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Abstract: This paper presents comprehensive guidelines for the design and analysis of a thin di-
aphragm that is used in a variety of microsystems, including microphones and pressure sensors.
It highlights the empirical relations that can be utilized for the design of thin diaphragm-based
microsystems (TDMS). Design guidelines developed through a Finite Element Analysis (FEA) limit
the iterative efforts to fabricate TDMS. These design guidelines are validated analytically, with the
assumption that the material properties are isotropic, and the deviation from anisotropic material
is calculated. In the FEA simulations, a large deflection theory is taken into account to incorporate
nonlinearity, such that a critical dimensional ratio of a/h or 2r/h can be decided to have the linear
response of a thin diaphragm. The observed differences of 12% in the deflection and 13% in the in-
duced stresses from the analytical calculations are attributed to the anisotropic material consideration
in the FEA model. It suggests that, up to a critical ratio (a/h or 2r/h), the thin diaphragm shows a
linear relationship with a high sensitivity. The study also presents a few empirical relations to finalize
the geometrical parameters of the thin diaphragm in terms of its edge length or radius and thickness.
Utilizing the critical ratio calculated in the static FEA analysis, the basic conventional geometries
are considered for harmonic analyses to understand the frequency response of the thin diaphragms,
which is a primary sensing element for microphone applications and many more. This work provides
a solution to microelectromechanical system (MEMS) developers for reducing cost and time while
conceptualizing TDMS designs.

Keywords: design and analysis; finite element analysis; microsystems; MEMS; thin diaphragm

1. Introduction

The continuously increased demand for microsystems, such as microphones and
pressure sensors, in various applications such as the consumer [1,2], medical [3,4], auto-
motive [5] industries, and many more, has forced incredible development in the field of
TDMS using MEMS technology. MEMS aim for all purposes, where a tiny size, high-level
sound quality, reliability, and affordability are the key requirements. MEMS technology
reduces the production cost per device, makes batch fabrication possible, provides a com-
pact size, and offers an ease of implementation for microsystems. It also offers low power
consumption, a good sensitivity, and is available in very small packages that are fully com-
patible with surface mount assembly processes [6–10]. There are standard micro elements,
such as a thin diaphragm, cantilever, and suspended diagrams, etc., that are utilized in
microsystems or MEMS [11]. However, TDMS are found to be more robust and reliable,
along with having an ease of fabrication and higher sensitivity. Microphones and pres-
sure sensors typically use a thin diaphragm, and can be classified as a TDMS. The tale of
MEMS microphones began in 1988, when Knowles Electronics fabricated silicon-based
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microphones suitable for the hearing aid industry [12]. The majority of their microphones
are currently utilized in mobile phones, digital cameras, computers, MP3 players, tablets,
laptops, smart televisions, automotive voice recognition, gaming and remote controllers,
and so on [6,13]. The diaphragm vibrates when it is subjected to a pressure variation that
occurs due to an incoming soundwave. The vibration of the thin diaphragm modulates
the capacitor, and these modulations are amplified further using suitable signal condition-
ing [14,15]. The key advantage of this microphone is that it does not lose any sensitivity
over time or under elevated temperatures due to no electret material being used [16,17]. A
comprehensive review of MEMS microphones was recently published and covered aspects
such as materials, fabrication methods, and performances [7]. This work gave a clear
direction for the applicability of microphones. MEMS pressure sensors are one of the most
reported and developed microsystems that also utilize a thin diaphragm. Pressure sensors
typically the measure deflection/deformation of a thin square or circular or rectangular
diaphragm under applied external pressure. This mechanical deflection can be converted
into an electrical signal by the means of various transduction techniques [11,18,19]. MEMS
pressure sensor commercialization was started in the 1970s and 1980s by various compa-
nies (e.g., Foxboro ICT, Transensory Devices, IC Sensors, IC Transducers, Kulite Inc., and
Novasensor), which used silicon diaphragms and are considered to be one of the earliest
commercial successes of microsystems devices [20,21]. Thereafter, the design and develop-
ment of such microsystems for various applications have gained a tremendous pace and
resulted in the development of various TDMS. However, before implementing the MEMS
fabrication of such microsystems, an iterative process of design optimization is needed [22].
A finite element analysis (FEA), through various FEA tools such as ANSYS, COMSOL Mul-
tiphysics, and Coventorware, is useful for limiting this iterative design campaign and saves
on the overall product cost. The design of diaphragm-based microsystems was analyzed
through numerical, analytical, and experimental investigations. These studies include the
vibration of square plates [23], spring-supported capacitive designs [24], simply supported
rectangular plates [25], moderately thick rectangular plates [26], biomimetic directional
designs [27], a single deeply corrugated diaphragm technique [28], thin plates [29], simply
supported square/rectangular plates [19,30], circular plates in axisymmetric modes [31],
the unique directional properties of dual diaphragms [32], rectangular plates using Bessel
functions [33], and the free vibration of square plates [34]. The current interest in mi-
crosystems is to develop an application-oriented design with a better performance using
thin-diaphragm configurations. There are several studies on the design and development
of microsystems for different shapes of diaphragm, including circular and rectangular
geometries. The aspect ratios of these geometries range from 200 to 2000. For an example,
microphones’ sensitivity to this aspect ratio falls between a few 10s of µV/Pa and 10s of
mV/Pa [35–41]. However, this reported sensitivity is influenced by various parameters,
including the supplied voltage, transaction techniques, and other electrical inputs. These
studies use thin diaphragms and require estimating their mechanical sensitivity as a prelim-
inary design consideration for designing diaphragm-based microsystems. This is because
the mechanical responses of a diaphragm act as a primary sensing element.

