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A directed graph is semi-transitive if and only if it is acyclic and for any directed path 
u1 → u2 → ·· · → ut , t ≥ 2, either there is no edge from u1 to ut or all edges ui → u j

exist for 1 ≤ i < j ≤ t. An undirected graph is semi-transitive if it admits a semi-transitive 
orientation. Recognizing semi-transitive orientability of a graph is an NP-complete problem.
A split graph is a graph in which the vertices can be partitioned into a clique and an 
independent set. Semi-transitive orientability of split graphs was recently studied in a 
series of papers in the literature. The main result in this paper is proving that recognition 
of semi-transitive orientability of split graphs can be done in a polynomial time.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

A directed graph is semi-transitive if and only if it is 
acyclic and for any directed path u1 → u2 → ·· · → ut , t ≥
2, either there is no edge from u1 to ut or all edges ui →
u j exist for 1 ≤ i < j ≤ t . An undirected graph is semi-
transitive if it all its edges can be directed in such a way 
that the obtained orientation (directed graph) would be 
semi-transitive. The notion of a semi-transitive orientation 
was introduced in [7] to characterize word-representable 
graphs that were introduced in [10]. These graphs gener-
alize several important and well-studied classes of graphs 
such as 3-colorable graphs, circle graphs, subcubic graphs 
and comparability graphs; see a survey [11] or a book [14]
for more details.

A graph G = (V , E) is called a split graph if its ver-
tex set V can be partitioned into two parts I ∪ C such 
that C induces a clique, and I induces an independent set 
[5]. We assume that a clique in a split graph is inclusion-
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wise maximal, i.e. none of the vertices from I is adjacent 
to all vertices of C . Throughout the paper, given some 
split graph, we always assume C to be the clique and I
to be the independent set. The study of split graphs at-
tracted much attention in the literature (e.g. see [3] and 
references therein). Some split graphs are semi-transitive, 
others are not. Semi-transitive orientability (equivalently, 
word-representability) of split graphs was recently studied 
in the papers [2,8,9,13]. Interestingly, split graphs were in-
strumental in [2] to solve a 10 year old open problem in 
the theory of word-representable graphs asking whether 
gluing two word-representable graphs in a clique results 
in a word-representable graph. Namely, it was shown 
in [2], using certain split graphs, that gluing two word-
representable graphs in any clique of size at least 2 may, 
or may not, result in a word-representable graph.

In general, recognizing if a given graph is semi-transitive 
is an NP-complete problem [14, Section 4.2.2]. The main 
result in this paper is showing that for the class of split 
graphs this problem is polynomially solvable. This result 
gives another motivation for our study. The class of split 
graphs is a subclass of chordal graphs (a chordal graph is a 
graph in which all cycles on four or more vertices have a 
chord, i.e. an edge that is not part of the cycle but connects 
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two vertices of the cycle). Till now, no graph problem is 
known that is NP-hard for chordal graphs but polynomially 
solvable for split graphs. So, if the problem of recognition 
of semi-transitivity would be NP-hard for chordal graphs 
(which is the open problem now), then it will be the first 
example of such graph problem.

Thus, our main focus in the current paper is the follow-
ing problem.

Problem 1. Given a split graph G , is it semi-transitive?

Problem 1 was studied in [2,8,13]. In particular, a char-
acterization of semi-transitive split graphs in terms of min-
imal forbidden induced subgraphs for |C | ≤ 5 follows from 
[2,13]. Moreover, in [13] the following structural prop-
erty of semi-transitive split graphs was proved. By N(v)

we denote the neighbourhood of a vertex v . Clearly, if 
I ∪ C is the bipartition of a split graph, then N(v) ⊂ C
for each v ∈ I . Also, for any two integers a ≤ b, we let 
[a, b] = {a, a + 1, . . . , b}.

Theorem 1 ([13]). A split graph G is semi-transitive if and only 
if the vertices of C can be labeled from 1 to k = |C | in such a 
way that for each v, u ∈ I :

(1) either N(v) = [a, b] for a ≤ b or N(v) = [1, a] ∪ [b, k] for 
a < b.

(2) If N(u) = [a1, b1] and N(v) = [1, a2] ∪ [b2, k], for a1 ≤
b1, a2 < b2 , then a1 > a2 or b1 < b2 .

(3) If N(u) = [1, a1] ∪ [b1, k] and N(v) = [1, a2] ∪ [b2, k], for 
a1 < b1 and a2 < b2 , then a2 < b1 and a1 < b2 .

