration of this attribute would have knock-on implications
on routes elsewhere in the network. While data transfer rates are
increasing rapidly due to advances in technologies such as optical (laser)
communication, it remains the case that contact transfer capacity is
typically smaller than data storage capacity. This assumption would of
course need to be addressed in some terrestrial applications, where data
storage is more likely to be the limiting factor, rather than volume of
transfer during transshipment events, as is the case for traditional lo-
gistics and vehicle delivery scenarios. Second, it is assumed that once
network resources are allocated for the pickup and delivery of data, that
resource cannot be re-assigned during later request processing. While
this may not be preferable when considering different levels of data
priority, it offers a clear baseline on which improvements can be made.
The assumption that task information cannot be continuously updated
on all nodes further supports this assumption, since reallocation of re-
sources should be communicated to the affected nodes, which may be
difficult depending on the specific Contact Plan. Again, in terrestrial
applications, it may be more reasonable to assume continuous, real-time
communication with vehicles, such that changes to resource allocations
is easily distributed.

5. Analysis

A discrete event simulation (DES) has been constructed to model the
operational aspects of a customer-scheduler-satellite-gateway network

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

8

and to evaluate Contact Graph Scheduling performance. This model
includes submission of requests, scheduling of tasks, distribution of task
information through the network and the pickup, relay and delivery of
data to their respective destinations.

5.1. Scheduling Schemes

Five approaches to scheduling incoming requests are compared, each
offering a higher level of sophistication than the last, at the expense of
additional computational demand. The details of each approach is pre-
sented in Table 1 with further discussion around their capabilities in the
following paragraph. Three of the schemes are built on top of CGS, with
the consideration of resources and definition of delivery paths being the
differentiating factors separating them.

The “Naive” approach is simple in that it creates a Task object for
every Request that is submitted, regardless of pickup/delivery feasibility
or resource availability. No assignee is defined on the task, such that any
node with this Task in a “pending” state will pickup the requested data if
they come into contact with the Task’s target node. This scheme will
result in relatively high network congestion due to multiple copies of
Task-specific bundles in circulation. The “First”approach identifies the
first node capable of completing the pickup operation and assigns the
task to that node. This is achieved through a single execution of Dijks-
tra’s algorithm on the Contact Graph, as per line 5 of Algorithm 1. No
consideration of the delivery or resource availability is included, such
that bundle delivery feasibility is not guaranteed. The positive impact of
this pick-up assignment is that no more than one instance of the
requested data will be generated for each task. The “CGS (PU)”
(“PU”standing for “Pick Up”) scheme makes use of the CGS procedure to
identify the acquisition opportunity that minimizes the time from
request submission to bundle delivery, but does not prescribe a specific
delivery path to be used, nor does it account for resource consumption
during the delivery phase. This maintains simplicity in the sense that the
Contact Plan is not required to be continuously updated based on
resource consumption, but risks assigning tasks to nodes that later result
in delivery failure due to congestion. The “CGS (CGR)” approach im-
plements all aspects of the Contact Graph Scheduling method, including
resource consumption, but does not force the use of the identified de-
livery path. This implements CGR for bundle routing. Finally, “CGS
(MSR)” implements the same scheduling approach as CGS (CGR), but
defines a delivery route for each bundle that must be adhered to if
physically possible. Remote nodes then use Moderate Source Routing
(MSR) during the delivery phase to maximize the probability of routing
bundles around network bottlenecks. If, for whatever reason, a bundle is
unable to follow its pre-defined route, CGR will be used for routing.

5.2. Scenario Definition

A realistic space network scenario is used during the analysis, with a
topology equivalent to that introduced in [20]. This includes a 16-satel-
lite, 4-plane Walker Delta constellation [41], a set of six ground-based
gateways for task distribution/data delivery, and 25 target nodes

distributed across the globe. The satellites are in circular, 500km alti-
tude orbits, at an inclination of 50◦, with an inter-satellite link (ISL)
range of 1000km. Inter-satellite separation distance is the only factor
defining contact opportunities, i.e. omnidirectional antennae are
assumed for both transmission and reception. Pickup from Targets is
considered possible when the satellite is greater than 30◦ above the
Target node’s horizon, and data delivery is possible at elevations of
greater than 10◦ above a Gateway’s horizon. Data products are consid-
ered “delivered” if transferred to any one of the six gateway nodes.

The model begins with propagation of the satellites, considering
perturbations from J2 Earth oblateness, using the Gaussian form of
Lagrange’s planetary equations of motion [42], with fixed time steps of
10 seconds. A contact schedule is then derived by evaluating relative
positions between satellite and terrestrial nodes, storing the start and
end times of possible pair-wise connections. Owing to the nature of this
constellation configuration (i.e. a low Earth orbit Walker Delta
constellation), duration of a typical space-ground contact is on the order
of 3-8 minutes and for a space-space contact is approximately 4 minutes.
A discrete event simulation (DES) is then executed, during which re-
quests arrive to a Scheduler node, are converted into Tasks (if deemed
feasible) and distributed through the network. Data pick-up, inter--
satellite relay, and delivery is carried out according to Task instructions
and/or local routing decisions made on board. For example, if it is
determined by a satellite that one or more particular bundles should be
transferred to a neighboring node during a particular contact, transfer of
those bundles will be realised within the simulation at the earliest
convenience during that specific contact event.