This paper provides the design, simulation, and analytical validation of a TDMS for
a generalized approach to TDMS design. Additionally, this paper facilitates achieving
an optimized design parameter through a defined critical ratio for a square and circular
diaphragm as a/h or 2r/h, respectively. Furthermore, the role of the aspect ratio can be
introduced in this primary sensing element design through establishing a generalized
empirical relationship for providing a TDMS with optimized design parameters. Further-
more, based on selected responses, such as deflection and induced stresses, a feasible
design window for the TDMS is proposed for a higher sensitivity. The optimized design
parameters are also verified through a static analysis in dynamic load cases through a
harmonic analysis to understand the frequency response. The paper is divided as follows:
Section 2 deals with the operating principle of the thin diaphragm used in the MEMS,
Section 3 explains the materials and methodology used to complete the current research
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work, Section 4 elaborates the results obtained and the discussion, and Section 5 outlines
the conclusions.

2. Principle of Operation

The operation of a TDMS depends on the change in deflection or induced stress due to
an externally applied load or pressure. The TDMS consists of a thin diaphragm as a primary
sensing element that deflects (or induces stress) under the pressure change caused by the
movement of physical media such as air. The deflection or induced stress can be converted
using different transduction techniques, such as capacitive or piezoresistive techniques.
In order to design a TDMS, the selection of the optimal geometrical parameters is very
crucial in deciding the overall sensitivity of such a microsystem. In the case of capacitive
or piezoresistive transduction techniques, the deflection or induced stress, respectively,
should be as large as possible for the given geometry of the thin diaphragm. This decides
the mechanical sensitivities in terms of the deflection per applied pressure or induced stress
per applied pressure for the thin diaphragm. Further, based on the transduction techniques,
the overall sensitivity is calculated in terms of the output voltage or current. This electrical
output can be amplified and further processed using a suitable signal-conditioning circuit.
A general scheme for the operation of a TDMS is explained using Figure 1.
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Figure 1. The schematics of simplified thin diaphragms, (a) square and (b) circular, used in the
analysis. (c) Wet and (d) dry etched diaphragms’ cross-sections that can be fabricated using the
MEMS-technology-based process in a silicon substrate.