Note that Theorem 1 is a convenient, for our pur-
poses, reformulation of Theorem 15 in [13]. Indeed, once a 
proper labeling of a split graph is found, to create a semi-
transitive orientation of the graph,

• there is a unique way to orient edges in C and be-
tween v ∈ I and N(v) = [1, a] ∪ [b, k] (if there are any 
such vertices), and

• there are two choices to orient edges between v ∈
I and N(v) = [a, b] (if there are any such vertices), 
namely, v can be a source (all edges incident with v
are directed away from v) or a sink (all edges incident 
with v are directed towards v).

Determining semi-transitivity of split graphs is closely 
related to the well-known circular ones property of (0, 1)-
matrices. A (0, 1)-matrix has the consecutive ones property 
(for columns) if after some permutation of its rows in all 
columns the ones are consecutive. A (0, 1)-matrix has the 
circular ones property (for columns) if after some permu-
tation of its rows in all columns either ones or zeroes are 
consecutive. Note that if zeroes are consecutive then ones 
are “almost consecutive” in the sense that they are allowed 
to wrap around from the bottom of a column to its top.

Note that from the algorithmic point of view, searching 
for permutations of rows giving a consecutive ones prop-
erty and giving a circular ones property is equivalent, as 
follows from the following lemma:
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Lemma 2 ([15]). Let M be a (0, 1)-matrix. Denote by M1 the 
matrix obtained from M by the inversion (changing 0 s by 1 s 
and vice versa) of all columns having 1 in the first row. Then M
has the circular ones property if and only if M1 has the consec-
utive ones property.

As for the consecutive ones property, the first poly-
nomial algorithm for determining whether a (0, 1)-matrix 
has it was given in [6]. In [1] a more general algorithm 
based on the concept of PQ-trees was presented (in par-
ticular, it allows to find all possible permutations of rows 
providing consecutive ones orderings for all columns); it 
solves the decision problem in time O(m + n + f ) where 
m, n, and f are the number of rows, columns and ones 
in M , respectively. Moreover, it was shown there that the 
problem of finding out whether a (0, 1)-matrix has a circu-
lar ones property can also be solved in time O(m +n + f ). 
In [12] an algorithm finding all possible permutations pro-
viding circular ones orderings for all columns in linear 
time is given. In [4] a linear time algorithm for checking 
the isomorphism of any two (0, 1)-matrices having circular 
one property was constructed; this solves the graph iso-
morphism problem in linear time for several graph classes.

Given a split graph G with C = {u1, . . . , uk} and I =
{v1, . . . , vt}, consider a (0, 1)-matrix M(G) with k rows 
and t columns where mij = 1 if and only if ui is adjacent to 
v j . Then, clearly, any labeling of the vertices in C defines 
a permutation of the rows of the matrix M(G). Moreover, 
such a labeling satisfies condition (1) of Theorem 1 if and 
only if the corresponding permutation provides a circular 
ones property. The first attempts of translating conditions 
(2)–(3) of Theorem 1 into the languages of matrices were 
made in [8,9], but the condition stated there was erro-
neous (see details about this right after Theorem 3 below). 
The correct statement is as follows:

Theorem 3. A split graph G is semi-transitive if and only if the 
rows of matrix M(G) can be permuted in such a way that:

(i) The obtained matrix has a circular ones property in each 
column.

(ii) If a column of the obtained matrix has the form 1a0b1c

where a + b + c = k and a, b, c ≥ 1 then no other column 
may contain ones in all positions from a to a + b + 1.

Indeed, it is easy to see that the property (i) of Theo-
rem 3 is equivalent to the condition (1) of Theorem 1. In 
order to show that the property (ii) of Theorem 3 is equiv-
alent to the conditions (2)–(3) of Theorem 1 just note that 
a column of the form 1a0b1c means that the correspond-
ing vertex v ∈ I has N(v) = [1, a] ∪[a +b + 1, k]. Therefore, 
if some other column has ones in all positions from a to 
a + b + 1, then the corresponding vertex u ∈ I has either

• N(u) = [a1, b1] with a1 ≤ a and b1 ≥ a + b + 1 which 
contradicts (2), or

• N(u) = [1, a1] ∪ [b1, k] with a1 ≥ a + b + 1 which con-
tradicts (3), or

• N(u) = [1, a1] ∪ [b1, k] with b1 ≤ a which also contra-
dicts (3).
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Note that in [8,9] instead of the requirement of “ones in all 
positions from a to a + b + 1”, there was the requirement 
of ones just in positions a and a + b + 1, which does not 
work, for example, for the columns 1001 and 1101 with 
k = 4, a = 1 and b = 2 (these columns meant to give a 
non-semi-transitive split graph, while the graph is indeed 
semi-transitive).

