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Abstract
Interfaces in multiphase flows are affected by surface tension, and when temperature gradients occur in the flow domain, 
tangential surface tensions along the interface also arise. As the behaviour of fluids contacting on a solid surface is also 
governed by surface tension, the description of the wetting phenomenon is challenging. Peridynamic differential operator 
(PDDO) can express partial differentials of any order by integral equations. Therefore, the governing equations for multiphase 
fluid motion, such as the Navier–Stokes equations and energy equations, can be reformulated in terms of integral equations. 
In this study, a novel non-local method is developed for modelling the multiphase fluid flow motion using the PDDO, and 
the thermal effect on surface tension force is considered. To describe the surface tension forces in the normal and tangential 
directions, the non-local form of the continuum surface force (CFS) model is presented. Besides, to overcome the inaccuracy 
of the unit normal vectors at the three-phase flow intersection region, an additional treatment for this region is presented. 
Finally, several benchmark multiphase fluid flow cases, such as square droplet deformation, surface wetting, and droplet 
migration in thermo-capillary flow are presented and validated. The results demonstrate that the developed non-local model 
can accurately capture the surface tension effect in multiphase fluid flow motion.

Keywords Peridynamics · Multiphase flow · Wetting · Thermocapillary flow · Peridynamic differential operator

1 Introduction

The tension at the interface of two different states of matter 
is known as surface tension. The surface tension maintains 
the balance of two-phase immiscible fluids at the interface. 
Surface tension effects widely appear in multiphase flows, 
such as liquid droplet deformation, wetting effects of water 
droplets on solid planes, and thermo-capillary effects, etc. In 
addition, when the characteristic length scale of the system 
is sufficiently small, the effect of surface tension on the flow 
field is more prominent than the inertial effect. Due to the 
presence of temperature or solute concentration gradients, 
shear forces are exerted on the fluid surface by the tangential 
surface tension, which drives Marangoni flow. Therefore, 
it is of great practical significance to accurately simulate 
multiphase flow at complex interfaces.

Over the years, an enormous amount of research has 
been carried out to model the multiphase fluid flow motion. 
Based on the Navier–Stokes equation, there are two com-
mon computational fluid dynamics methods for modelling 
the multiphase fluid flow motion from the nanoscale to the 
macroscale. The first are Euler methods based on grids, such 
as volume of fluid (VOF) method [1]. Cano-Lozano et al. 
[2] performed a numerical study on rising bubbles in still 
liquids using the VOF method to track the interface between 
two fluids. Hoang et al. [3] performed numerical simulations 
of the contact angle and wetted surface properties using the 
fluid volume interface tracking method and the continuum 
surface force method. Ma et al. [4] developed a numeri-
cal method for directly simulating the thermal Marangoni 
effect at the interface in two-phase incompressible fluids, 
and quantitatively comparing the numerical results of liquid 
droplet thermal capillary migration with experimental and 
theoretical results. Another class of numerical methods that 
can be used for multiphase simulations are meshless meth-
ods [5]. The meshless method is a particle method, such as 
the smoothed particle hydrodynamics method [6] and peri-
dynamics method [7]. Morris [6] devised a technique based 
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on smooth particle hydrodynamics for simulating two-phase 
flow with surface tension. This method addresses problems 
involving fluids of similar density and viscosity. Adami et al. 
[8] extended the method to higher density and viscosity 
ratios, using a density-weighted colour gradient formula-
tion to reflect the asymmetric distribution of surface tension. 
Describing wetting phenomena, in addition to including sur-
face tension effects at the interfaces between fluids, the inter-
action of fluids with solid substrates also requires the imple-
mentation of appropriate boundary conditions. Breinlinger 
et al. [9] extended the surface tension model using additional 
boundary conditions to explicitly include interactions with 
solid walls. Moreover, if the temperature or concentration 
gradient vector is tangent to the interface between the two 
fluids, an additional force known as the Marangoni force 
develops. Hopp-Hirschler et al. [10] proposed a smoothed 
particle hydrodynamics model of surface tension gradient-
driven thermo-capillary flow based on a continuum of sur-
face force methods, including Marangoni forces.

As an alternative approach, peridynamics is a new for-
mulation of non-local continuum mechanics [11–18]. Peri-
dynamics has a length-scale parameter called horizon. The 
horizon refers to the domain of influence, which defines the 
extent of interaction between material points. The size of 
the horizon varies according to the nature of the problem 
[19] and influences the computational time significantly [20, 
21]. The non-local theory of the continuum establishes a 
link between classical continuum mechanics and molecular 
dynamics. These properties make peridynamics a suitable 
candidate for multiscale analysis of materials. The peridy-
namic theory has been widely adopted in mechanical analy-
sis [22], thermal analysis [23, 24], moisture analysis [25], 
and thermo-mechanical coupled analysis [26–29]. Accord-
ing to peridynamic theory, the PDDO was proposed to use 
integral equations representing partial differentials [30, 31]. 
Moreover, various applications of PDDO can be found in 
the literature [32–34]. In addition, the governing equations 
are presented in integral form and do not contain any spatial 
derivatives. Therefore, they are always applicable regardless 
of discontinuity in the variable field. Recent studies have 
explored the application of the theory of peridynamic dif-
ferential operator to fluid mechanics. Gao et al. [35] devel-
oped a non-local Lagrangian model for Newtonian fluids 
with low Reynolds number laminar flow, and subsequently 
extended the model to flow of multiphase fluids with low 
density ratios at low Reynolds numbers [7]. Using PDDOs, 
Nguyen et al. [36] modelled a truly incompressible fluid 
based on Euler’s method, and the pressure difference is no 
longer calculated by a weakly compressible fluid model.

So far, the development of PDDO in fluid dynamics 
applications has been very limited. Although the work of 
Gao et al. [35] proposes a PDDO for simulating multiphase 

fluid flow, the model does not additionally consider the 
case of multiphase flow wetting phenomena. Furthermore, 
to the best of the authors’ knowledge, there are currently 
no peridynamic models available for simulating interface 
for thermo-fluid problems. Therefore, in this study, a new 
method for modelling multiphase flow simulations using 
PDDO is proposed. Thermal effects at the interface of mul-
tiphase flows and the problem of solid–liquid contact at 
three-phase junctions are investigated.

This paper is organised as follows. Section 2 introduces 
the PDDO and its properties. Section 3 provides the govern-
ing equations of motion for multiphase fluid flow. Section 4 
provides the non-local model using the PDDO. In addition, 
the treatment for multiphase fluid contact on a solid surface 
is explained in this section. Section 5 presents the techniques 
used for numerical implementation. Section 6 presents a 
series of numerical case studies using the developed non-
local multiphase fluid flow models. Finally, a conclusion is 
given in Sect. 7.

2  Peridynamic differential operator

PDDO was recently proposed [22] to represent any order of 
partial differentials. It inherits similar ideas to peridynamics 
theory [11, 12], which uses integral equations instead of dif-
ferential equations. A function f (�) in the two-dimensional 
case and up to second-order partial differentials can be com-
puted using PDDO as

in which � is the initial relative position vector between 
material point � and its family material points �′ within its 
horizon size Hx . The relative position vector can be denoted 
as

in which

The terms �1 and �2 represent the projections of the vec-
tor � with respect to x1 and x2 axes, and �1, �2 are the unit 
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vectors. The volume of material point �′ is donated as V ′ . 
The peridynamic function in first-order �1(�) and peridy-
namic function in second-order �2(�) can be represented as

and

where g10
1
(�),g01

1
(�), g11

2
(�), g02

2
(�) and g20

2
(�) are the peridy-

namic functions, and they possess the orthogonal property 
as [22]

in which the superscript on relative position vector com-
ponents represents the power of �1 and �2 . This can also be 
written in the compact form as

in which gP1P2

N
(�) is the peridynamic function up to second 

order, 
(
0 < P1 + P2 ≤ 2,N ≤ 2

)
 , ni = 1, 2 , and the term 

Pi(i = 1, 2) is the differential order with respect to variables 
xi(i = 1, 2) and  �niPi

 is the Kronecker delta, so that if ni = Pi 
then �niPi

= 1 , otherwise �niPi
= 0.

The peridynamic function for each material point can 
be constructed as [22]

in which aP1P2

q1q2
 is the coefficient matrix, �(|�|) is a weight 

function which specifies the level of non-local interaction 
of material points interacting with its family members. The 
influence of the weight function reflects the decrease of the 
interaction level with increase in distance between material 
points. A preferred weight function used in this study can 
be denoted as [22]

(4)�1(�) =

(
g10
1
(�)

g01
1
(�)

)

(5)�2(�) =

[
g02
2
(�) g11

2
(�)

g11
2
(�) g20

2
(�)

]
,

(6)

∫
Hx

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�0
1
�1
2
�0
1
�1
2
�0
1
�1
2
�0
1
�1
2
�0
1
�1
2

�0
1
�2
2
�0
1
�2
2
�0
1
�2
2
�0
1
�2
2
�0
1
�2
2

�1
1
�0
2
�1
1
�0
2
�1
1
�0
2
�1
1
�0
2
�1
1
�0
2

�1
1
�1
2
�1
1
�1
2
�1
1
�1
2
�1
1
�1
2
�1
1
�1
2

�2
1
�0
2
�2
1
�0
2
�2
1
�0
2
�2
1
�0
2
�2
1
�0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g01
1
(�)

g02
2
(�)

g10
1
(�)

g11
2
(�)

g20
2
(�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dV � =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎦

(7)
1

n1!n2!∫
Hx

�
n1
1
�
n2
2
g
P1P2

N
(�)dV � = �n1P1

�n2P2

(8)g
P1P2

P1+P2

(�) =

2∑
q1=0

2−q1∑
q2=0

aP1P2

q1q2
�(|�|)�q1

1
�
q2
2

(9)�(|�|) = exp
−
(

2|�|
�

)2

.

