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Abstract—This paper addresses the challenge of identifying the
polarimetric covariance matrix (PCM) structures associated with
a polarimetric SAR image. Interestingly, such information can
be used, for instance, to improve the scene interpretation or to
enhance the performance of (possibly PCM-based) segmentation
algorithms as well as other kinds of methods. To this end,
a general framework to solve a multiple hypothesis test is
introduced with the aim to detect and classify contextual spatial
variations in polarimetric SAR images. Specifically, under the
null hypothesis, only one unknown structure is assumed for data
belonging to a 2-dimensional spatial sliding window, whereas
under each alternative hypothesis, data are partitioned into sub-
sets sharing different PCM structures. The problem of partition
estimation is solved by resorting to hidden random variables
representative of covariance structure classes and the expectation
maximization (EM) algorithm. The effectiveness of the proposed
detection strategies is demonstrated on both simulated and
real polarimetric SAR data also in comparison with existing
classification algorithms.

Index Terms—Adaptive Radar Detection, Model Order Se-
lection, Multiple Hypothesis Testing, Expectation Maximization,
Polarimetric Radar, Radar, Synthetic Aperture Radar.

I. INTRODUCTION

In the last 20 years, the benefits of information extraction
from synthetic aperture radar (SAR) [1]–[3] and, in particular,
polarimetric SAR images have been widely demonstrated in
a range of applications including environmental monitoring
[4], [5], security [6], [7] and urban area monitoring [8],
[9]. Thanks to the increasing number of use cases for this
specific type of sensor, more and more current and future
remote sensing missions use polarimetric SAR sensors, despite
their increased costs. A key aspect of polarimetric SAR
is the capability to extract information about the scattering
mechanisms of the scene of interest, thus allowing for a more
advanced characterization of the scene as in [10] where a
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segmentation algorithm is devised exploiting reflectivity edges
and the polarimetric covariance matrix (PCM) to identify the
objects contained in the region of interest. Remarkably, the
incoherent polarimetric scattering phenomenon of a medium
can be completely described by using the covariance matrix
[11]. Generally speaking, symmetric properties arise in the en-
countered medium, which are, in principle, detectable through
the structure of the related covariance matrix. However, there
exist different structures for the PCM due to the scattering
symmetries of (spatially) distributed targets. As a matter of
fact, in geophysical remote sensing, the encountered media
usually possess symmetry properties [11]. For instance, water
waves on the ocean surface have reflection symmetry with
respect to the vertical plane parallel to the wind direction
resulting in zero scattering coefficients of the PCM when
the azimuthal direction coincides with the wind direction;
agricultural plants usually are grown along rows that exhibit
reflection symmetry, whereas azimuthal symmetry is often
observed in forests. These properties give rise to specific
PCM structures whose knowledge exhibits a practical value
in various applications. For instance, PCM structure infor-
mation can be used to improve the scene interpretation or
to enhance the performance of the PCM-based segmentation
methods in order to classify different cover types [11]. As
a matter of fact, the a priori knowledge about the PCM
structure can increase the PCM estimation quality by forcing
the identified structures through suitable data transformations.
In addition, this information can also be used in conjunction
with other techniques such as multi-model based detection
techniques exploiting PCM structure information in order
to tune the background model. Another example is the use
of the identified PCM-structures as features (in combination
with other features) to be included in a scene classifier or
even a target recognition framework. Otherwise stated, PCM-
structure-based classification is complementary to the other
segmentation techniques.

In the context of PCM structure detection and identification,
the first approach is provided in [12] where the classification
task is performed by processing data belonging to a window
centered on the pixel under test. Such a window moves over
the entire image in order to classify all its pixels. More
importantly, the main design assumption is that polarimetric
data within the sliding window are characterized by the same
PCM structure. However, in scenarios of practical interest,
this assumption can be often broken and, consequently, the
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window contains data with different PCM structures. In these
situations, methods devised in [12] would detect the dominant
PCM structure (or symmetry) only as well as miss the details
related to the other PCM structures present in the window
and that can be suitably used to improve the interpretation of
the scene. Thus, the extraction of the entire information about
the PCM structures contained in a set of contiguous pixels
represents a compelling task that has not been investigated in
the literature.