Mostly, square or circular thin diaphragms are used for microsystems and their geo-
metrical parameters are crucial to obtaining a higher sensitivity. If a square thin diaphragm
with an edge length of 2a and thickness of h has all its edges fixed and a pressure of p is
applied to it, the simplified deflection and induced stress can be defined as below [19]:

Normalized deflection with the thickness of a thin diaphragm:

d
h
=

(
1 − ϑ2)

4E

( a
h

)4

p or
d
h
= cds

( a
h

)4
(1)

Induced stress can be given by:

σsl =
( a

h

)2
p and σst = ϑ

( a
h

)2
p (2)

Similarly, a circular plate deflection and induced stress can be defined as below [42]:
Normalized deflection with the thickness of a thin diaphragm:

d
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3
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The maximum induced stress can be given by:

σcr =
3
4

(
2r
h

)2
p and σct =

3
4

ϑ

(
2r
h

)2
p (4)

where E is the Young’s modulus, ϑ is the Poisson’s ratio, d is the deflection, h is the thickness,
a is the edge length, and r is the radius of the thin diaphragm.

3. Materials and Methodology

A simplified view of square- and circular-shaped thin diaphragms, as presented
in Figure 1a,b, with a 2a edge length and r radius, respectively, and h thickness, was
used in this study. The FEA model was validated against the simplified equations before
performing the parametric analysis using isotropic silicon material properties. However,
the anisotropic behavior of silicon is mandatory to be considered for the estimation of
the actual response of the thin diaphragm; therefore, anisotropy material properties were
included in the model and the deviation from the isotropic behavior of silicon was observed.
To realize a thin diaphragm using MEMS technology, a general consideration is that a
silicon-based thin diaphragm has a slanted cut if wet chemistry (KOH or TMAH etch)
is used, as shown in Figure 1c, or a straight cut if dry chemistry is used, as shown in
Figure 1d. The silicon material properties listed in Table 1 were used for the study. The
methodology was to simulate the isotropic silicon material and its analytical validation,
thereafter anisotropic silicon properties were utilized in the model. The responses were
analyzed and are presented in the next section. Additionally, the actual fabricated geometry
was also analyzed to understand the deviation from the ideal diaphragms.

Table 1. Silicon material properties [43].

Materials Stiffness Coefficient/Young’s Modulus at 25 ◦C (GPa) Poisson’s Ratio

Anisotropic Silicon
c11 165.64

0.27
c12 63.94
c44 79.51

Isotropic Silicon 169

4. Results and Discussions

In the current section, the results of the FEA simulation study and its analytical
validations are presented for the square and circular diaphragms. As can be seen in
Figure 2, the maximum deflection for the thin diaphragm was observed in its center,
irrespective of its shape. It can also be observed that the maximum induced stress was
in the edge of the diaphragms. Contour plots are presented in Figure 2 to provide a
comparative qualitative visualization of the deflection and induced stress on the thin
diaphragm. Extensive quantitative analyses are also presented in further detail.

4.1. Model Validation

The FEA model was validated against the simplified analytical model, as discussed in
the earlier section. A square thin diaphragm with dimensions of 500 µm × 500 µm × 10 µm
was chosen to validate the FEA model with the simplified analytical equations. As the
analytical simplified equations utilize isotropic material properties, the FEA was carried
out with the isotropic silicon material properties and the response in terms of the deflection
and induced stresses can be seen from Figure 3. The deflection and induced stresses for the
analytical model and FEA that utilizes isotropic material showed a very good agreement
with each other. The percentage of changes in the deflection and induced stress showed
3.48% and 2.27%, respectively, for the FEA model and analytical calculations. When the
anisotropic material properties of silicon were included in the model, then the deviations
from the analytical calculation were observed to be 12.81% and 13.01% for the deflection
and induced stresses, respectively. As the model was validated against the isotropic



Micromachines 2023, 14, 1725 5 of 13

material properties, it can be concluded that the model, which utilized anisotropic material
properties, would also give the appropriate response. Parametric analyses were further
performed to optimize the geometry and are presented in the next subsection. Figure 3a,b
shows the pressure response of the thin diaphragm in terms of the deflection and induced
stresses, respectively. The deviation from the analytical calculations can be seen from
Figure 3 and is qualified in Table 2. It also explains the deviation from the isotropic model
to the anisotropic model with the wet- (KOH/TMAH) and dry-etched geometry of the
thin diaphragm.
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Table 2. Deflection and stress sensitivity of a thin diaphragm with geometrical dimensions of 500 µm
× 500 µm × 10 µm.