The unknown coefficients . in the peridynamic function 
in Eq. (8) can be expressed as

As a result, using Eqs. (8)–(10), the peridynamic function 
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Alternatively, these can be written in a compact form as

Substituting Eqs. (12) and (9) in orthogonality property 
relationship given in Eq. (6) leads to

Solving Eq. (13) leads to the explicit form of the coef-
ficient matrix aP1P2q1q2

 , and then explicit form of peridynamic 
function gP1P2

N
 can be obtained using Eq. (12).

3  The governing equations of motion 
for multiphase fluid flow

Fluid dynamics in multiphase fluid flow is governed by 
continuity equation, Navier–Stokes equation, and energy 
equation.

3.1  Mass conservation

The mass conservation in multiphase fluid flow motion can 
be described by the continuity equation as

in which � is density, � is velocity, and t is time.

3.2  Momentum conservation

The Navier–Stokes equation in Lagrangian description has 
the form of [37]
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sion force. The divergence of stress ∇ ⋅ � can be represented 
as [35]
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in which p is the hydrostatic pressure, and � is the second-
order unit tensor. The shear-rate tensor �  can be defined as 
[35]

in which � is the dynamic viscosity, and �̇ is the shear strain 
rate. The divergence of the shear-rate tensor can be repre-
sented as [35]
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Fig. 1  The transition band and unit normal vectors between two fluids
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If the fluid is incompressible, Eq. (20) can be further sim-
plified by continuity equation. As a result, the Navier–Stokes 
equation for incompressible fluid flow becomes [10]

The continuum surface force method [38] is adopted for 
modelling the surface tension force in multiphase fluid flow 
as the pressure jump occurred at the phase interface. The 
surface tension force is applied as a volumetric force and is 
distributed along a transition band (Fig. 1) along the inter-
face. A weight function is acted on the transition band area 
to convert surface tension �s into force per unit volume �s [6]. 
This can be represented as [38]

where �lg is the weight function for surface tension that rep-
resents the magnitude distribution of the surface tension 
force at the transition band, which has a peak at the inter-
face and decays with the distance away from the interface. 
The weight function, �lg , is further described in Sect. 4.2.3.

The volumetric surface tension force �s comprises the 
contributions from normal and tangential directions [6] 
which can be expressed as

The normal component of surface tension force �s,n rep-
resents the surface tension force due to the local curvature 
at the transition band area. This can be defined as

in which � is the temperature-dependent surface tension 
coefficient in N∕m , � is the interface curvature, and �̂lg is 
the unit normal vector at the interface between two different 
fluids (Fig. 1).

The temperature-dependent surface tension coefficient can 
be written as [10]

in which d�(T)
dT

 is the surface tension temperature coefficient 
[39], T  is the current temperature, and �0 is the surface ten-
sion coefficient at reference temperature T�0.

As the surface tension coefficient � is a function of tempera-
ture, the surface tension force in tangential direction can occur 
due to temperature gradient and lead to Marangoni convec-
tion [10]. Therefore, the term, �s,t , on the right-hand side of 
Eq. (23) represents the Marangoni force and acts tangentially 

(20)�̇� =
1

2

[
∇⊗ � + (∇⊗ �)T

]
.

(21)�
��

�t
= −∇p + �Δ� + � + �s.

(22)�s = �s�lg,

(23)�s =
(
�s,n + �s,t

)
�lg = �s,n + �s,t .

(24)�s,n = ���̂lg�lg

(25)� = �0 −
d�(T)

dT

(
T − T�0

)

to the interface, which drives the fluid from low surface ten-
sion region to high tension regions. The tangential component 
of the surface tension force is given as [6],

where ∇S is the surface gradient, and ∇S� can be represented 
as [40]

in which ∇ST  is the surface temperature gradient and can be 
expressed as [40]

As a result, the Marangoni force can be written as

3.3  Equation of state

Assuming the fluid is barotropic, an additional equation is 
required to uncouple the mass and momentum equations 
[41]. In this study, the incompressible fluid flow motion is 
constrained by a weakly compressible equation of state, whose 
density is only a function of pressure. A typical equation of 
state is given as [42]

in which �0 is the initial density, c0 is the numerical speed of 
sound, and � is the adiabatic exponent. p0 is the background 
pressure which prevents a negative pressure field and pro-
vides tension stabilities [43]. As the density changes and 
it is updated using continuity equation given in Eq. (14). 
The pressure field is calculated by the change between the 
updated density, � and its initial density, �0 in the equation of 
state (Eq. (30)). In two-phase fluid flow motion, the equation 
of state for each type of fluid flow can be expressed as [44]

and
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The adiabatic exponent � defines the degree of incom-
pressibility and pressure of fluid response to density per-
turbations. As density perturbations increase, a high adi-
abatic exponent can cause progressively large error in the 
pressure field. For laminar flow with low Reynolds num-
bers, the adiabatic exponent is taken as one ( �l = �g = 1) 
to keep the error in density and pressure proportional [42].

In weakly compressible approach, the density variation 
Δ� in each fluid domain need to be [39]

This criterion is checked at the end of the simulation 
in each case.

The numerical speed of sound, c0 , in Eq. (30) needs to 
be chosen large enough to limit the density change thresh-
old up to 1% [39]. On the other hand, the numerical sta-
bility is dependent on the time step size. The numerical 
speed of sound should not be too large to make the time 
step excessively small [42].

In this study, as the fluid domain is composed of mul-
tiphase flows with different density ratios, the numerical 
speed of the sound is estimated by the highest pressure 
change Δp in the denser fluid as [45]

For gravity-based flow, the maximum pressure variation 
in Eq. (34) is estimated by [42]

where g is the force of gravity, and H is the reference depth.
For surface tension-driven flows, the pressure changes 

in Eq. (34) is approximated using Young–Laplace equation 
[9]. The work carried out by the pressure on an interfacial 
area can be represented as

in which dV  and dA are infinitely small volume and area at 
the interface, respectively.

For a two-dimensional circular droplet, the pressure 
change at the interfacial area can be computed as

where r is the radius and R is the characteristic radius of 
droplet curvature. The surface tension coefficient, � , is cal-
culated from Eq. (25).

On the other hand, the numerical speed of sound in lighter 
fluid is calculated as [44]

(33)
Δ𝜌

𝜌
≪ 1.

(34)c0,g ≫

√
Δp

𝜌0,l
.

(35)Δp = �0,lgH,

(36)Δp = �
dA

dV

(37)Δp = �
dA

dV
= �

dA

dr

dr

dV
= �

1

R
,

in which c0,l is obtained from Eq. (34).
Note that by comparing the numerical speed of sound in 

denser in Eq. (34) and lighter fluids in Eq. (38), it can be 
found that the numerical speed of sound c0,g in lighter fluid is 
higher than the numerical speed of sound c0,l in denser fluid 
when the density ratio �0,l∕�0,g is significant.

3.4  Energy equation

The local form of total energy in a fluid system can be rep-
resented as [46]

in which e is the internal energy per unit mass, 1
2
|�|2 is the 

kinetic energy per unit mass, and S is the source term. The 
first term on right-hand side, ∇ ⋅ q , is the net rate of heat 
addition due to conduction. The third term on the right-hand 
side, ∇ ⋅ (p�), represents the rate of doing work against pres-
sure. The term ∇ ⋅ (� ⋅ �) represents the rate of doing work 
against viscous force, and the term �(g ⋅ �) represents the rate 
of doing work against the body force.

Using product rule within the divergence operator ( ∇⋅ ), 
the rate of doing work against pressure and viscous force 
can be rewritten as

and

The mechanical energy equation can be derived from the 
momentum equation by multiplying velocity with momen-
tum equation which leads to [46]

Using Eq. (40)-Eq. (41), mechanical energy equation in 
Eq. (42) can be rewritten as [46]

In this study, the fluid is assumed to be incompressible for 
which the speed of fluid flow is lower than the compressible 
flow. Therefore, the mechanical energy can be subtracted 

(38)c0,g =

√√√√�0,lc
2

0,l
�g

�l�0,g

(39)

�

�t
�
(
e +

1

2
|�|2

)
= −∇ ⋅ q + S − ∇ ⋅ (p�) + ∇ ⋅ (� ⋅ �) + �(� ⋅ �)

(40)∇ ⋅ (p�) = � ⋅ ∇p + p∇ ⋅ �

(41)∇ ⋅ (� ⋅ �) = � ∶ (∇⊗ �) + � ⋅ (∇ ⋅ �).

(42)
�

�t

1

2
�|�|2 = −(∇p) ⋅ � + (∇ ⋅ �) ⋅ � + (��) ⋅ �.