With the above remarks in mind, in this paper we go
beyond the formulation of [12], [13] and assume (at design
stage) that vectors belonging to the window under test are
not all representative of the same predominant scattering
symmetry and, hence, PCM structure (see Section 3.3.4 of
[14]). Otherwise stated, we assume that the window can be
partitioned into subsets whose elements are characterized by
the same PCM (and, hence, PCM structure), whereas elements
of different subsets exhibit different PCM structures (and,
hence, PCMs). As briefly mentioned before, we consider
the structures arising from specific predominant scattering
symmetries (see also [12]). Specifically, in addition to the
more general case of Hermitian structure which is not rep-
resentative of any predominant symmetry related to spatially
distributed scatterers, we consider three PCM structures that
are associated with the scattering mechanisms due to [14]:
a distributed target having reflection symmetry in the plane
normal to the line-of-sight, a distributed target having rotation
symmetry around the line-of-sight, and a distributed target
exhibiting both reflection and rotation symmetries (see the next
section for further details). This kind of classification problem
is new and, hence, investigated here for the first time (at
least to the best of authors’ knowledge). From a more formal
point of view, we are interested in discriminating between
the hypothesis where all data vectors under test share the
same PCM structure and the situations that include different
PCM structures. This problem can be naturally formulated
in terms of a multiple hypothesis test comprising one null
hypothesis and several alternative hypotheses whose number
depends on the combinations of PCM structures that can
characterize data window. As a consequence, each alternative
hypothesis identifies a certain class of partitions (i.e., consid-
ering a specific combination of the available PCM structures).
In order to solve such a difficult problem, we propose an
approximation of the so-called penalized generalized log-
likelihood ratio test (LLRT) devised in [15] where in place
of the maximum likelihood estimates of the unknown param-
eters, we use suitable estimates obtained by means of new
estimation procedures based upon the joint exploitation of the
expectation maximization algorithm (EM-algorithm) [16] and
hidden random variables representative of the PCM structure
classes. Even though the above idea has been widely adopted
in different fields (see, for instance, [17]–[19]), the problem at
hand cannot be solved using existing solutions and, hence, we
conceive suitable and innovative modifications also dictated
by the fact that the maximum likelihood approach (MLA)
would lead to very time demanding estimation procedures. As
a matter of fact, it requires a maximization over all the possible
window partitions and for each combination of the available

PCM structures. For this reason, we design here an alternative
approach grounded on the equivalence between partitioning
and labeling. Finally, notice that the classification task is
accomplished by the penalized log-likelihood ratio test where
the log-likelihood ratio is adjusted through suitable penalty
terms borrowed from the model order selection (MOS) rules
[20]. Interestingly, the classification results about the scattering
symmetries could be suitably exploited to drive conventional
[11] and AI-based classifiers.

The remainder of this paper is organized as follows. The
next section formally introduces the multiple hypothesis test
defining the measurement models as well as the unknown
parameters. Section III describes the estimation procedures
along with the design of the detection architectures. Illustrative
examples based upon both simulated and real-recorded data
are confined to Section IV, whereas concluding remarks and
possible future research lines are contained in Section V.

A. Notation
In the sequel, vectors and matrices are denoted by boldface

lower-case and upper-case letters, respectively. The symbols
det(·), Tr (·), (·)T , and (·)† denote the determinant, trace,
transpose, and conjugate transpose, respectively. As to the
numerical sets, R is the set of real numbers, RN×M is
the Euclidean space of (N × M)-dimensional real matrices
(or vectors if M = 1), C is the set of complex numbers,
and CN×M is the Euclidean space of (N ×M)-dimensional
complex matrices (or vectors if M = 1). If A and B are
two sets, A \ B is the set containing the elements of A that
do not belong to B; the empty set is denoted by ∅. The
modulus of x ∈ C is denoted by |x|, whereas symbol ∝
means proportional to. Symbol Re {z} indicates the real part
of the complex number z. The acronyms PDF and IID mean
probability density function and independent and identically
distributed, respectively. I and 0 stand for the identity matrix
and the null vector/matrix of proper size, respectively. Finally,
we write x ∼ CNN (m,M) if x is a complex circular N -
dimensional normal vector with mean m and positive definite
covariance matrix M .