Parameters Analytical
Model

FEA
Isotropic

FEA
Anisotropic

% Change
Isotropic

% Change
Anisotropic

Deflection sensitivity
(µm/Pa) 1.11 × 10−4 1.07 × 10−4 9.66 × 10−5 −3.48 −12.81

Stress sensitivity
(MPa/Pa) 2.50 × 10−3 2.56 × 10−3 2.83 × 10−3 2.27 13.01
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Figure 3. Mechanical characteristics of thin diaphragm: (a) maximum deflection and (b) induced
stress of a thin diaphragm under an applied load of 20 Pa, whose geometrical dimensions are 500 µm
× 500 µm × 10 µm.

4.2. Parametric FEA Analysis of Thin Diaphragms/Plates

In this parametric analysis, the anisotropic material properties of silicon were utilized.
These simulations were carried out under the consideration of a large deflection that
accounted for structural nonlinearity during the simulations. The FEA results suggest that
there was a critical limitation of the lateral dimensions and thickness of the thin diaphragm.
As soon as these dimensions were exceeded, the response of the thin diaphragm (in terms
of the deflection and induced stress) did not follow the simplified analytical calculation
and accounted for the nonlinear behavior with the applied load. In order to validate this, a
parametric analysis was performed with a varying a/h ratio of the diaphragm. As can be
seen from Figure 4, there was an increase in the deflection at a higher rate up to the critical
a/h ratio, thereafter, both the deflection of the diaphragm decreased at a slower rate of
increase in the deflection as a function of the a/h or 2r/h ratio. The parametric results are
presented for the square and circular diaphragms in Figures 4a and 4b, respectively.
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Figure 4. Deflection of a thin diaphragm with varying a/h or 2r/h ratios under 20 Pa applied pressure
for (a) square and (b) circular diaphragms. It suggests that there is a critical limit of the thickness
of diaphragm until which the deflection response of thin diaphragm shows high sensitivity and
thereafter it decreases because of structural non-linear response.

Since the curve is plotted in a log-log graph, it is difficult to read a small difference
between the square and circular thin diaphragms’ deflection. Hence, the normalized
deflections (d/h) were analyzed for a/h and 2r/h. As d/h is a function of the (a/h)4 or
(2r/h)4, the proportionality constants were calculated as 1.9 × 10−12 and 1.5 × 10−12 for
the square and circular thin diaphragms, respectively, under a 20 Pa applied pressure. It
can be observed from Figure 4 that, up to a certain ratio of a/h or 2r/h., the d/h followed
the (a/h)4 or (2r/h)4 with a higher sensitivity, and afterwards, it started deviating and
showed a lower sensitivity, even for a thinner diaphragm. This ratio is named as the critical
ratio and it was observed that, if the deflection of a thin diaphragm is beyond 1/5th of its
thickness, it starts to decrease in sensitivity (Figure 5). The calculated ratios (a/h)4 and
(2r/h)4 were ~569.6 and 604.3 for the square and circular thin diaphragms, respectively, at
d/h = 1/5.
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Similarly, the induced stress, as shown in Figure 6, is a function of
( a

h
)2 or

( 2r
h
)2

and
the proportionality constants were calculated as 5.45 × 10−6 and 3.21 × 10−6 for the square
and circular thin diaphragms, respectively, under the 20 Pa applied pressure. At the critical
a
h (569.6), the induced stress was 1.77 MPa. Likewise, for the circular plate, a critical 2r

h (605)
resulted in a 1.17 MPa induced stress.
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The frequencies of the thin diaphragms were simulated with a varying thickness or
a/h ratio, as shown in Figure 7a. As can be seen, the frequency of the thin diaphragm was
strongly dependent on the a/h ratio, as well as the lateral dimension of the diaphragm. To
establish an empirical relation between the natural frequency and geometrical ratio (a/h
or 2r/h), as shown in Figure 7b, the thickness was used as a multiplier for the frequency
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and the proportionality coefficient was calculated. Distinct coefficients were calculated as
1.12 × 1010 and 1.45 × 1010 for the square and circular plates, respectively (Figure 7b).