Request arrival follows an exponential distribution, with a expected
inter-request arrival time3 (Trequest) of

Trequest =
tsimb.size

λCd
, (1)

where tsim is total simulation time, b.size is the size of the bundle/s that
are generated for the data pick-up in response to each request, Cd is the
total data download capacity from all satellites over the simulation
period, and λ is the “request submission load” (RSL). Note that this RSL
value represents the intended ratio between data upload and potential
download over some time horizon. However, since it is not guaranteed
that all requests are deemed serviceable, the realized traffic load
(congestion) may be lower than this target value. For example, if re-
quests included an unreasonably early pick-up and/or delivery deadline,
such that acquisition and/or delivery was deemed infeasible in many
cases, those requests would be rejected and that traffic wouldn’t flow
through the network. This presents an interesting observation that is not
typically seen in data routing analyses, such that requests can be rejected
upon arrival (if deemed infeasible), or fail having previously been pro-
cessed into a Task. This latter state could be seen as a proxy for customer
dissatisfaction regarding some service level agreement, since their
accepted request was never converted to a successful data product
delivery.

The discrete-event simulation runs from an epoch of 12:00pm (UTC)
on 1st January, 2023. A warm-up period of 3 hours is considered, during
which traffic flow is allowed to build up. This warm-up period mitigates
against the impact of including data traffic flow results while the
network is yet to reach a steady-state, i.e. while congestion is artificially
low. Data flow, corresponding to all requests submitted during the 10
hour period immediately following this warm-up period, is monitored
until either delivered or dropped from the network. These request-data
pairs are used in the calculation of network performance shown in the
results sections below. Request submission, and the associated bundle
traffic flow is allowed to continue beyond this 10 hour monitoring

Table 1
Scheduling schemes used for comparison in the analysis. Note that “Valid
Pickup?” and “Valid Delivery?” columns indicate whether or not a valid pickup
or delivery opportunity must exist, for the request to be accepted. For example,
in the Naive case, neither valid pickup nor delivery need be identified, in order to
accept a request

Scheme
Name

Valid
Pickup?

Valid
Delivery?

Resource
aware?

MSR
used?

Naive No No No No
First Yes No No No
CGS (PU) Yes Yes No No
CGS (CGR) Yes Yes Yes No
CGS (MSR) Yes Yes Yes Yes

3 Expected inter-request arrival time is the mean average time between
request arrivals, as measured over the long-term

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

9

period, despite their delivery metrics not contributing to the results. This
is done to ensure routing behaviour is not adversely affected from an
unrealistic reduction in network congestion. Monitoring, on any
remaining tasks and bundles that relate to requests received during the
active period, is continued during the cool-down period. This cool-down
period ends when all traffic related to requests that arrived during the
active period, has been either delivered or dropped. This process is
illustrated in Fig. 5.

The code used to generate the results presented below can be ob-
tained at Lowe [27], and the code repository for this work can be found
at Lowe [26]. A summary of all necessary network parameters are
provided in Table 2.

5.3. Performance Metrics

To illustrate the performance of the different scheduling schemes
modelled, a number of performance metrics are presented, including:

a) Total Latency; the mean average time from request submission to
data delivery, for all delivered data.

b) Pickup Latency; the mean average time from request submission to
data pick-up, for all delivered data.

c) Delivery Latency; the mean average time from data pickup to data
delivery, for all delivered data.

d) Request Success Rate; the ratio of the number of requests that had
at least one data instance (could be multiple, in the Naive case)
successfully delivered to the total number of requests submitted.

e) Accepted request success Rate; the ratio of the number of tasks (i.e.
accepted requests) that had at least one data instance successfully
delivered to the total number of tasks generated.

f) Hop Count; the average number of hops (node transfers) taken by
bundles that were successfully delivered.

g) Requests Accepted; the total number of requests that were deemed
feasible and, thus, converted into tasks.

h) Requests Failed; the total number of requests that were deemed
feasible, but never resulted in a delivered data instance. I.e. they
“failed” after being accepted

i) Requests Delivered; the total number of requests that resulted in at
least one data instance being delivered (i.e. the number of “fulfilled”
requests)

Owing to the inter-connected nature of how performance can be
measured in scheduling and routing applications, it is important to
consider information together and not draw significant conclusions from
a small sub-set of results. For example, the same low latency perfor-
mance can be achieved through either efficient scheduling/routing or by
dropping a high proportion of bundles. The latter is clearly less attrac-
tive when considering customer satisfaction.