II. SENSOR MODEL AND PROBLEM FORMULATION

A multipolarization SAR sensor generates an image (dat-
acube) where each pixel is represented by a vector whose
entries are the complex returns corresponding to the different
polarimetric channels. Here, we assume that the medium is
reciprocal allowing to deal with the three polarimetric channels
HH, HV, and VV [11]. Let us denote by L and M the numbers
of pixels along the vertical and horizontal dimensions of the
polarimetric image, respectively, and assume that the sensor
provides a single-look complex datacube of size L×M×3 (see
Figure 1). Now, the set of vectors under test is selected using
a sliding window that moves over the image and, assuming
non-textured models only, contains K = L ×M statistically
independent random vectors zk ∈ C3×1, k = 1, . . . ,K , such
that zk ∼ CN 3(0,Mk), with1 Mk ∈ C3×3, k = 1, . . . ,K ,
the positive definite unknown PCM.

1Notice that this data model arises from simplified assumptions allowing
for analytical tractability and is not always valid for real SAR images.
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Figure 1: Schematic representation of a polarimetric SAR
image as a datacube and sliding window used to obtain data
under test.

Moreover, since the coherency matrix can be expressed as
the sum of certain target components that depend on spatial
distributions of the scatterers leading to specific structures
for the PCM, in order to simplify the ensuing developments,
we consider four different types of predominant scattering
symmetries [14]. It is clear that such an assumption is a
simplification of the general scattering problem, but it allows
for an analytical treatment of the classification problem at
hand. As a matter of fact, there exists an uncountable number
of possible scatterers’ configurations and, hence, of target
decompositions. Therefore, given the kth vector, we assume
that the PCM structure takes on one of the following forms
[11], [14]:
• in the presence of a reciprocal medium without any

predominant scattering symmetry, we have that

Mk =

chhhh chhhv chhvv
c∗hhhv chvhv chvvv
c∗hhvv c∗hvvv cvvvv

 = C1; (1)

• in the presence of a predominant reflection symmetry
with respect to a plane normal to the line-of-sight, the
structure becomes

Mk =

chhhh 0 chhvv
0 chvhv 0

c∗hhvv 0 cvvvv

 = C2; (2)

• when a distributed target has rotation symmetry around
the line-of-sight, we can write

Mk =

 chhhh chhhv chhvv
−chhhv chvhv chhhv
chhvv −chhhv chhhh

 = C3, (3)

where Re{chhhv} = 0, chhvv ∈ R and chvhv = (chhhh−
chhvv)/2;

• in the presence of both reflection symmetry in some
special plane and rotation symmetry (i.e., azimuth sym-
metry), the PCM is given by

Mk =

chhhh 0 chhvv
0 chvhv 0

chhvv 0 chhhh

 = C4, (4)

where chhvv ∈ R and chvhv = (chhhh − chhvv)/2.

It turns out that within the sliding window containing the
vectors under test, several situations may occur according
to the involved structures. Specifically, the PCM can remain
unaltered within the sliding window or at least two different
forms appear within the window.