(43)

�
�t

1
2
�|�|2 + ∇ ⋅

(1
2
��|�|2

)

= −∇ ⋅ (p�) + p∇ ⋅ � + ∇ ⋅ (� ⋅ �)
− �:(∇⊗ �) + (��) ⋅ �.
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from the total energy equation and leads to the internal 
energy equation as [17]

Defining internal energy as [17]

in which Cp is the specific heat capacity and substituting 
Eq. (45) into Eq. (44) leads to [46]

The heat flux q based on Fourier’s Law can be represented 
as [46]

where k is the thermal conductivity. In the case of sudden 
expansion or compression phenomenon, the term p∇ ⋅ � rep-
resents energy for the cooling or heating a fluid internally 
[47]. Since the focus of this study is on multiphase flow and 
there are no significant sudden volume changes in the fluid 
domain, this term is omitted from the energy equation. On 
the other hand, the term � ∶ (∇⊗ �) representing the motion 
energy is irreversibly exchanged into thermal energy, and 
it is considerable if the speed of the fluid is relatively high 
[47]. As the current study focuses on the multiphase flow 
motion at a low Reynolds number, this term is also not con-
sidered in the energy equation. The thermal conductivity k 
is assumed to be a constant number as a result, the internal 
energy can be rewritten as

4  PDDO governing equations

4.1  Non‑local form of continuity equation

Velocity divergence in local form can be written as

The partial derivative terms in velocity divergence can be 
replaced by the first-order peridynamic function as

(44)
𝜕𝜌e

𝜕t
= −∇ ⋅ q + S − p∇ ⋅ � + � ∶ (∇⊗ �).

(45)e = CpT

(46)
𝜕𝜌CpT

𝜕t
= −∇ ⋅ q + S − p∇ ⋅ � + � ∶ (∇⊗ �).

(47)q = −k∇T ,

(48)
��CpT

�t
= k∇2T + S.

(49)
∇ ⋅ �(�) =

2
∑

i=1

�vi(�)
�xi

=
�v1(�)
�x1

+
�v2(�)
�x2

.

Therefore, the velocity divergence in non-local form can 
be constructed as

As a result, the non-local form of mass conservation can 
be represented as

4.2  Non‑local form of terms in Navier–Stokes 
equation

As discussed in Sect. 3, the Navier–Stokes equation incor-
porates terms for pressure gradient, viscosity, surface ten-
sion, and body forces. The non-local form of each term is 
expressed in this session.

4.2.1  Pressure gradient

The pressure gradient term ∇ ⋅ (−p�) in local form can be 
written as

Correspondingly, using the first-order peridynamic func-
tion, its non-local form can be expressed as

4.2.2  Viscous force

Local form of the velocity gradient can be written as

(50)
�v1(�)

�x1
= ∫ Hx

g10
1
(�)

(
v1
(
�

�)
− v1(�)

)
dV�

�v2(�)

�x2
= ∫ Hx

g01
1
(�)

(
v2
(
�

�)
− v2(�)

)
dV

�

.

(51)

∇ ⋅ �(�) = ∫ Hx

(

g101 (�) g011 (�)
)

(

v1
(

�′) − v1(�)
v2
(

�′) − v2(�)

)

dV
′

= ∫ Hx

�1(�) ⋅
(

�
(

�′) − �(�)
)

dV
′
.

(52)
��(�)

�t
= −�(�)∫ Hx

�1(�) ⋅
(
�
(
�

�)
− �(�)

)
dV

�

.

(53)∇p(�) =

( �p(�)

�x1
�p(�)

�x2

)
.

(54)
∇p(�) = ∫ Hx

(
p
(
�

�)
− p(�)

)( g10
1
(�)

g01
1
(�)

)
dV�

= ∫ Hx

(
p
(
�

�)
− p(�)

)
�1(�)dV

�
.
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The velocity gradient matrix can be transformed into 
its non-local form using peridynamic function which can 
be expressed as

Local form of Laplacian operator is defined by the 
divergence of the gradient as

Hence, the non-local form Laplacian operator can be 
constructed as

Subsequently, the non-local form of viscous force in a 
compact form can be written as

(55)∇⊗ �(�) =

(
𝜕

𝜕x1
𝜕

𝜕x2

)(
v1(�) v2(�)

)
=

[ 𝜕v1(�)

𝜕x1

𝜕v2(�)

𝜕x1
𝜕v1(�)

𝜕x2

𝜕v2(�)

𝜕x2

]
.

(56)

∇⊗ �(�) = ∫ Hx

(

g101 (�)
g011 (�)

)

(

(

v1
(

�′
)

− v1(�)
) (

v2
(

�′
)

− v2(�)
)

)

dV′

= ∫ Hx

�1(�)
(

�
(

�′
)

− �(�)
)TdV′

= ∫ Hx

�1(�)⊗
(

�
(

�′
)

− �(�)
)

dV′.

(57)

Δ�(�) = ∇ ⋅ (∇⊗ �(�))

= (∇⊗ �(�))� ⋅ ∇ =
⎡

⎢

⎢

⎣

�v12(�)
�x12

+ �v12(�)
�x22

�v22(�)
�x12

+ �v22(�)
�x22

⎤

⎥

⎥

⎦

= tr
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

�2

�x12
�2

�x1�x2
�2

�x1�x2
�2

�x22

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

(

v1(�)
v2(�)

)

.

(58)
Δ�(�) = tr

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

�2

�x12
�2

�x1�x2
�2

�x1�x2
�2

�x22

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

(

v1(�)
v2(�)

)

= ∫ Hx

tr
(

�2(�)
)

(

v1
(

�′
)

− v1(�)
v2
(

�′
)

− v2(�)

)

dV′.

(59)�Δ�(�) = �∫ Hx

tr
(
�2(�)

)(
�
(
��
)
− �(�)

)
dV�

.

4.2.3  Surface tension force in normal direction

The classical form of normal surface tension �s,n repre-
sented in terms of surface tension coefficient � , unit nor-
mal vector �̂lg , weight function �lg and interface curvature 
� is denoted in Eq. (24). To construct the normal surface 
tension in a non-local form, it is first necessary to con-
struct the fluid interface normal vector, �̂lg , and curvature, 
� , in a non-local form.

According to the continuous surface force method [38], 
as the colour function has a unit jump at the interface, it 
can be used to identify and track the position of the inter-
face. The normal vectors between fluid and gas interface 
can be represented by the gradient of the colour function, 
∇clg(�) , as

where clg(�) is the colour function at material point � . The 
difference of colour function between a pair of material 
points can be represented by

In numerical simulations, if there is a large density differ-
ence between two fluids at the interface, a weighted-density 
approach is used as an alternative method to determine the 
difference of colour function [8], i.e.

where �� is the density of material point located at � , and ��′ 
is density of material point located at �′.

Following the approach purposed by Morris [6],the unit 
normal vector between two fluid domains, �̂lg(�), as shown 
in Fig. 1 then can be formulated using the gradient of colour 
function in Eq. (60) as

(60)
∇clg(�) =

⎛

⎜

⎜

⎝

�clg(�)
�x1

�clg(�)
�x2

⎞

⎟

⎟

⎠

= ∫ Hx

(

clg
(

�′
)

− clg(�)
)

(

g101 (�)
g011 (�)

)

dV′

= ∫ Hx

(

clg
(

�′
)

− clg(�)
)

�1(�)dV′,

(61)

clg
(
��
)
− clg(�) =

{
1,

0,

if�and�
�

areinsamef luiddomain

otherwise
.

(62)

clg
(
��
)
− clg(�) =

{
2��

��+���
,

0,

if�and��areinsamef luiddomain

otherwise
,

Fig. 2  Two fluids come into 
contact at a solid surface, and 
the triple line region at the point 
of contact
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In addition, the weight function for surface tension in 
Eq. (24) in continuum surface force method is taken as the 
magnitude of the gradient of the colour function [6] and its 
non-local form is provided as [7]

the weight function for surface tension is used to convert the 
surface tension force into volumetric force, and distribute the 
force along the fluid interface transition band area.

Figure  2 shows a droplet surrounded by a gaseous 
fluid and resting on a solid surface. The unit normal vec-
tors, �̂lg(�) , from Eq. (63) represent the normal direction 
of the interface between liquid and gaseous fluid, and they 
can be accurately computed when material points in each 
fluid domain fully interact with their family material points 
in fluid domain. However, at the triple line region, where 
the liquid–gas interface meets the solid–liquid interface in 
Fig. 2, the material points in the fluid domain close to the 
solid wall do not have enough family material points to con-
tribute to the integral equation, unit normal vectors between 
fluids calculated according to Eq. (63) can be corrupted. 
Moreover, as the curvature is calculated from the divergence 
of unit normal vectors at the interface, these corrupted unit 
normal vectors result in erroneous curvature calculations.

Therefore, consideration is required when computing unit 
normal vectors at the triple line region. In this study, the 
corrupted unit normal vectors at this region are corrected 
through a normal prescription scheme [9].

The unit normal vectors at the triple line region, �̂lg,cor(�) , 
as shown in Fig. 3 can be prescribed as [9]

in which �̂t is the projection of unit normal vector, �̂lg(�) , 
between the denser fluid and the lighter fluid on the 
solid–fluid interface, �̂sf (�) is the unit normal vector between 

(63)

�̂lg(�) =
∇clg(�)

|||∇clg(�)
|||
=

∫
Hx

(
clg

(
��
)
− clg(�)

)
�1(�)dV

�

|||∫ Hx

(
clg(�

�) − clg(�)
)
�1(�)dV

�|||
.