5.4. Results and Discussion

For each of the scheduling schemes presented in Section 5.1, a

variety of request submission loads (RSLs) are evaluated. Recall that a
lower request submission load corresponds to a lower data traffic load in
the network (assuming all requests are accepted), and thus lower traffic
congestion. An RSL of greater than 1 is considered reasonable (and
therefore evaluated), if for example the service was popular to the point
that requests arriving from 3rd parties exceeded the capability of the
network. In this case, it is the responsibility of CGS to identify this po-
tential congestion issue, and reject requests that will knowingly result in
over-booking and failure of delivery. For each specific RSL value, an
identical request arrival sequence is used across each of the routing
schemes, to ensure equivalent comparison. In the case of any of the three
CGS schemes, infeasible requests should be rejected at source, rather
than converted into Tasks that are inevitably dropped later. In the Naive
approach, since it is possible for multiple instances of the data to be
generated for a single request, traffic flow will likely exceed RSL,
resulting in high levels of network congestion.

5.4.1. Scheduling under Nominal Conditions
Results for each of the performance metrics, measured against

request submission load, for each of the scheduling schemes, are pre-
sented in Fig. 6. Results are generated from a single simulation, based on
warm-up, monitoring and cool-down timings as shown in Fig. 5.

In terms of latency (Fig. 6a, b, c), it can be seen that the more so-
phisticated methods (green and yellow) result in longer latency overall,
with the CGS (MSR) having the greatest average time from request
submission to payload delivery (Fig. 6a). While, in the first instance, this
may seem like an unsatisfactory result, when combined with the fact
that a greater number of requests are delivered (Fig. 6i), the benefits
become clearer. Indeed, the requests that are accepted (i.e. ones for
which a task is issued) and not delivered, fail because at least one of their
associated bundles either have or would have (had it not been dropped
prior) remained in transit beyond its delivery deadline. These failed
requests (Fig. 6h) do not contribute to overall latency and their omission
is significant due to the typically long latency they would have exhibited
had they remained in transit. That is, in the schemes where the, other-
wise failed, requests are successfully delivered, they are a major
contributor to that scheme’s total latency results. This effect is amplified

Fig. 5. Outline of the simulation phases, including a warm-up phase to introduce traffic into the network, an active phase, during which monitored requests arrive
and a cool-down period during which any remaining traffic activity associated to requests that arrived during the active period, are monitored.

Table 2
Space network simulation attributes

Attribute Value Units Description

Simulation
Warm-up 3 hours Period for traffic flow to build
Duration 10 hours Active monitoring period
Start date 01/01/23 - Start date of the simulation
Start time 12:00 - Start time of the simulation
Traffic
Bsize 100 MB Size of a single bundle
TTTL 3 hours Maximum Task lifetime
BTTL 2 hours Maximum data (bundle) lifetime
Communication
RISL 100 MB/s Inter-satellite data transfer rate
RS2G 100 MB/s Satellite-to-Gateway data transfer rate
DISL 1,000 km Max inter-satellite link range

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

10

in the case of the Naive approach, since the number of aging bundles
increases due to network congestion blocking their delivery. One
interesting result is the lower delivery latency (Fig. 6c) in the CGS (CGR)
approach, at higher RSLs in comparison to the CGS (MSR) approach.
This can be attributed to the fact that beyond an RSL of 1, where it would
be impossible to deliver all requests, an increase in failed requests
beyond that of its MSR counter-part begins to be seen. MSR, on the other
hand, is demonstrating its value, by exploiting the knowledge generated
at the Scheduling node and deliberately routing bundles along higher
latency paths rather than taking shortcuts that sometimes end in failure
due to over-crowding. This finding is supported by the Hop Count plot
(Fig. 6f), in which MSR generally routes bundles on longer journeys in
terms of hop-count, as a way to bypass these network bottlenecks.

A benefit of resource awareness and consideration is evident in the
plots for Requests Accepted (Fig. 6g) and Requests Failed (Fig. 6h),
which can be considered representative of the customer-scheduler
interaction. The Naive approach, by definition, accepts all submitted
requests, and therefore results in a significant proportion of customer
dissatisfaction, with a high failure rate (Fig. 6h). The approaches that
check for pick-up feasibility, but don’t consider network resource con-
sumption (blue and red), accept fewer requests, but once congestion
increases beyond what is technically feasible from a data transfer
perspective, they fail to spot this and continue to accept requests that
would later be rejected by the network. Both resource-aware approaches
(green and yellow) begin rejecting an increasing number of requests at
this point (RSL ≈ 1.2), avoiding later disappointment (and the unnec-
essary traffic congestion these bundles would bring). In particular, the
use of MSR in the delivery phase works well to minimize request failure,
resulting in the highest volume of delivered payloads (Fig. 6i). The
Request Success Rate plot (Fig. 6d) is perhaps a more intuitive measure
of overall “fulfillment” as it shows the ratio between delivered and
submitted requests, or in other words a measure of submitted request
success rate. The Accepted Request Success Rate (Fig. 6e) takes this a
step further, showing the ratio between the number of delivered requests
and accepted requests (or tasks created), or in other words a measure of
the accepted request success rate.