To be more precise, we are interested in distinguishing the
case M1 = . . . = MK ∈ C = {C1, . . . ,C4} from different
configurations where the pixels are characterized by at least
two PCMs. This problem can be formulated in terms of a
multiple hypothesis test consisting of one null hypothesis and
several alternative hypotheses, namely as

H0 : zk ∼ CN 3(0,Ci0), i0 ∈ {1, . . . , 4},

H1,1 :


zk ∼ CN 3(0,Ci0), k ∈ Ω1 ⊂ Ω,

zk ∼ CN 3(0,Ci1), k ∈ Ω2 = Ω \ Ω1,

i0 < i1, i0, i1 ∈ {1, . . . , 4},

H1,2 :


zk ∼ CN 3(0,Ci0), k ∈ Ω1 ⊂ Ω,

zk ∼ CN 3(0,Ci1), k ∈ Ω2 ⊂ Ω \ Ω1,

zk ∼ CN 3(0,Ci2), k ∈ Ω3 = Ω \ {Ω1 ∪ Ω2},
i0 < i1 < i2, i0, i1, i2 ∈ {1, . . . , 4},

H1,3 :


zk ∼ CN 3(0,C1), k ∈ Ω1 ⊂ Ω,

zk ∼ CN 3(0,C2), k ∈ Ω2 ⊂ Ω \ Ω1,

zk ∼ CN 3(0,C3), k ∈ Ω3 ⊂ Ω \ {Ω1 ∪ Ω2},
zk ∼ CN 3(0,C4), k ∈ Ω4 = Ω \ {Ω1 ∪ Ω2 ∪ Ω3},

(5)
where Ω = {1, . . . ,K} and the Ωls are unknown (except
for Ωi+1 under H1,i that can be computed as Ω \ ∪ij=1Ωj).
Recalling that zks are statistical independent, the joint PDF
of Z = [z1, . . . , zK ] under H0 is given by

p0(Z;Ci0) =
exp

{
−Tr

[
C−1

i0
ZZ†

]}
π3K [det (Ci0)]

K
, (6)

whereas that under H1,m, m = 1, . . . , 3, can be written as

p1,m(Z;Ci0 , . . . ,Cim) =

m∏
l=0

∏
k∈Ωl+1

exp
{
−Tr

[
C−1

il
zkz

†
k

]}
π3 [det(Cil)]

(7)
with the constraints

m⋃
l=0

Ωl+1 = Ω and Ωi ∩ Ωj = ∅, i 6= j. (8)

For future reference, it is also useful to define the sets

Am = {i0, . . . , im} ⊆ {1, . . . , 4}, m = 0, . . . , 3, (9)

and2 denote by θ0(A0) and θ1(Am) the unknown parameters
under H0, given A0, and under H1,m, given Am, respectively.

III. DETECTION ARCHITECTURE DESIGNS

In this section, we provide some important remarks that
are preparatory to the subsequent derivations and motivate the
design choices. As specified below, the adopted decision rules
rely on the LLRT where the unknown parameters are replaced
by suitable estimates. However, the implementation of such a

2Notice that A3 = {1, 2, 3, 4}.
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strategy for the problem at hand requires to circumvent two
main drawbacks.

First of all, under H1,m, the partition {Ω1, . . . ,Ωm+1}
of the pixels of the sliding window is not known. As a
consequence, application of the MLA to obtain the parameter
estimates would be a formidable task: we should consider
all the combinations of m + 1 PCM structures over the
available options, namely

(
4

m+1

)
, and for each of them the

different partitions of Ω into m + 1 subsets. Therefore, in
what follows, we propose two alternative solutions that abstain
from the computation of all the possible partitions of Ω.
These alternatives rely on the fact that, from an operating
point of view, partitioning Ω is tantamount to labeling its
elements. Therefore, we can follow the lead of [17] and
introduce K IID hidden discrete random variables that are
representative of the labels associated with the zks under
H1,m, and Am = {i0, . . . , im} ⊆ {1, . . . , 4}. In fact, such
random variables take on values in Am. Then, we apply
the EM-algorithm [16] to estimate the unknown parameters
within the window under test. The herein proposed estimation
procedures differ from each other in the way such hidden
random variables are defined and used to build up the LLRT,
a point better specified at the end of this section.