(64)

�lg(�) =
|||∇clg(�)

||| =
|||||∫ Hx

(
clg

(
��
)
− clg(�)

)
�1(�)dV

�
|||||
,

(65)�̂lg,cor(�) = �̂t(�)sin�eq − �̂sf (�)cos�eq

solid phase and fluid phase, and �eq is the equilibrium con-
tact angle.

When a droplet is in contact with a solid surface, the bal-
ance between the adhesive and cohesive forces in the droplet 
forms the equilibrium contact angle �eq . Equation (65) pre-
scribes unit normal vectors at the triple line region point in 
the direction of the interface normal that forms the equilib-
rium contact angle �eq . If a droplet comes into contact with 
a solid surface and forms an instantaneous contact angle � 
not equal to the equilibrium contact angle �eq , the curvature 
obtained by the divergence of the prescribed unit normal 
vectors �̂lg,cor(�) will drive the interface to move until the 
droplet forms an equilibrium contact angle with the solid 
interface [9].

Following a similar approach introduced in continuum 
surface force method, the unit normal vector between solid 
phase and fluid phase, �̂sf (�), in Eq. (65), can be formulated 
as [39]

in which ∇csf (�) is the gradient of the colour function 
between fluid and solid phase. Similarly, its non-local form 
can be represented as

where csf (�) is the colour function at material point � for 
distinguishing fluid and solid phase. The difference of colour 
function between a pair of material points can be defined as

Consequently, the projection of unit normal vector 
between liquid and gaseous fluid on the solid–fluid interface, 
�̂t(�) , in Eq. (65) can be computed as [9]

(66)�̂sf (�) =
∇csf (�)

|||∇csf (�)
|||

(67)
∇csf (�) =

⎛

⎜

⎜

⎝

�c(�)
�x1
�c(�)
�x2

⎞

⎟

⎟

⎠

= ∫ Hx

(

csf
(

�′
)

− csf (�)
)

(

g101 (�)
g011 (�)

)

dV′

= ∫ Hx

(

csf
(

�′
)

− csf (�)
)

�1(�)dV′,

(68)csf
(
��
)
− csf (�) =

{
1,

0,

if�and��areinsamephase

otherwise
.

Fig. 3  Unit normal vector 
�̂lg,cor(�) at the triple line region 
and ordinary computed unit 
normal vector �̂lg(�)
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where �̂sf (�) is provided in Eq. (66) and �̂lg(�) is provided 
in Eq. (63).

The ordinary computed unit normal vectors �̂lg(�) from 
Eq. (63) and prescribed unit normal vectors �̂lg,cor(�) at the 
triple line region from Eq. (65) are represented in Fig. 3. Since 
the calculation of �̂lg,cor(�) depends on the equilibrium con-
tact angle �eq , when current contact angle � is greatly different 
from equilibrium contact angle �eq , a sharp transition can be 
observed between �̂lg(�) and �̂lg,cor(�) . This sharp transition 
will cause a discontinuity when computing the curvature. As 
a result, a smoothed unit normal correction scheme is imple-
mented here to ensure a smooth transition from prescribed unit 
normal vectors to ordinary computed unit normal vectors, the 
smoothed interface unit normal vectors can be obtained as [9]

where �̂lg,cor(�) can be calculated from Eq. (65) and �̂lg(�) 
can be calculated from Eq. (63). The parameter fw,x is a 
transition function and determines the influence of the pre-
scribed normal vector at the triple line region which depends 
on the distance to the wall. It is provided as [35]

in which dw is the distance between fluid material points 
and the solid–fluid interface.

The dmax in Eq. (71) is denoted as the maximum smooth 
distance from the wall, in this work, it is taken as 2Δx , where 
Δx is the spacing between material point. The schematic dia-
gram of the smoothed interface unit normal vectors calculated 
from Eq. (70) is shown in Fig. 4. Section 6.2 gives a numeri-
cal example of the effectiveness of this smoothing correction 
method.

(69)�̂t(�) =
�̂lg(�) −

(
�̂lg(�) ⋅ �̂sf (�)

)
�̂sf (�)

|||�̂lg(�) −
(
�̂lg(�) ⋅ �̂sf (�)

)
�̂sf (�)

|||
,

(70)�̂∗
lg
(�) =

fw,x�̂lg(�) +
(
1 − fw,x

)
�̂lg,cor(�)

|||fw,x�̂lg(�) +
(
1 − fw,x

)
�̂lg,cor(�)

|||
,

(71)fw,x =

⎧
⎪⎨⎪⎩

0 dw < 0

dw∕dmax if0 < dw < dmax

1 dw > dmax

Subsequently, the surface curvature � in Eq. (24) then can 
be calculated via the divergence of the smoothed interface unit 
normal vector, i.e.

As suggested in Morris’ work [6], curvature directly 
computed from Eq. (72) can lead to errors at the edges 
of the transition region, as the smoothed interface unit 
normal vectors are relatively small and can have errone-
ous directions when they are away from the interface. 
Therefore, the surface curvature cannot be approximated 
accurately. This problem can be addressed by introducing 
selection criteria to determine if a ‘reliable’ normal vector 
can be obtained for divergence computation. A function at 
each material point is used to distinguish ‘reliable’ normal 
vectors that can contribute to the curvature approximation 
in Eq. (72) [6], i.e.

and

where 𝜖 ≪ 1 is a user-defined tolerance [6]. As the unit nor-
mal vectors below the tolerance are not contributed to the 
curvature computation, an intermediate curvature estimation 
needs to be used to sum over reliable normal vectors [6]. 
As a result, the curvature in Eq. (71) can be recomputed as

On the other side, considering material points at the edge 
of the phase transition region, whose family material points 
are within the horizon but outside the transition region, the 
interface unit normal vectors at these family material points 

(72)

��(�) = −∇ ⋅ �̂∗
lg
(�) = −∫ Hx

�1(�) ⋅
(
�̂∗
lg

(
��
)
− �̂∗

lg
(�)

)
dV�

.

(73)N� =

{
1,

0,

if
|||fw,x��lg(�) +

(
1 − fw,x

)
��lg,cor(�)

||| > 𝜖

otherwise

(74)�̂∗
lg
(�) =

{
fw,x�̂lg(�)+(1−fw,x)�̂lg,cor(�)

|fw,x�̂lg(�)+(1−fw,x)�̂lg,cor(�)| ,
0,

ifN� = 1

otherwise

,

(75)

�∗
�
(�) = −∫ Hx

min
(
N�� ,N�

)
�1(�) ⋅

(
�̂∗
lg

(
��
)
− �̂∗

lg
(�)

)
dV�

.

Fig. 4  Corrected unit normal 
vectors distributed along the 
fluid interface
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are zeros. As a result, a correction factor is used to consider 
the truncated material points, and it can be represented as [7]

in which ω(�) is the weight function as represented in Eq. (9).
Based on Eq. (70), the smoothed interface unit normal 

vectors,�̂∗
lg
(�) obtained for material points at each fluid 

domain always point from themselves to the fluid interface. 
Considering a pair of material points which � is in one fluid 
domain and �′ is in the other fluid domain, the direction of 
their unit normal vectors will opposite with each other. 
Therefore, a phase normal coefficient ��′

�
 is added to reverse 

the unit normal vector direction if it is opposite from the unit 
normal vector at material point � [44]. Hence, the interface 
curvature in this study is computed as

with

Finally, the non-local form of the normal surface tension 
can be expressed as

(76)� =
∫

Hx
min(N�� ,N�)ω(�)dV

�

∫
Hx
ω(�)dV�

(77)

�∗∗
�
(�) =

�∗
�
(�)

�
= −

∫
Hx
min(N�� ,N�)�1(�) ⋅

(
���

�
�̂∗
lg,��

− �̂∗
lg,�

)
dV�

∫
Hx

min(N�� ,N�)ω(�)dV
�

∫
Hx

ω(�)dV�

(78)���

�
=

{
−1,

1,

if��isnotinthesamef luiddomainwith�

if��isinthesamef luiddomainwith�
.

in which � is given by Eq. (25), �∗∗
�
(�) is the curvature as 

described in Eq. (77), �̂∗
lg
(�) is the smoothed unit normal 

vector between liquid–gas interface as described in Eq. (70) 
and �lg is weight function for surface tension as described in 
Eq. (64).

4.2.4  Marangoni force

The classical form of the Marangoni force is given in 
Eq. (29).

To evaluate the non-local form of Marangoni force, the 
temperature gradient ∇T  in non-local form needs to be 
developed. The temperature gradient ∇T  in local form is 
given as

Therefore, the non-local form of the temperature gradient 
using the peridynamic function can be expressed as

As a result, the non-local form of Marangoni force can be 
represented as

(79)�s,n = ��∗∗
�
(�)�̂∗

lg
(�)�lg(�)

(80)∇T(�) =

(
�T(�)

�x1
�T(�)

�x2

)
.

(81)
∇T(�) = ∫ Hx

(

T
(

�′
)

− T(�)
)

(

g101 (�)
g011 (�)

)

dV′

= ∫ Hx

(

T�′ − T�
)

�1(�)dV′.