The similarity between the First and CGS (PU) schemes further il-
lustrates the importance of resource consideration, at least in this
particular scenario. Despite the CGS (PU) scheme identifying a task
assignee according to minimum total latency (including a review of the
data delivery path), the similarity in performance to an equivalent
scheme that does not make this consideration, indicates that the first
acquisition opportunity typically offers the lowest latency route in an
infinite resource scenario. However, as can be seen from the divergence
in pickup latency curves (Fig. 6b) on the CGS (CGR) and CGS (MSR)
schemes, from RSL of ~0.5, the first acquisition opportunity becomes
less likely to offer minimum total latency, due to pre-existing traffic
flows.

5.4.2. Scheduling Under Contact Uncertainty
Uncertainty, in this work, is modeled as a probability of failed con-

tact opportunity, specifically in the context of task and data transfer
between satellites and/or gateway nodes. In the satellite context, this
can be considered analogous to a lack of communication, which may be
due to failure from an under performing sub-system, a lack of on board
energy, conflicting attitude requirements or high computational load
being demanded for other tasks.

Results shown in Fig. 7 illustrate results from the same operational
scenario as in the previous section, but with a contact reliability of 70%.
A number of differences are evident, resulting from the decrease in
contact reliability. The dominant effect is that of an increase in request
failure (Fig. 7h) across all scheduling schemes. In particular, while the
CGS (CGR) and CGS (MSR) schemes demonstrated request failure rates
of 9.6% and 2.7% under nominal conditions, respectively, this rises to
35.2% and 40.6% when contacts were unreliable. The in-creased level of
failure rate in the CGR (MSR) case can be attributed to the generally
longer routes that are defined in advance, which avoid network bottle-
necks, but when failed present a greater risk of bundle expiration. There
is also a noticeable reduction in Request Success Rate and Accepted
Request Success Rate (Fig. 7d and e) across all schemes, even at low
levels of congestion, suggesting that it would be prudent to apply a
certain service-level guarantee relating to request fulfillment under

Fig. 6. Results of a 10 hour simulation for a 16-satellite, 25-target, 6-ground gateway scenario. Each performance metric (y-axes) is plotted against incoming request
submission load. Note, in figure g, the First scheme results (blue) lie directly under the CGS (PU) results (red).

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

11

uncertain conditions, even for those requests that have been nominally
accepted.

Results shown in Fig. 8 illustrate the behaviour of each performance
metric, for the CGR (MSR) scheduling scheme, at different link reli-
ability ranging from 0.7 (i.e. a 70% probability of a contact being

realized) to 1.0 (i.e. idealistic conditions). All other simulation attributes
remain as per the results in Section 5.4.1.

At low levels of request submission load, latency is generally higher
(Fig. 8a), both for acquisition (Fig. 8b) due to some tasks failing to reach
their assignee before time of acquisition, and delivery (Fig. 8c) due to

Fig. 7. Results of a 10 hour simulation for a 16-satellite, 25-target, 6-ground gateway scenario. Each performance metric (y-axes) is plotted against incoming request
submission load. Contact uncertainty (i.e. the probability that a contact will be available for bundle transfer use) is 0.7. Note, in figure g, the First scheme results
(blue) lie directly under the CGS (PU) results (red).

Fig. 8. Results for the full CGS (MSR) implementation on a 10 hour simulation for a 16-satellite, 25-target, 6-ground gateway scenario, with varying levels of contact
uncertainty. Reliability represents the probability a data transfer contact is executed, such that lower values represent a higher number of failed contact attempts.

C.J. Lowe et al.

Ad Hoc Networks 151 (2023) 103289

12

bundles failing to follow their intended path to the destination. At high
congestion, the number of failed requests increases with decreasing
reliability, which is to be expected, with a reduction in delivered re-
quests (Fig. 8i) by ~35% from the nominal level, when reliability is at
0.7. It is this increase in pickup and delivery failure that results in the
perception that reliability has less impact on latency at higher levels of
congestion. It is the tasks and bundles that would have contributed most
to a longer latency, that fail, such that their impact is not seen in the
results. This relationship between latency and delivery ratio can lead to
latency-focused missions wishing to discard large volumes of data, thus
giving the perception of faster delivery times, so attention to the vol-
umes delivered is critical.