Figure 7. Frequency of thin plate used for microsystems, (a) natural frequency of thin square plate as
a function of the a/h ratio and (b) scaled frequency through thickness multiplier for thin plate vs. a/h
or 2r/h ratio, curve fitting is performed, and coefficients were calculated.

The empirical relationship established and its coefficients for deflection, induced
stress, and factor of natural frequency are presented in Table 3. The table provides a
comprehensive guideline for the critical parameters of a TDMS.

Table 3. Established relationship for the deflection, induced stress, and factor of natural frequency
coefficients are calculated at 20 MPa pressure.

Critical
Ratio

Deflection
Coefficient

d/h = coeff ×
(a/h)4

Induced Stresses
Coefficient

Stress = coeff ×
(a/h)2

Natural
Frequencies

f × h = coeff ×
(a/h)−2

Square (coeffsq) 570 1.90 × 10−12 5.45 × 10−6 1.12 × 1010

Circular (coeffci) 605 1.50 × 10−12 3.21 × 10−6 1.45 × 1010

It was observed that a deflection of up to 20% of the thin plate thickness followed the
simplified analytical relation, which did not account for the nonlinearity due to the material
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and geometry. Based on this assumption, the critical ratios for the square and circular thin
diaphragms/plates were calculated as 570 and 605, respectively. Thereafter, the edge of the
square diaphragm and radius of the circular plate were calculated (and are presented in
Table 4) as 1425 µm and 756.25 µm, respectively, for a 2.5 µm thickness of the thin plate.
The deflection and induced stress are plotted under the applied load, as shown in Figure 8.

Table 4. Deflection and stress sensitivities and frequency of thin plate at optimized a/h or 2r/h ratio
with assumed thickness of 2.5 µm.

Critical
ratio

Thickness
(µm)

Edge or
Radius
(µm)

Deflection
Sensitivity

(µm/Pa)

Stress
Sensitivity
(MPa/Pa)

Frequency
(kHz)

Square 570 2.5 1425 0.025 0.105 17.24
Circular 605 2.5 756.25 0.025 0.076 17.27
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4.3. Harmonic Analysis

A harmonic analysis of the thin diaphragm/plate was performed and analyzed. At
the resonant frequency (17.2 kHz) of the thin diaphragm, it gave infinite deflection. To
bring it to a practical deflection value, a small damping ratio (0.07) was included during
the numerical simulation. It can be seen that a peak at the resonant frequency (17.2 kHz) of
the plate was observed for the maximum deflection and stresses.

The deflection and induced stresses, as a function of the applied frequency and applied
load, are presented in Figure 9a,b. The thin diaphragm had a resonant frequency of 17.2 kHz.
Also observed was that the responses were dependent on the applied pressure as well. It
can be observed that the frequency response was flat up to 4 kHz with the pressure ranging
from 5 Pa to 20 Pa, showing linearity between the applied pressure and deflection until a
high mid-range of audio signal (4 kHz). Beyond 4 kHz (presence and brilliance range), a
sudden jump in the deflections was observed due to attaining the resonant frequency of
17.2 kHz.
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5. Conclusions

This paper demonstrated the design, simulation, and analytical validation of MEMS,
particularly TDMS, towards a generalized approach using the FEA-based technique. It
facilitated achieving an optimized design parameter through a defined critical ratio for
square and circular diaphragms as a/h or 2r/h, respectively. The calculated critical ratios,
a/h = 570 for the square and 2r/h = 605 for the circular diaphragms, were validated through
simplified analytical models. These ratios are helpful for calculating the geometrical
parameters of thin diaphragms that have linear responses. A few empirical relations were
developed for approximating the deflection, induced stresses, and natural frequencies in the



Micromachines 2023, 14, 1725 12 of 13

thin diaphragm, which act as a convenient solution for defining the limits of the geometric
parameters of a TDMS. It was observed that the responses in terms of the deflections and
induced stresses depended on the geometrical parameters of the thin diaphragm. The
optimized design parameters, through a static analysis, were also tested in dynamic load
cases through a harmonic analysis to understand the frequency response.
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