Fig. 5  Location of material 
point �n

i
 with its family mem-

bers at t = tn , and the updated 
location at t = tn+1
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where ∇T(�) is calculated from Eq. (81), �̂∗
lg
(�) is calculated 

from Eq. (70), and �lg is calculated from Eq. (64).

4.3  Thermal model

The classical form of the energy equation is given in Eq. (48). 
The local form of the divergence of the heat flux in the equa-
tion can be written as

The second-order partial derivative for temperature can be 
represented by second-order peridynamic function as

As a result, the Lagrangian description of internal energy 
equation in non-local form can be written as

5  Numerical implementation

The non-local form of governing equations is solved numeri-
cally. The fluid domain is discretised into a series of material 
points, and each material point carries information such as 
material density, viscosity, pressure, velocity, displacement, 
and temperature. Since PDDO inherits analogous concepts 
with peridynamics theory, the long-range force is considered 
in the simulation domain representing a material point inter-
acting with a series of family material points within a hori-
zon. As shown in Fig. 5, �n

i
 represents the current coordinate 

of the material point i at time t = tn , and material point i 

(82)�s,t =
d�(T)

dT

[
∇T(�) −

(
∇T(�) ⋅ �̂∗

lg
(�)

)
�̂∗
lg
(�)

]
�lg(�),

(83)

∇ ⋅ q(�) = −k
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�

�x2

)( �T(�)

�x1
�T(�)

�x2

)
= −k
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�2T(�)

�x1
2

+
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�x2
2

)
.

(84)
�2T
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2
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dV�

�2T
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2
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dV�

.

(85)

�(�)
�Cp(�)T(�)

�t
= k∫ Hx

tr
(
�2(�)

)(
T
(
��
)
− T(�)

)
dV� + S(�).

interacts with family material points j at �n
j
 within a range 

of � . With the updated Lagrangian description, the location 
of the material points changes at every time step. Therefore, 
a material point may interact with different family material 
points at time t = tn+1 and the peridynamics function needs 
to be reconstructed based on the updated configuration.

5.1  Discretised form of governing equations using 
PDDO

To ensure the mass conservation is maintained at the fluid 
domain, each material point in the simulation domain is 
assigned with an initial mass after the simulation domain is 
discretised. The mass at each material point remains same 
during simulation, as the density field of the material point 
is updated by continuity equation, the volume of material 
point can be updated correspondingly at each time step as

where mi is the initial mass of material point i , and �n
i
 is the 

density at the current time step.
The discretised form of the peridynamic function up to 

second order is given as

and

in which the relative distance vector between a pair of mate-
rial points i and j can be represented as

where superscript n represents the current time step.
As introduced in Eq. (12), peridynamic function up to 

second order is represented as

(86)Vn
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,
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in which coefficient matrix in Eq. (90) is obtained by numer-
ically solving Eq. (13) as

with

and

where Vn
j
 is the volume of family material point j , Ni repre-

sents the number of family material points of material point 
i.

As suggested by Madenci et al. [31], horizon size in 
the numerical simulation is chosen as maximum order of 
differentiation plus one. Since, the maximum order of dif-
ferentiation is two, the horizon size is chosen as 3Δx , in 
which Δx is spacing between material points at the initial 
configuration.
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The discretised form of the continuity equation is given 
as

in which �n+1
i

 is the updated density, Δt is the time step size, 
and term �n

i
 and �n

j
 represent the velocity field of material 

point i and j , respectively.
In addition, the pressure field of the material point i at time 

t = tn is computed by equation of state as expressed in Eq. (30) 
as
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)�i

− 1

]
+ p0,i

in which pn
i
 is the pressure at the current time step and p0,i 

is the background pressure. The background pressure in this 
study is estimated as

Depending on the type of the fluid motion, the numerical 
speed of sound c0,i of material points in denser and lighter 
fluid phase is estimated using Eqs. (34) and (38), respectively.

After the pressure field at each material point is computed 
by Eq. (96), the discretised form of the pressure gradient in 
momentum equation then can be represented as

(97)p0,i = 0.05 ×
�0,ic

2

0,i

�i
.
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The discretised form of the viscous force in momentum 
equation can be computed as

The discretised form of the normal surface tension force in 
momentum equation is calculated from Eq. (79) as
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in which � is the temperature-dependent surface tension 
coefficient and is computed from Eq.  (25). The term 
clg

n
j
− clg

n
i
 represents the difference of colour index between 

a pair of material points, and ��

i
 is the phase normal coeffi-

cient. �̂∗n
lgi

 is the smoothed interface unit normal, at time t = tn 
this can be expressed as

where fw,i is the transition function. The ordinary computed 
unit normal vector, �̂lgin,is calculated as

and the prescribed unit normal vector at triple line region, 
�̂lg,cori

n,is calculated as

with

and
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in which the term csf nj − csf
n
i
 represents the difference of col-

our index for distinguishing fluid and solid phase between a 
pair of material points. �eq is a user predefined equilibrium 
contact angle before simulation.

N� is the unit normal index and is calculated as

The discretised form of the Marangoni force in momen-
tum equation then can be calculated from Eq. (82) as

in which d�(T)
dT

 is the surface tension temperature coefficient 
as shown in Eq. (25).

As a result, the discretised form of momentum equation 
can be represented as

where �n+1
i

 is the updated acceleration at t = tn+1 and �i is 
the body force density. When the density ratio between two 
fluids is relatively large, the discontinuity of the fluid density 
and viscosity field will present at the transition band of the 
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Fig. 6  Schematic drawing of interface between two fluids and the 
boundary material points
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interface. As PDDO is a non-local approach, the discontinu-
ity will cause stability issues 0. In order to reduce numerical 
oscillations and prevent material points’ penetration during 
the simulation, the density and viscosity coefficient can be 
smoothed by harmonic means as 0

and

The harmonic means for density and viscosity treatment 
is validated for multiphase flow fluid motion at low Rey-
nold’s number. In the case of the flow motion with high Rey-
nold’s number, additional numerical treatments are required 
[7]. In this study, only the flow with low Reynold’s number 
is investigated.

The discretised form of the internal energy equation can 
be represented as

Similarly, to prevent numerical oscillation in energy equa-
tion and to have a smooth transition of the heat conductiv-
ity coefficient at the interface region, the coefficient kn

i
 in 

Eq. (111) is also smoothed by harmonic means as

5.2  Boundary conditions

As shown in Fig. 6, the boundary conditions are imple-
mented through fictitious layers in the numerical simulation, 
which is widely adopted in peridynamic studies [24]. Three 
variables are considered in boundaries, which are velocity, 
pressure, and temperature.

Slip or no-slip velocity boundary conditions are used at 
wall boundary and implemented by material points in ficti-
tious layers. The velocities of the material points in ficti-
tious layers are computed based on the velocities of material 
points in the fluid domain. Different methods for imple-
menting these boundary conditions are used in numerical 
simulations, such as mirroring material points at boundary 
approach as suggested in Ref. [24], so that the variable at a 
material point in the fictitious layers is mirrored by a mate-
rial point at the fluid domain. Since the fluid particles are 
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moving during the simulation, instead of mirroring the mov-
ing fluid particles, a simplified boundary implementation 
using weighted average approach is used to keep the material 
points in the fictitious region at fixed locations [7].

For slip or no-slip velocity boundary conditions, the 
velocity of material point i in a fictitious layer at the current 
time step n is calculated as

with

in which �wall is the wall velocity, the subscripts j and k 
represent the family material points of i in fluid 1 and fluid 
2, respectively. The superscript N1 and N2 represents the 
material point i in the fictitious layer has N1 family material 
points in fluid 1 and N2 family material points in fluid 2, 
respectively. The velocity of family material points of i in 
fluid 1 and fluid 2 at current time step n are denoted by �n

j
 

and �n
k
 , respectively.

The weight function in Eq. (113) between a pair of mate-
rial points is computed as [43]

where the term e represents Euler number.
Without considering the gravity force, the pressure of 

material points in fictitious layers are calculated from the 
pressure of the material points in fluid domain as [7]

in which pn
j
 and pn
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 are the pressure of family material points 

of i in fluid 1 and fluid 2 at current time step n.
Dirichlet and Neuman temperature boundary conditions 

are also implemented by material points in fictitious layers. 
With the analogous ideas of computing velocity and pressure 
for material points at fictitious layers, the temperature of 
material point i at current time step n is computed from its 
family material points temperature Tn
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fluid 2 as
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with

in which Twall is the wall temperature.

5.3  Time stepping scheme

The momentum equation is integrated explicitly in time 
using Velocity Verlet scheme as 0,

and the displacement field at each material point in fluid 
domain is updated by

As a result, the updated location of the material points 
can be found as

in which the superscript 0 represents initial coordinate of 
the material points.

To maintain the numerical stability in time integration, 
the time step size Δt is constrained by the Courant–Frie-
drichs–Lewy (CFL) condition [48]. The CFL condition in time 
integration is based on several conditions. The time step size 
for numerical speed of sound condition is [49]

in which cmax is the maximum numerical speed of sound 
among all phases. The estimation of numerical speed 
of sound in each fluid phase is provided in Eq. (34) and 
Eq. (38), and �max is the maximum velocity in the simula-
tion domain.