So, a natural attempt to solve Problem 1 would be as 
follows: consider all permutations of rows providing cir-
cular ones ordering using the result from [12] and check 
whether they satisfy property (ii) of Theorem 3. Unfortu-
nately, this approach does not provide a polynomial-time 
algorithm for Problem 1. Indeed, although the result from 
[12] allows to find each permutation with circular ones 
property in linear time, the total number of such permu-
tations may be exponential, while the number of permu-
tations satisfying property (ii) of Theorem 3 among them 
could be small.

Example 1. Consider the following matrix M with k rows 
and k + 2 columns.

M =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 1 0
0 1 . . . 0 0 1 1
...

...
. . .

...
...

...
...

0 0 . . . 1 0 1 1
0 0 . . . 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎠

Since each column contains either one 1, or one 0, ev-
ery permutation of its rows has circular ones property, 
i.e. there are k! such permutations. On the other hand, 
only those permutations where 0’s in the last two columns 
are in consecutive rows satisfy property (ii) of Theorem 3
(rows 1 and k are also considered as consecutive here); 
hence, there are only 2k such permutations.

In order to apply the circular ones permutations tech-
niques for solving Problem 1 we need a deeper study of 
the structure of semi-transitive split graphs provided in 
the following section. Namely, in Section 2 we introduce 
an auxiliary Problem 2 of finding a bijection of a set into a 
cycle that maps the family of given subsets into a family 
connected subgraphs on the cycle and prove that Prob-
lem 1 is equivalent to it. Then we reduce Problem 2 to 
the problem of determining (0, 1)-matrices with the circu-
lar ones property.

2. Polynomial solvability of Problem 1

Denote by V (Ck) the vertex set of a cycle graph Ck . 
Consider the following auxiliary problem.

Problem 2. Given a set A of cardinality k and a multiset 
{A1, . . . , At | Ai ⊂ A, 1 ≤ i ≤ t} of proper and non-empty 
subsets of A, is there a bijection F : A −→ V (Ck) such that 
for all i, j ∈ [1, t] the subgraph induced by F (Ai ∩ A j) is 
connected (the empty subgraph is considered to be con-
nected)?

Note that in Problem 2, the subgraphs induced by each 
F (Ai) must be connected (this corresponds to the case 
3

when j = i). The following theorem shows the equivalence 
of Problems 1 and 2.

Theorem 4. Problem 1 is polynomially solvable if and only if 
Problem 2 is polynomially solvable.

Proof. Assume that Problem 2 is polynomially solvable. 
Consider an arbitrary instance of Problem 1 with the graph 
G = (I ∪ C, E) where I = {v1, . . . , vt}, C = {u1, . . . , uk}. 
Construct a corresponding instance of Problem 2 as fol-
lows. Let A = C and put Ai = N(vi) for all i = 1, . . . , t . Let 
us prove the following claim.

Claim. Graph G has a semi-transitive orientation if and only if 
the set A has an appropriate bijection.

Indeed, if G satisfies the conditions of Theorem 1 then 
let the labeling of the vertices in C define the bijection 
F (the order of the vertices in the cycle graph Ck). Then 
(1) ensures that each subgraph induced by F (Ai) is con-
nected since it is a path from a to b that either goes 
through 1 or not. Consider arbitrary vi, v j ∈ C . If N(vi) =
[a1, b1] and N(v j) = [a2, b2] then F (Ai ∩ A j) induces ei-
ther an empty subgraph or a path from max{a1, a2} to 
min{b1, b2}; anyway, it is connected. Let N(vi) = [a1, b1]
and N(v j) = [1, a2] ∪ [b2, k]. By (2), either a1 > a2 or 
b1 < b2 or both. Then, respectively, F (Ai ∩ A j) induces ei-
ther a path from b2 to b1, or a path from a1 to a2, or 
the empty subgraph. Finally, let N(vi) = [1, a1] ∪[b1, k] and 
N(v j) = [1, a2] ∪ [b2, k]. Then by (3), a2 < b1 and a1 < b2. 
Hence, F (Ai ∩ A j) induces a path b, b + 1, . . . , k, 1, 2, . . . , a
where a = min{a1, a2} and b = max{b1, b2}. So, the sub-
graph induced by F (Ai ∩ A j) is connected in Ck for all 
i, j ∈ [1, t].