If task and bundle lifetimes were extended, it is expected that the
number of failed requests would decrease, but a further increase in la-
tency would be realized as traffic congestion rises, slowing everything
down. Interestingly, the difference in both the Request- and Pickup-
ratios (Fig. 8d and e), from high to low reliability, remains relatively
consistent across all congestion levels, suggesting that the rate of failure
increases in a linear fashion as the number of accepted requests and
issued tasks increases. Finally, Hop-count (Fig. 8f) undergoes an in-
flection at a RSL of ~0.6. Here, as congestion rises and reliability de-
clines, an increasing number of bundles fail to traverse their preferred
route and are either retained on-board until the next available download
opportunity, or get dropped due to a lack of feasible downstream paths.
Once dropped from the network, their hop-count is ignored from the
statistic, resulting in a lower trend.

6. Conclusions

Contact Graph Scheduling (CGS) is a computationally lightweight
option for satellite task scheduling, which could be used as the core
mechanism for scheduling in satellite networks. It addresses a number of
the shortcomings present with existing scheduling methods, including
immediate processing of request arrivals, the consideration of how
tasking information reaches the assigned satellite nodes, and a way to
combine the pickup and delivery instructions into a single methodology.
Many of these benefit stem from the combined scheduling-routing
approach, such that consideration of paths taken by both tasking in-
formation and associated data is a core component of the algorithm.

CGS is capable of generating task allocations for delay-tolerant net-
works (DTN) with deterministic contact plans. The CGS concept pro-
vides a framework for converting requests for the pickup and delivery of
goods, exploiting a Contact Graph representation of a time-varying
graph, and traditional shortest-path algorithms. While the core objec-
tive of CGS is to minimize the time between request arrival to data
product delivery, it intrinsically provides higher levels of request
fulfillment than other approaches. In particular, resource awareness and
the consideration of previously allocated tasks has a significant impact
on network performance, specifically in the number of failed requests.

The impact of contact reliability is most clearly seen in the system’s
ability to fulfill requests through to data product delivery. This is due to
the fact that contact uncertainty impacts both the timely pickup of data
and the transfer of that data along its preferred route to destination,
resulting in an increase to the number of data bundles that are dropped
from the network due to expiry.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared details of the code/data within the manuscript

Acknowledgements

Funding: This work was supported by the Air Force Office of Scien-
tific Research (AFOSR), award No. FA8655-22-1-7010, “Matryoshka
Orbital Networks: empowering a shift from individual spacecraft to
large networks of cooperative, self-organising agents”.

References

[1] T. Abdelkader, K. Naik, N. Goel, V. Srivastava, A performance comparison of delay-
tolerant network routing protocols, IEEE Netw. 30 (2016) 46–53, https://doi.org/
10.1109/MNET.2016.7437024.

[2] M.A.N. Andini, Y. Satria, H. Burhan, Dynamic pickup and delivery problem with
transfer in ridesharing to reduce congestion, in: Journal of Physics: Conference
Series 1218, IOP Publishing, 2019, 012010, https://doi.org/10.1088/1742-6596/
1218/1/012010.

[3] S. Augenstein, A. Estanislao, E. Guere, S. Blaes, Optimal scheduling of a
constellation of earth-imaging satellites, for maximal data throughput and efficient
human management, in: ICAPS 2016 (International Conference on Automated
Planning Scheduling), London, UK, 2016, https://doi.org/10.1609/icaps.
v26i1.13784.

[4] R. Bellman, On a routing problem, Q. Appl. Math. 16 (1958) 87–90.
[5] E. Bensana, G. Verfaillie, J.C. Agn`ese, N. Bataille, D. Blumstein, Exact and inexact

methods for the daily management of an earth observation satellite. Space Mission
Operations and Ground Data Systems ’SpaceOps ’96, European Space Agency,
1996, p. 507.

[6] G. Berbeglia, J.F. Cordeau, G. Laporte, Dynamic pickup and delivery problems, Eur.
J. Oper. Res. 202 (2010) 8–15, https://doi.org/10.1016/j.ejor.2009.04.024.

[7] N. Bezirgiannidis, C. Caini, V. Tsaoussidis, Analysis of contact graph routing
enhancements for DTN space communications: analysis of CGR enhancements for
DTN Space communications, Int. J. Satell. Commun. Network. 34 (2016) 695–709,
https://doi.org/10.1002/sat.1138.

[8] E.W. Biefeld, in: PLAN-IT: Knowledge-Based Mission Sequencing, Cambridge, MA,
1987, p. 126, https://doi.org/10.1117/12.964866.

[9] E.J. Birrane, C. Caini, G.M. De Cola, F. Marchetti, L. Mazzuca, L. Persampieri,
Opportunities and limits of moderate source routing in delay-/disruption-tolerant
networking space networks, Int. J. Satell. Commun. Network. 40 (2022) 428–444,
https://doi.org/10.1002/sat.1421.

[10] J. Boerkoel, J. Mason, D. Wang, S. Chien, A. Maillard, An efficient approach for
scheduling imaging tasks across a fleet of satellites, in: International Workshop on
Planning Scheduling For Space (IWPSS), 2021.