The time step size for viscous condition is constrained 
as [49]
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 is the maximum kinematic viscosity among 
all phases.
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The time step size for body force condition is applied as 
[49]

in which g is the gravity acceleration.
The time step size for surface tension condition is imple-

mented as [8]

In addition, the time step size in thermal analysis is 
restricted as [37]

In processing the numerical time integration, the time step 
size is chosen as the minimum of above criteria as

5.4  Material points shifting technique

Since distorted material points induce stability issues in pro-
cessing the numerical integration [50], the position shifting 
technique is applied at material points at each time step in 
fluid domain to avoid clustering problems. The application 
of position shifting technique is introduced in Ref. [7] for 
PDDO. At each time step, the displacement for each material 
point in fluid domain �n+1

i
 is corrected by a shifted distance (

Δ�n+1
i

)∗ , which is represented as

The shifting distance is defined as [7]

in which �i is the displacement shifting vector. To ensure 
the shifted distance can sufficiently prevent the instability 
and do not cause accuracy issues, the constant C is typically 
taken between 0.01 and 0.1. The shifting magnitude �MPST 
is set as [50]

In addition, the displacement shifting vector in Eq. (129) 
is provided as [7]

(124)Δtb ≤ 0.25

√
Δx

g

(125)Δtsf ≤ 0.25

√
�0Δx

3

2��
.

(126)Δtt ≤ 0.125
�0CpΔx

2

k
.

(127)Δt = min
{
Δtv,Δtv,Δtb,Δtsf ,Δtt

}
.

(128)
(
�n+1
i

)∗
= �n+1

i
+
(
Δ�n+1

i

)∗
.

(129)
(
Δ�n+1

i

)∗
= C�MPST�i

(130)�MPST = �maxΔt.
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The summation of distance vectors in Eq. (131) describes 
the anisotropy of the spacing between material points, and 
�
2

i

|||�
n
ij

|||
2 is used as a weight function to evaluate the influence 

from material point j [21]. The averaged material points 
spacing ξi in Eq. (131) is defined as [50]

5.5  Moving least square method

In Lagrangian method, the position of material points is 
tracked and updated at each time step. When position of 
material points in the fluid domain changes continuously, the 
number of family material points may decrease. In this case, 
the calculated density may be smaller than normal. There-
fore, the equation of state predicts wrong pressure values, 
leading to a gradual deterioration of the entire field [51]. To 
avoid mass conservation issues, and oscillations at the den-
sity, pressure, and velocity of material points at fluid domain 
are smoothed using moving least square method [51].

The velocity field in the fluid domain is smoothed as [7]

(131)�i =

Ni∑
j

ξ
2

i

|||�
n
ij

|||
2
�n
ij
.

(132)ξi =
1

Ni

Ni∑
j

|||�
n
ij

|||.

The pressure field in the fluid domain is smoothed as [7]

The density field in the fluid domain is smoothed as [7]

with

It is worth noting that in Eq. (135), the smoothed den-
sity 

(
�n
i

)smoothed is obtained from the density of family 
material points �n

j
 as provided in Eq. (136) [7]. The weight 

function, �MLS , for smoothing variables in above equations 
at fluid domain is provided as [43]
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Fig. 7  Investigation of square droplet deformation a geometry, b PDDO discretisation
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in which

and

In addition, to reduce the numerical computation time, 
the velocity, pressure and density field only being cor-
rected over a period of time steps using moving least 
square method, and this is optional in numerical simula-
tion. For benchmark cases moving least square method is 
used for dynamic cases (Sects. 6.1, 6.3 and 6.5), however 
this method is not needed for static cases (Sects. 6.2, 6.4).
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⎥⎥⎥⎥⎦
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6  Numerical simulations

In this section, five numerical cases are considered using the 
developed PDDO for modelling the surface tension forces 
in multiphase fluid flow motion. First, a two-dimensional 
square droplet deformation is studied to examine the non-
local form of surface tension force model in normal direc-
tion. Second, when fluid flow is in contact with a solid sur-
face, the difference between unit normal vectors at the triple 
line region before and after using the unit normal vector 
prescription scheme are compared through a static droplet 
wetting case. Third, simulation of droplet contact angle 
development on a solid surface is performed to show the 
effect of prescribed normal vectors at the triple line region. 
Afterwards, capillary stresses tangential to the interface are 
computed under a heat conduction phenomenon to validate 
the non-local form of the Marangoni force formulation. 
Finally, a two-dimensional droplet migration in a thermo-
capillary flow is presented to test the combination of the sur-
face tension forces in the normal direction and the tangential 
direction. The predicted migration velocity of the circular 
droplet in the thermo-capillary flow is compared with the 
volume of fluid method.
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Fig. 8  Evolution of droplet deformation at a t = 0.128s, b t = 0.384s, c t = 0.64s, d t = 1.28s, e t = 1.92s, f t = 2.56s
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Fig. 10  Demonstration of two droplets lying on a solid surface with 30° contact angle and 90° contact angle
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Fig. 11  PDDO discretisation of droplet contact on solid interface a 30° contact angle, b 90° contact angle
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6.1  Droplets deformation

In the first case, a two-dimensional square droplet defor-
mation is conducted to validate the surface tension force 
model using PDDO. As shown in Fig. 7a, the square droplet 
with dimensions of 0.6m × 0.6m is filled with fluid 2 and 
surrounded by fluid 1. The fluid domain has a box of size 
L = W = 1m . The density for fluid 1 and fluid 2 are speci-
fied as �1 = 10kg∕m3 and �2 = 1kg∕m3 , respectively. Fluid 
1 has a viscosity coefficient of �1 = 1Pas while fluid 2 has 
�2 = 0.2Pas . The surface tension coefficient between fluid 1 
and fluid 2 is independent with the temperature and chosen 
as � = 1N∕m.

The fluid is initially at rest for which the initial condition 
can be illustrated as 

No-slip boundary conditions are applied at four edges of 
the fluid 1 as

In processing the numerical simulation, as shown in 
Fig. 7b, three layers for fictitious material points are wrapped 
along the edges of the fluid domain. No-slip boundary 

(140)u = 0, v = 0 at t = 0.

(141)vx = vy = 0 at x = −
L

2
, x =

L

2
, y = −

W

2
, y =

W

2
.
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Fig. 12  The unit normal vectors between fluid domains before correction a 30° contact angle, b 90° contact angle
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conditions are implemented on these fictitious material 
points using Eqs. (113)–(114) with �wall = 0m∕s . The pres-
sure field for fictitious material points is computed  using 
Eq. (116).

The deformation of the square droplet is driven by surface 
tension force, which transforms square droplet in a circular 
shape at equilibrium state. With incompressibility hypothe-
sis, the radius of the final circular droplet can be estimated as

(142)R = 0.6∕
√
� ≈ 0.034m.

Therefore, the pressure changes Δp between fluid 1 and 
fluid 2 can be estimated using Young–Laplace equation as

As introduced in Sect.  3.3, the incompressible fluid 
motion is constrained by a weakly compressible equation 
of state, and the numerical speed of sound in equation of 
state is computed based on the pressure change. As a result, 
the numerical speed of sound for fluid 1 can be estimated 
using Eq. (34), and the numerical speed of sound for fluid 
2 can be obtained by Eq. (38). In this case, numerical speed 

(143)Δp =
�

R
≈ 2.94Pa.
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Fig. 14  Smoothed unit normal vectors at fluid interface a 30° contact angle, b 90° contact angle
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of sound for fluid 1 is taken as c1 = 6m∕s , and for fluid 2 as 
c2 = 18.97m∕s.

As shown in Fig. 7b, the fluid domain is discretised with 
a uniform spacing of Δx = 0.0125m . The horizon size is 
selected as � = 3Δx . Simulation is processed for a total time 
of t = 2.56s and the time step size is set as Δt = 8 × 10

−5s . 
The displacement field of the material points in fluid domain 
is obtained by velocity Verlet scheme [52].

In addition, the moving least square method introduced in 
Sect. 5.5 is used to correct the density, pressure, and veloc-
ity field at fluid domain at every 20 time steps. To obtain a 
smooth distribution of material points in the fluid domain, 
the material points shifting technique is utilised in every 
time step of the simulation to smooth the displacement field. 
The constant C is taken as 0.01 in this case.

Figure 8 shows the snapshots of the droplet transfor-
mation from square shape to circular shape. As can be 
observed from Fig. 8f, at the final state, the droplet has an 
average radius of 0.0338m , which is close to the estimated 
value given in Eq. (142). The time history of average pres-
sure difference between fluid 1 and fluid 2 is presented in 
Fig. 9a. As can be observed from the figure, the pressure 
difference reaches to an equilibrium state after t = 1.5s. 
The pressure change Δp between fluid 1 and fluid 2 pre-
dicted by PDDO shows a close agreement with the ana-
lytical solution as computed by Eq. (143). The final pres-
sure profile of the fluid domain at t = 2.56s is presented in 
Fig. 9b. The square droplet transforms into a circular shape 
with a smooth material point distribution, and the pressure 
difference between droplet and surrounding fluids match 
with the analytical value from Young–Laplace equation. 
It can be concluded that the current surface tension model 
utilising the PDDO can accurately capture the surface ten-
sion effect in the normal direction in multiphase flow.