Assume now that there is a bijection from A into Ck
such that all intersections of the subsets induce connected 
subgraphs. Label C in the order of the cycle graph Ck start-
ing from an arbitrary vertex. Since each subgraph induced 
by F (Ai) is connected, the corresponding N(vi) is either an 
interval [a, b] or the union of two intervals [1, a] ∪[b, k] for 
some a < b, i.e. (1) holds. If N(vi) = [a1, b1] and N(v j) =
[1, a2] ∪ [b2, k] but a1 ≤ a2 and b1 ≥ b2 then F (Ai ∩ A j) in-
duces a union of two paths a1, . . . , a2 and b1, . . . , b2 which 
is disconnected, a contradiction. So, (2) holds. Assume 
that N(vi) = [1, a1] ∪ [b1, k] and N(v j) = [1, a2] ∪ [b2, k]. If 
a2 ≥ b1 then F (Ai ∩ A j) induces the union of three paths 
1, . . . , a1; b1, . . . , a2; and b2, . . . , k, while if a1 ≥ b2 then 
F (Ai ∩ A j) induces the union of paths 1, . . . , a2; b2, . . . , a1; 
and b1, . . . , k. In both cases, the subgraph is clearly discon-
nected; because of this contradiction, (3) must be true.

By the claim, applying an algorithm solving the con-
structed instance of Problem 2 gives a solution of the ini-
tial instance of Problem 1.

If Problem 1 is polynomially solvable then the reduction 
from an instance of Problem 2 to Problem 1 is made in a 
similar way: put C = A, I = {v1, . . . , vt}, and N(vi) = Ai . 
Then the same claim provides the polynomial solvability 
of Problem 2. �

In order to solve Problem 2, we use the above-mentioned
results [1,12] on the polynomial solvability of check-
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ing the circular ones property of (0, 1)-matrices. Clearly, 
O(m + n + f ) can be bounded from above by O(mn), 
which is the input size of the consecutive ones problem 
in general. Note that a split graph is defined by the neigh-
bourhood sets of the vertices in I . Hence, the size of the 
input of Problem 1 is O(tk). Recall that here, and in what 
follows, |I| = t and |C | = k. We can now prove the main 
result of the paper.

Theorem 5. Problem 1 can be solved in time O(t2k).

Proof. Given an instance of Problem 1, first construct 
an equivalent instance of Problem 2 as shown in the 
proof of Theorem 4. Clearly, it takes time O(tk). Let A =
{a1, . . . , ak}. Put m = k and n = (t2 + t)/2. Construct the 
(0, 1)-matrix M of size m × n as follows. For convenience, 
let the columns be indexed by the pairs (i, j) where i, j ∈
[1, t] and i ≤ j (note that including the case i = j is cru-
cial here). Let each row of M correspond to an element of 
the set A and each column (i, j) be a characteristic vec-
tor of the subset Ai ∩ A j (i.e. ms,(i, j) = 1 if and only if 
as ∈ Ai ∩ A j ). Then, clearly, finding the appropriate bijec-
tion F is equivalent to finding a permutation of the rows 
that provides a circular ones ordering for all columns of 
the matrix M . By the result from [1] mentioned above, the 
latter can be done in time O(mn) = O(t2k). �
Remark 6. Note that in practice many columns can contain 
no, or just one, 1; such columns can be omitted since they 
have the circular ones property after any permutation of 
rows. This can make the algorithm faster, although in the 
worst case, we have the bound of O(t2k).

Declaration of competing interest

No conflict of interest exists.

Data availability

No data was used for the research described in the ar-
ticle.

Acknowledgements

The work of the second author was partially supported 
by the state contract of the Sobolev Institute of Mathemat-
ics (project FWNF-2022-0019). The authors are grateful to 
the unknown referee for helpful comments.

References

[1] K.S. Booth, G.S. Lueker, Testing for the consecutive ones property, in-
terval graphs, and graph planarity using PQ-tree algorithms, J. Com-
put. Syst. Sci. 13 (1976) 335–379.

[2] H.Z.Q. Chen, S. Kitaev, A. Saito, Representing split graphs by words, 
Discuss. Math., Graph Theory 42 (2022) 1263.

[3] P. Choudhary, P. Jain, R. Krithika, V. Sahlot, Vertex deletion on split 
graphs: beyond 4-hitting set, Theor. Comput. Sci. 845 (2020) 21–37.