[11] P. Bouros, D. Sacharidis, T. Dalamagas, T. Sellis, Dynamic pickup and delivery with
transfers. Advances in Spatial and Temporal Databases, Springer, Berlin,
Heidelberg, 2011, pp. 112–129, https://doi.org/10.1007/978-3-642-22922-0-8.

[12] Burleigh, S., Fall, K., Birrane, E.J., 2022. Bundle protocol version 7. RFC 9171.
URL: https://www.rfc-editor.org/info/rfc9171, doi:10.17487/RFC9171.

[13] C. Caini, G. De Cola, F. Marchetti, L. Mazzuca, Moderate source routing for DTN
space networks, in: 2020 10th Advanced Satellite Multimedia Systems Conference
and the 16th Signal Processing for Space Communications Workshop (ASMS/
SPSC), Graz, Austria, IEEE, 2020, pp. 1–7, https://doi.org/10.1109/ASMS/
SPSC48805.2020.9268926.

[14] C. Caini, G.M. De Cola, L. Persampieri, Schedule-aware bundle routing: analysis
and enhancements, Int. J. Satell. Commun. Network. 39 (2021) 237–249, https://
doi.org/10.1002/sat.1384.

[15] J.F. Cordeau, G. Laporte, The dial-a-ride problem: models and algorithms, Ann.
Oper. Res. 153 (2007) 29–46, https://doi.org/10.1007/s10479-007-0170-8.

[16] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1
(1959) 269–271, https://doi.org/10.1007/BF01386390.

[17] D. Eddy, M.J. Kochenderfer, A maximum independent set method for scheduling
earth-observing satellite constellations, J. Spacecraft Rockets 58 (2021)
1416–1429, https://doi.org/10.2514/1.A34931.

[18] J.A. Fraire, O. De Jonck`ere, S.C. Burleigh, Routing in the space internet: a contact
graph routing tutorial, J. Netw. Comput. Applic. 174 (2021), 102884, https://doi.
org/10.1016/j.jnca.2020.102884.

[19] J.A. Fraire, E.L. Gasparini, Centralized and Decentralized routing solutions for
present and future space information networks, IEEE Netw 35 (2021) 110–117,
https://doi.org/10.1109/MNET.011.2100102.

[20] J.A. Fraire, P. Madoery, S. Burleigh, M. Feldmann, J. Finochietto, A. Charif,
N. Zergainoh, R. Velazco, Assessing contact graph routing performance and
reliability in distributed satellite constellations, J. Comput. Netw. Commun. 2017
(2017), https://doi.org/10.1155/2017/2830542 publisher: Hindawi.

[21] J.A. Fraire, P.G. Madoery, J.M. Finochietto, Traffic-aware contact plan design for
disruption-tolerant space sensor networks, Ad. Hoc. Netw. 47 (2016) 41–52,
https://doi.org/10.1016/j.adhoc.2016.04.007.

[22] N.G. Hall, M.J. Magazine, Maximizing the value of a space mission, Eur. J. Oper.
Res. 78 (1994) 224–241, https://doi.org/10.1016/0377-2217(94)90385-9.

[23] F. Karami, W. Vancroonenburg, G. Vanden Berghe, A periodic optimization
approach to dynamic pickup and delivery problems with time windows, J. Sched.
23 (2020) 711–731, https://doi.org/10.1007/s10951-020-00650-x.

[24] J. Kim, J. Ahn, H.L. Choi, D.H. Cho, Task Scheduling of agile satellites with
transition time and stereoscopic imaging constraints, J. Aerospace Inf. Syst. 17
(2020) 285–293, https://doi.org/10.2514/1.I010775.

C.J. Lowe et al.

https://doi.org/10.1109/MNET.2016.7437024
https://doi.org/10.1109/MNET.2016.7437024
https://doi.org/10.1088/1742-6596/1218/1/012010
https://doi.org/10.1088/1742-6596/1218/1/012010
https://doi.org/10.1609/icaps.v26i1.13784
https://doi.org/10.1609/icaps.v26i1.13784
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0004
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0005
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0005
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0005
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0005
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1002/sat.1138
https://doi.org/10.1117/12.964866
https://doi.org/10.1002/sat.1421
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0010
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0010
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0010
https://doi.org/10.1007/978-3-642-22922-0-8
https://www.rfc-editor.org/info/rfc9171
https://doi.org/10.1109/ASMS/SPSC48805.2020.9268926
https://doi.org/10.1109/ASMS/SPSC48805.2020.9268926
https://doi.org/10.1002/sat.1384
https://doi.org/10.1002/sat.1384
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/BF01386390
https://doi.org/10.2514/1.A34931
https://doi.org/10.1016/j.jnca.2020.102884
https://doi.org/10.1016/j.jnca.2020.102884
https://doi.org/10.1109/MNET.011.2100102
https://doi.org/10.1155/2017/2830542
https://doi.org/10.1016/j.adhoc.2016.04.007
https://doi.org/10.1016/0377-2217(94)90385-9
https://doi.org/10.1007/s10951-020-00650-x
https://doi.org/10.2514/1.I010775

Ad Hoc Networks 151 (2023) 103289

13

[25] H. Li, T. Zhang, Y. Zhang, K. Wang, J. Li, A maximum flow algorithm based on
storage time aggregated graph for delay-tolerant networks, Ad. Hoc. Netw. 59
(2017) 63–70, https://doi.org/10.1016/j.adhoc.2017.01.006.