6.2  Unit normal vector correction at triple line 
region

The first case demonstrates the effectiveness of surface 
tension force model in normal direction. However, this 
only validates the case when fluid 2 is fully surrounded 
by fluid 1. When both fluids are in contact with a solid 
interface, additional processing of the unit normal vectors 
between the two fluids at the triple line region is required 
to prevent curvature errors. As shown in Fig. 10, this sec-
tion uses cases of droplets forming two different contact 
angles on a solid surface to demonstrate the difference 
between the unit normal vectors obtained before and after 
normal prescription scheme at triple line region.

As shown in Fig. 11, two denser fluid droplets with radius 
r = 0.0125m are surrounded by lighter fluid, and they are 
both being placed in a rectangular box. The box has a size 
of 0.1 m in length and 0.05 m in width. The density for 

denser fluid is �1 = 1000kg∕m3 and for lighter fluid is 
�2 = 1.2kg∕m3 . Two denser fluid droplets contact with 
the solid surface and form a contact angle of 30° and 90°, 
respectively. The spacing between material point is set as 
Δx = 0.0013m.

The unit normal vectors between the denser and lighter 
fluid domains, calculated according to Eq. (63), are shown 
in Fig. 12. It can be observed that in the case of a 30° contact 
angle, the unit normal vectors �̂lg(�) at the triple line region 
in the lighter fluid domain is pointed towards the wrong 
direction. The issues are also reflected in the 90° contact 
angle case. This is because, at the triple line region, there 
are not enough family material points to contribute to the 
integral equation when computing the unit normal for the 
lighter fluid. Therefore, incorrect unit normal vectors will 
result in incorrect curvature calculations and affect the sur-
face tension force modelling.

Considering that the same droplet forms contact angles 
of 30° and 90°, respectively, the prescription normal vectors 
�̂lg,cor(�) at triple line region computed based on Eq. (65), 
and interface unit normal vectors �̂lg(�) not at the triple line 
region obtained based on Eq. (63) are presented in Fig. 13.

As shown in Fig. 13, while the incorrect unit normal vec-
tors at the triple line region are resolved in both contact 
angle cases, a sharper transition is observed between the 
two types of unit normal vectors. Therefore, calculating the 
curvature of the interface remains problematic.

To prevent discontinuity of the unit normal vectors not 
at the triple line region, the unit normal vectors at the triple 
line region are smoothed according to Eq. (70). The unit nor-
mal vectors between denser and lighter fluid domains after 
smoothing are presented in Fig. 14. As can be observed, 
the unit normal vectors close to the triple line region com-
ply with the corrected unit normal vector �̂lg,cor(�) while far 
from the triple line region unit normal vector is computed 
from �̂lg(�) . When the instantaneous contact angle � formed 
by a droplet contacting a solid surface is not equal to the 
equilibrium contact angle �eq , the curvature creates a force 
to move the triplet until the equilibrium contact angle is 
reached.

6.3  Static contact angle development

After demonstrating the influence of treatment for unit 
normal vectors at the triple line region, in this section, a 
two-dimensional liquid droplet deformation on a rigid wall 
is investigated to study the characteristics of droplet wet-
ting in different stages. As shown in Fig. 15a, a rectangular 
liquid droplet with a dimension of 2.25 × 10

−2m2 in length 
and 1.25 × 10

−2m2 in width is placed in a rectangular box 
with a dimension of 0.1 × 0.05m2 . The liquid droplet on the 
wall is surrounded by gas fluids. The density and viscosity 
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Fig. 16  Evolution of liquid droplet wetting on a solid surface for various contact angles
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coefficient of the gas phase are specified as �1 = 1.2kg∕m3 
and �1 = 1 × 10

−3Pas , respectively. The density and vis-
cosity coefficient for liquid is set as �2 = 1000kg∕m3 and 
�2 = 3.16 × 10

−5Pas , respectively. To focus on the physi-
cal characteristics of droplet wetting, the surface ten-
sion coefficient between liquid and gas fluids is chosen as 
� = 0.07N∕m , which is independent of the temperature 
variation.

The fluid gravitational acceleration is disregarded in this 
example. The initial condition of the fluid is provided as

Figure  15b shows the numerical simulation domain. 
The domain is discretised with a uniform spacing of 
Δx = 1.0 × 10

−3m . The horizon size is chosen as � = 3Δx . 
The material points in the fluid 1 and fluid 2 are presented 
in dark red and red, respectively. The gas and liquid fluid are 
wrapped by three layers of fictitious material points while 
the rigid solid wall boundary is presented in orange colour. 
The no-slip boundary conditions are implemented as

Therefore, the velocities at fictitious material points are 
computed based on Eq. (113), (114) with vwall = 0 . The pres-
sure field at fictitious material points is calculated according 
to Eq. (116).

The time step size is set as Δt = 5 × 10
−5s with a total 

simulation time of t = 1s . The displacement field of the 
material points in fluid domain is acquired using velocity 

(144)u = 0, v = 0att = 0.

(145)vx = vy = 0atx = −
L

2
, x =

L

2
, y = −

W

2
, y =

W

2
.

Verlet scheme. In this case, the moving least squares tech-
nique is applied in the simulation every 20 steps to smooth 
the velocity, pressure, and density fields. In addition, the 
material points shifting technology is used in the simula-
tion, and the constant C in Eq. (129) is taken as 0.01 to 
ensure the smooth distribution of material points at each 
time step.

Figure 16 presents snapshots of the two-dimensional 
liquid droplet formation on the solid wall for three dif-
ferent cases �eq = 60◦(hydrophilic wetting), �eq = 90◦ and 
�eq = 150◦ (hydrophobic wetting). The droplet initially 
stays as a rectangular shape. The unit normal vectors 
between the gas and liquid phases at the triple line region 
are corrected and smoothed based on the prescribed equi-
librium contact angle using Eq. (70). The unit normal vec-
tors form a smooth curvature at the interface between gas 
and liquid. The curvature obtained from the corrected unit 
normal vectors induced a force along the fluid interface to 
deform the droplet until the prescribed equilibrium contact 
angle is reached.

6.4  Capillary stress tangential to interface

After investigating the surface tension force in normal 
direction, in this section, the developed non-local Maran-
goni force formulation is examined by considering a heat 
conduction test case. As shown in Fig. 17a, two-layered 
fluids are placed in a square simulation domain with 5.75 
mm in length and width. The heat conduction model and 

Fig. 17  Investigation of Marangoni force at the interface between two fluids a geometry, b PDDO discretisation
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Marangoni force at the fluid interface are simulated using 
the developed PDDO model. The left and right sides of the 
fluid domain are filled with liquid 1 and liquid 2, respec-
tively. A solid line distinguishes the interface between fluid 
1 and fluid 2. Two fluids have identical density and viscosity 
coefficients as �1 = �2 = 250kg∕m3 and �1 = �2 = 0.012Pas . 
The specific heat capacity and heat conduction coefficient for 
fluid 1 and fluid 2 are taken as cp1 = cp2 = 0.5 × 10

−4J∕kgK 
and k1 = k2 = 1.2 × 10

−6W∕mK . As this case focuses on 
verifying the heat conduction and Marangoni force mod-
els, only the energy equation is involved in this model, and 
the Marangoni force is numerically computed using PDDO 

based on Eq. (29). In addition, the surface tension coeffi-
cient is a temperature-dependent property which is given in 
Eq. (25), in which the surface tension temperature coefficient 
is chosen to be d�(T)∕dT = 0.002N∕K.

The time step size is chosen as Δt = 1 × 10
−5s , and the 

total simulation time is t = 0.1s.
At the initial state, the temperature distribution of the 

fluid domain is set to zero as

The boundary conditions are implemented using the ficti-
tious layers as shown in Fig. 17b and defined as

(146)T = 0 at t = 0.

(a) (b)

-3 -2 -1 0 1 2 3
x Location (m) 10-3

-3

-2

-1

0

1

2

3
y
Lo

ca
tio

n
(m

)
10-3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-3 -2 -1 0 1 2 3
x Location (m) 10-3

-3

-2

-1

0

1

2

3

y
Lo

ca
tio

n
(m

)

10-3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(c)

-3 -2 -1 0 1 2 3
y Location (m) 10-3

0

0.2

0.4

0.6

0.8

1

1.2

Te
m
pe

ra
tu
re

(K
)

PDDO
ANSYS

Fig. 18  Temperature distribution of the simulation domain at t = 0.1s (a), PDDO (b), ANSYS (c) comparison of PDDO and ANSYS results 
along central y-axis



1992 Engineering with Computers (2024) 40:1967–1997

1 3

To accurately capture the Marangoni force distribution 
at the interface, the heat conduction model is first exam-
ined with a mesh size of Δx = 9.0 × 10

−5m . The horizon 

T = 0Katy = −
W

2
,

(147)T = 1.152Katy =
W

2
,

�T

�x
= 0atx = −

L

2
=

L

2
.

size is chosen as � = 3Δx . The temperature distribution pre-
dicted using PDDO at t = 0.1s is compared with ANSYS 
and presented in Fig. 18. A good agreement is observed 
between the two methods, which validates the heat con-
duction model. In addition, as can be computed from the 
temperature field and the analytical solution, a temperature 
gradient of ∇T = 200K∕m is distributed along the width 
of the simulation domain. As a result, Marangoni force is 
developed vertically at the interface. The theoretical Maran-
goni force distributed along the interface is computed as 
�s,t = ∇S� = 0.4N∕m2.