[4] A.R. Curtis, M. Lin, R. McConnell, Y. Nussbaum, F.J. Soulignac, J. 
Spinrad, J. Szwarcfiter, Isomorphism of graph classes related to the 
circular-ones property, Discret. Math. Theor. Comput. Sci. 15 (2013) 
157–182.

[5] S. Foldes, P.L. Hammer, Split graphs, in: Proceedings of the Eighth 
Southeastern Conference on Combinatorics, Graph Theory and Com-
puting, Louisiana State Univ., Baton Rouge, 1977, Congressus Numer-
antium, No. XIX, pp. 311–315.

[6] D.R. Fulkerson, O.A. Gross, Incidence matrices and interval graphs, 
Pac. J. Math. 15 (1965) 835–855.

[7] M.M. Halldórsson, S. Kitaev, A. Pyatkin, Semi-transitive orientations 
and word-representable graphs, Discrete Appl. Math. 201 (2016) 
164–171.

[8] K. Iamthong, Word-representability of split graphs generated by mor-
phisms, Discrete Appl. Math. 314 (2022) 284–303, 2021.

[9] K. Iamthong, S. Kitaev, Semi-transitivity of directed split graphs gen-
erated by morphisms, J. Comb. 14 (1) (2023) 111–138.

[10] S. Kitaev, A.V. Pyatkin, On representable graphs, J. Autom. Lang. 
Comb. 13 (1) (2008) 45–54.

[11] S. Kitaev, A.V. Pyatkin, Word-representable graphs: a survey, J. Appl. 
Ind. Math. 12 (2) (2018) 278–296.

[12] W.-L. Hsu, R.M. McConnell, PC trees and circular-ones arrangements, 
Theor. Comput. Sci. 296 (1) (2003) 99–116.

[13] S. Kitaev, Y. Long, J. Ma, H. Wu, Word-representability of split graphs, 
J. Comb. 12 (4) (2021) 725–746.

[14] S. Kitaev, V. Lozin, Words and Graphs, Springer, 2015.
[15] A.C. Tucker, Matrix characterizations of circular-are graphs, Pac. J. 

Math. 39 (2) (1971) 535–545.
4

http://refhub.elsevier.com/S0020-0190(23)00078-9/bibEEB910DACFB466FEBD111612E571B3E9s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibEEB910DACFB466FEBD111612E571B3E9s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibEEB910DACFB466FEBD111612E571B3E9s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibD9218834C925308DA31F4ADFAF8ECFBEs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibD9218834C925308DA31F4ADFAF8ECFBEs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib6AE337AF97899F2AFA043B74FB883DCDs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib6AE337AF97899F2AFA043B74FB883DCDs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibD6D95CF1A73F0F9DE2E30CAEA87DCCA8s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibD6D95CF1A73F0F9DE2E30CAEA87DCCA8s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibD6D95CF1A73F0F9DE2E30CAEA87DCCA8s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibD6D95CF1A73F0F9DE2E30CAEA87DCCA8s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibDA27ADAEB51AFE890DEF59EC530390C1s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibDA27ADAEB51AFE890DEF59EC530390C1s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib885F7A3FDCE2B18A40E7A8A1FAA4E596s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib885F7A3FDCE2B18A40E7A8A1FAA4E596s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib885F7A3FDCE2B18A40E7A8A1FAA4E596s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibCD8B7C11438BB01181B33B361E0357C0s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibCD8B7C11438BB01181B33B361E0357C0s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib60179AD438EF153CFA25B26A88569812s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib60179AD438EF153CFA25B26A88569812s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib527E94DC1A824D920D568166BB121E4Fs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib527E94DC1A824D920D568166BB121E4Fs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib04DCDF153092636D1989E4626314B9F4s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib04DCDF153092636D1989E4626314B9F4s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibAF782A881E9D03D97051AC9DB964A307s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibAF782A881E9D03D97051AC9DB964A307s1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibC8996410B9CC837EF57FB2701444369As1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibC8996410B9CC837EF57FB2701444369As1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bibB512B5B4F38BFAFCC5331683A6EB72FDs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib67D371843DDF4C577A66E2174C1832DDs1
http://refhub.elsevier.com/S0020-0190(23)00078-9/bib67D371843DDF4C577A66E2174C1832DDs1

	On semi-transitive orientability of split graphs
	1 Introduction
	2 Polynomial solvability of Problem 1
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