[26] Lowe, C., 2023. Contact graph scheduling Github code repository. https://github.
com/chrisLoweDev/cgs.

[27] Lowe, C., 2023. Contact graph scheduling Python implementation. On zenodo.com.
doi:10.5281/zenodo.7737582.

[28] Z. Lyu, A.J. Yu, The pickup and delivery problem with transshipments: critical
review of two existing models and a new formulation, Eur. J. Oper. Res. 305 (2023)
260–270, https://doi.org/10.1016/j.ejor.2022.05.053.

[29] P.G. Madoery, J.A. Fraire, J.M. Finochietto, Congestion management techniques
for disruption-tolerant satellite networks, Int. J. Satellite Commun. Network. 36
(2018) 165–178, https://doi.org/10.1002/sat.1210.

[30] S. Mitrovíc-Miníc, G. Laporte, The pickup and delivery problem with time windows
and transshipment, INFOR: Inf. Syst. Oper. Res. 44 (2006) 217–227, https://doi.
org/10.1080/03155986.2006.11732749.

[31] S. Nag, A.S. Li, J.H. Merrick, Scheduling algorithms for rapid imaging using agile
Cubesat constellations, Adv. Space Res. 61 (2018) 891–913, https://doi.org/
10.1016/j.asr.2017.11.010.

[32] Nag, S., Li, A.S., Ravindra, V., Net, M.S., Cheung, K.M., Lammers, R., Bledsoe, B.,
2020. Autonomous scheduling of agile spacecraft constellations with delay tolerant
networking for reactive imaging doi:10.48550/ARXIV.2010.09940.

[33] H.N. Psaraftis, A dynamic programming solution to the single vehicle many-to-
many immediate request dial-a-ride problem, Transport. Sci. 14 (1980) 130–154,
https://doi.org/10.1287/trsc.14.2.130, publisher: INFORMS.

[34] A. Rais, F. Alvelos, M.S. Carvalho, New mixed integer-programming model for the
pickup-and-delivery problem with transshipment, Eur. J. Oper. Res. 235 (2014)
530–539, https://doi.org/10.1016/j.ejor.2013.10.038.

[35] F.D. Raverta, J.A. Fraire, P.G. Madoery, R.A. Demasi, J.M. Finochi-etto, P.
R. D’Argenio, Routing in delay-tolerant networks under uncertain contact plans,
Ad. Hoc. Netw. 123 (2021), 102663, https://doi.org/10.1016/j.
adhoc.2021.102663.

[36] C.A. Rigo, L.O. Seman, E. Camponogara, E. Morsch Filho, E.A. Bezerra, P. Munari,
A branch-and-price algorithm for nanosatellite task scheduling to improve mission
quality-of-service, Eur. J. Oper. Res. 303 (2022) 168–183, https://doi.org/
10.1016/j.ejor.2022.02.040.

[37] M.W.P. Savelsbergh, M. Sol, The general pickup and delivery problem, Transport.
Sci. 29 (1995) 17–29, https://doi.org/10.1287/trsc.29.1.17.

[38] A.P. Silva, K. Obraczka, S. Burleigh, J.M. Nogueira, C.M. Hirata, A congestion
control framework for delay and disruption tolerant networks, Ad. Hoc. Netw. 91
(2019), 101880, https://doi.org/10.1016/j.adhoc.2019.101880.

[39] L. Torgerson, S.C. Burleigh, H. Weiss, A.J. Hooke, K. Fall, D.V.G. Cerf, K. Scott, R.
C. Durst, Delay tolerant networking architecture, RFC 4838 (2007), https://doi.
org/10.17487/RFC4838. URL, https://www.rfc-editor.org/info/rfc4838.

[40] A. Verma, Savita, S. Kumar, Routing protocols in delay tolerant networks:
comparative and empirical analysis, Wirel. Personal Commun. 118 (2021)
551–574, https://doi.org/10.1007/s11277-020-08032-4.

[41] J.G. Walker, Some circular orbit patterns providing continuous whole earth
coverage, Phys. Environ. Sci. (1970).

[42] M.J.H. Walker, B. Ireland, J. Owens, A set of modified equinoctial orbit elements,
Celest. Mech. 36 (1985) 409–419, https://doi.org/10.1007/BF01227493.