The Marangoni force is examined under different spac-
ings between material points, in which the mesh size 
is chosen as Δx = 1.8 × 10

−4m,Δx = 9.0 × 10
−5m and 

Δx = 4.5 × 10
−5m . Figure 19 presents Marangoni force 

vectors distributed along the interface using a mesh size 
of Δx = 9.0 × 10

−5m . The profile of the Marangoni force 
vectors is perpendicular to the interface. As the continuum 
surface force method is adopted in the model, the volume 
Marangoni force is smoothed and distributed symmetri-
cally along the transition band of the fluid interface.

Figure 20 shows the Marangoni force magnitude dis-
tribution profile in the horizontal direction at the centre 
of the simulation domain using various mesh sizes. It can 
be noticed that the maximum Marangoni force decreases 
as the material point spacing increases. The continuum 
surface force model handles the local Marangoni forces at 
the fluid interface by applying them to material points in 
the transition zone between the two fluids. As the horizon 
size is taken as � = 3Δx , material points adjacent to the 
interface but beyond a horizon size from the interface do 
not capture surface tension forces. As a result, only three 
layers of material points on either side of the interface cap-
ture the Marangoni force regardless of the spacing chosen. 
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Fig. 19  Marangoni force vectors distributed along the interface with 
Δx = 9.0 × 10
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The magnitude distribution of the Marangoni force at these 
material points is governed by a weighting function that 
controls the decay of the Marangoni force with increasing 
distance from the interface.

To compare the numerically computed Marangoni force 
with the analytical solution, Fig. 21 presents the integral of 
the Marangoni force distributed at the three-layer material 
points along the interface for different spacings between 
material points. As can be observed, the calculated 
Marangoni force has a good agreement with the analyti-
cal solution despite the spacing between material points 
being different. Therefore, the presented Marangoni force 

formulation can accurately capture the Marangoni force 
due to the temperature gradient.

6.5  Two‑dimensional droplet migration 
in thermo‑capillary flow

After validating the surface tension formulation in nor-
mal direction, the Marangoni force formulation, and heat 
conduction model, in this case, surface tension in normal 
and tangential directions are combined to investigate the 
motion of a droplet in thermo-capillary flow. Thermocapil-
lary flow motion was studied in past decades experimentally 
and numerically [53–55]. In this case, the flow motion is 
simulated using PDDO. As shown in Fig. 22a, a circular 
droplet with radius R = 0.00144m is initially located at the 
centre of the simulation domain, and it is filled with fluid 
1. The density and viscosity coefficient for fluid 1 are set 
as �1 = 250kg∕m3 and �1 = 0.012Pas ., respectively. The 
droplet is surrounded by fluid 2 in a square box with a 
dimension of L = W = 0.00576m . The density and viscos-
ity coefficient for fluid 2 are specified as �2 = 500kg∕m3 and 
�2 = 0.024Pas . In heat conduction model, the specific heat 
capacity for fluid 1 and fluid 2 is cp1 = 0.5 × 10

−4J∕kgK 
and cp2 = 1.0 × 10

−4J∕kgK , respectively. The heat con-
duction coefficient for fluid 1 and fluid 2 is chosen as 
k1 = 1.2 × 10

−6W∕mK  a n d  k2 = 2.4 × 10
−6W∕mK  , 

respectively.
As the incompressible fluid motion is constrained by 

a weakly compressible equation of state, the numeri-
cal speed of sound in the equation of state for each fluid 
domain is set as c1 = 1.666m∕s and c2 = 1.178m∕s , and 
the material constants are �1 = �2 = 1 . The surface tension 

Fig. 22  Thermocapillary flow migration a geometry, b PDDO discretisation
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coefficient is dependent on the temperature as given in 
Eq. (25). The reference surface tension coefficient, ref-
erence temperature, and surface tension temperature 
coefficient are chosen as �0 = 0.01N∕m , T�0 = 290K , and 
d�(T)∕dT = 0.002N∕mK.

The fluid is initially at rest for which the initial displace-
ment and velocity conditions can be represented as

In addition, a linearly varying temperature profile is 
initially applied to the fluid domain with temperature gra-
dient |∇T| = 200K∕m and points upwards. This can be 
represented as

(148)� = 0, � = 0 at t = 0.

(149)T(x, y) = |∇T|
(
x +

L

2

)
at t = 0.

However, due to convection and conduction of thermo-
capillary flow, the temperature distribution will be changed 
over time. No-slip boundary conditions for velocity are 
applied to the top and bottom edges of the fluid domain as

Free-slip condition for velocity is applied to the lateral 
edges of the fluid domain. In addition, a Dirichlet tempera-
ture boundary condition is applied on the top and bottom 
edges of the square box as

(150)vx = vy = 0 at y = −
W

2
, y =

W

2
.

T = 290K at y = −
W

2
,

(151)T = 291.152K at y =
W

2
.
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The Neumann boundary condition is applied on the lat-
eral edges of the square box. As represented in Fig. 22b, 
the fluid domain is wrapped with three layers of material 
points for implementing the temperature, pressure, and 
velocity boundary conditions. No-slip and free slip bound-
ary conditions are implemented on these fictitious mate-
rial points using Eqs. (113), (114) and the pressure field 
at fictitious material points is calculated using Eq. (116). 
In addition, Dirichlet and Neumann temperature bound-
ary condition for fluid domain are implemented using 
Eqs. (117), (118) for material points at fictitious region.

The fluid domain is discretised with a uniform spacing of 
Δx = 9 × 10

−5m and the horizon size is taken as � = 3Δx . 
The simulation is conducted with a total time of t = 0.12s 
and the time step size is chosen as Δt = 1 × 10

−5s . Material 
points shifting technique is implemented, and the constant 
C is taken as 0.01. In addition, the density, pressure, and 
velocity field are smoothed by moving least square method 
every 20 time steps.

The interface between the circular droplet and sur-
rounding fluid is subjected to the surface tension force 
in normal direction. The pressure difference between two 
fluids maintains the equilibrium of circular shape. The 
pressure field of the fluid domain at t = 0.12 s is shown 
in Fig. 23. The pressure difference between two fluids 
interface can be analytically verified by Young–Laplace 
equation, in which ΔP = 6.944N∕m2 . As can be seen from 
the figure, a good agreement with the analytical value is 

observed for the pressure difference between fluid 1 and 
fluid 2.

The dimensionless parameters Reynolds number, 
Marangoni number, and capillary number are used to char-
acterise thermo-capillary migration. To compare the result 
with the Volume of fluid (VOF) method, the dimensionless 
parameters are taken as the same as the case presented in 
the VOF method [4]. The dimensionless parameters in this 
case are set as

and

in which Ur is the characteristic velocity, and it is being com-
puted as

The migration of the circular droplet at different times is 
provided in Fig. 24. To visualise the migration of a droplet, 
the lowest location of the circular droplet at the initial stage 
is used as a reference location and presented as a dash line 
in the figure.

The ratio between square box and the radius of the droplet is 
L∕R = 4 . The migration velocity of the circular droplet using 
VOF method at this ratio is provided in Ref. [4]. The com-
parison between PDDO method and VOF method for the time 
evolution of droplet migration velocity is presented in Fig. 25. 
The velocity is non-dimensionalised as U∗ = U∕Ur , and the 
time is non-dimensionalised as t∗ = t∕tr with tr = R∕Ur . As 
can be observed from the figure, the migration velocity pre-
dicted using the proposed method has a good agreement with 
the velocity predicted using the VOF method.

The temperature and velocity field of the fluid domain at 
t = 0.12s are provided in Figs. 26 and 27, respectively. The 
uneven temperature distribution in Fig. 26 causes a tempera-
ture gradient across the fluid domain. As a result, tangential 
forces are created at the interface between fluid 1 and fluid 
2. Combining with the viscosity of the fluid, the droplet is 
pushed to move along the thermal gradient upwards, and the 
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Fig. 27  Velocity profile of the thermo-capillary migration of the 
droplet at t = 0.12s
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material points within the droplet recirculate along a pair of 
symmetrical vortices in the circular droplet.

7  Conclusion

This study presents a new non-local surface tension model 
in multiphase fluid flow through the PDDO. The model con-
siders surface tension in the normal direction, Marangoni 
forces, and surface wetting. The governing equations of 
multiphase flow motion are represented using the PDDO. 
The non-local form of normal surface tension is verified 
by simulating the deformation of a square droplet. Subse-
quently, this work explains the handling of the unit normal 
vector at the triple line region using the static and dynamic 
behaviour of droplet wetting on solid surfaces. Furthermore, 
this work validates the accuracy of the newly developed non-
local form of the Marangoni force formulation via a heat 
conduction model. Finally, the normal surface tension and 
Marangoni forces formulations are simultaneously examined 
in the multiphase flow by simulating the migration of drop-
lets in thermal capillary flow. A good agreement is observed 
by analysing the droplet migration speed and comparing the 
results with existing methods. The current study is limited 
for flows with low Reynolds number. However, it can be 
extended for flows with higher Reynolds number in future 
studies.
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