[43] J. Wang, G. Song, Z. Liang, E. Demeulemeester, X. Hu, J. Liu, Unrelated parallel
machine scheduling with multiple time windows: an application to earth
observation satellite scheduling, Comput. Oper. Res. 149 (2023), 106010, https://
doi.org/10.1016/j.cor.2022.106010.

[44] D. Wolfinger, J.J. Salazar-Gonźalez, The pickup and delivery problem with split
loads and transshipments: a branch-and-cut solution approach, Eur. J. Oper. Res.
289 (2021) 470–484, https://doi.org/10.1016/j.ejor.2020.07.032.

Dr Christopher Lowe - Christopher is a Research Fellow in the Applied Space Technology
Laboratory (ApSTL) within the Centre for Signal and Image processing (CeSIP). His
research is focused on the design and exploitation of distributed space networks, such as
constellations and federated satellite systems. Particular areas of interest are novel ways to
operate satellite networks that feature intermittent connectivity, and routing of data
through delay- and disruption-tolerant networks.

Dr Ruaridh Clark - Ruaridh is an engineer and network researcher who investigates in-
fluence and division in dynamical systems. His work often exists at the boundary between
disciplines, and has led to publications on Alzheimer’s disease, bird flocks, disease spread,
image processing, robotic and satellite systems. This diverse portfolio informs his study of
networks and offers opportunities to transfer innovation between domains.

Dr Ciara McGrath - Ciara McGrath is a Young Professional Member of AIAA and a Lecturer
in Aerospace Systems at the University of Manchester, United Kingdom, with expertise in
Astrodynamics and Space Mission Design. She is the Institution of Engineering and
Technology’s (IET) Young Woman Engineer of the Year 2021, and has appeared on TV,
radio, and podcasts, and given a TEDx talk to promote engineering and the space industry
to a wide audience. McGrath holds a Master’s and Ph.D. in Aero-Mechanical Engineering
from the University of Strathclyde, as well as a Postgraduate Certificate in Academic
Practice.

Prof. Malcolm Macdonald - Malcolm Macdonald FRAeS FRSE FRSA is a Scottish space
technology engineer, academic, and director. He is a Professor and the Chair of Applied
Space Technology at the University of Strathclyde, and a visiting professor at University
College Dublin. He was Director of the Scottish Centre of Excellence in Satellite Applica-
tions, SoXSA, from 2014 - 2020, and a non-executive member of the UK Space Agency
Steering Board from 2017 - 2020. He is an acknowledged expert in space research, and in
2021 was referred to in the media as “Scotland’s leading space expert”.

C.J. Lowe et al.

https://doi.org/10.1016/j.adhoc.2017.01.006
https://github.com/chrisLoweDev/cgs
https://github.com/chrisLoweDev/cgs
https://doi.org/10.1016/j.ejor.2022.05.053
https://doi.org/10.1002/sat.1210
https://doi.org/10.1080/03155986.2006.11732749
https://doi.org/10.1080/03155986.2006.11732749
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.1287/trsc.14.2.130
https://doi.org/10.1016/j.ejor.2013.10.038
https://doi.org/10.1016/j.adhoc.2021.102663
https://doi.org/10.1016/j.adhoc.2021.102663
https://doi.org/10.1016/j.ejor.2022.02.040
https://doi.org/10.1016/j.ejor.2022.02.040
https://doi.org/10.1287/trsc.29.1.17
https://doi.org/10.1016/j.adhoc.2019.101880
https://doi.org/10.17487/RFC4838
https://doi.org/10.17487/RFC4838
https://www.rfc-editor.org/info/rfc4838
https://doi.org/10.1007/s11277-020-08032-4
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0041
http://refhub.elsevier.com/S1570-8705(23)00209-3/sbref0041
https://doi.org/10.1007/BF01227493
https://doi.org/10.1016/j.cor.2022.106010
https://doi.org/10.1016/j.cor.2022.106010
https://doi.org/10.1016/j.ejor.2020.07.032

	A delay-tolerant network approach to satellite pickup and delivery scheduling
	1 Introduction
	1.1 Task Scheduling in Satellite Networks
	1.2 The Pickup and Delivery Problem
	1.3 Delay-Tolerant Network Routing
	1.4 Article Contribution

	2 Problem Definition
	3 Network Model
	3.1 Contacts
	3.2 Contact Graph
	3.3 Routes
	3.4 Requests
	3.5 Tasks
	3.6 Bundles

	4 Contact Graph Scheduling
	4.1 Algorithm Overview
	4.2 Algorithm Time Complexity
	4.3 Assumptions and Limitations

	5 Analysis
	5.1 Scheduling Schemes
	5.2 Scenario Definition
	5.3 Performance Metrics
	5.4 Results and Discussion
	5.4.1 Scheduling under Nominal Conditions
	5.4.2 Scheduling Under Contact Uncertainty

	6 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