The second drawback of implementing a plain LLRT is
originated by the fact that the elements of C are characterized
by different numbers of unknowns. Thus, not only a balanced
comparison of the hypotheses, but also of the different Ams,
given m (i.e., given the hypothesis), requires introducing
adequate penalty factors. To be more quantitative, we observe
that the number ni of unknown parameters associated with
Ci, i = 1, . . . , 4, is given by

ni =


9 if i = 1,

5 if i = 2,

3 if i = 3,

2 if i = 4.

(10)

Accordingly, the number of unknowns associated with Am =
{i0, . . . , im} can be computed as u (Am) =

∑m
j=0 nij .

With the above remarks in mind, we devise decision
schemes for problem (5) exploiting a penalized LLRT [21].
As a first step towards the introduction of such a penalized
LLRT, we denote by θ̂0(A0) (θ̂1(Am)) the estimate of the
unknown parameters related to H0 and A0 (H1,m and Am).
Similarly, θ̂1(Am̂) is the estimate of the unknown parameters
associated with H1,m̂ and Am̂. For the moment, we leave
aside the description of the estimation procedures, which will
be the object of the next subsections, and introduce the general
structure of the penalized LLRT

max
m∈{1,2,3}

max
Am

[
log g1

(
Z; θ̂1 (Am)

)
− h1 (Am)

]

−max
A0

[
log g0

(
Z; θ̂0 (A0)

)
− h0 (A0)

] H1,m̂
>
<
H0

η, (11)

where

m̂ = arg max
m∈{1,2,3}

{
max
Am

[
log g1

(
Z; θ̂1 (Am)

)
− h1 (Am)

]}
,

g0 (Z;θ0 (A0)) = p0(Z;Ci0), g1 (Z;θ1 (Am)) denotes the
PDF of the observables under H1,m and Am, that will be
specified in the subsequent sections, h1 (Am), m = 1, 2, 3,
is a penalty term accounting for the number of unknown
parameters related to H1,m and Am, h0 (A0) is a penalty
term accounting for the number of unknown parameters related
to H0 and A0, and η is the detection threshold3 to be set
according to the probability of false alarm (Pfa). The penalty
terms can be written as

h1(Am) = γ (u (Am) +m+ 1) , (12)
h0(A0) = γu (A0) , (13)

where we recall that u (Am) is the number of unknown real-
valued parameters associated with Am, m+1 is the number of
unknowns arising from the probability mass function (PMF) of
the hidden discrete random variables (such random variables
take on values in Am), and γ is a factor borrowed from the
MOS rules [20] as the Akaike information criterion (AIC),
the generalized information criterion (GIC), and the Bayesian
information criterion (BIC), i.e.,

γ =


1, for AIC-based detector (AIC-D),
log(6K)/2, for BIC-based detector (BIC-D),
(1 + ρ)/2, ρ > 1, for GIC-based detector (GIC-D).

(14)
As already observed, under H1,m and Am, u (Am) is obtained
by partitioning the data set into m+1 subsets, associating with
them specific structures, and summing the respective number
of unknown parameters. The cardinality of each subset along
with the coordinates of the vectors within it are also unknowns,
but they are independent of Am and, hence, irrelevant to the
decision process.

It still remain to show how to estimate θ0(A0) and θ1(Am).
As previously anticipated, we will follow the lead of [17] and
introduce K independent and identically distributed hidden
discrete random variables that “specify the characterization”
of the zks. Then, we apply the EM-algorithm [16] to estimate
the unknown parameters. The herein proposed estimation
procedures differ from each other in the way such hidden
random variables are defined and used to build up the LLRT
under H1,m.

The first procedure assumes that under H1,m the hidden ran-
dom variables, ck,m say, have alphabet Am = {i0, . . . , im} ⊆
{1 . . . , 4} with PMFP (ck,m = l) = Pl,m, l ∈ Am,∑

l∈Am

Pl,m = 1, (15)

and that when ck,m = l, l ∈ Am, then Mk = Cl. Therefore,
we can write the PDF of zk under H1,m exploiting the
following mixture model [17]

f1,m(zk;θ1(Am)) =
∑
l∈Am

Pl,mf(zk;Cl), (16)

where f(zk;Cl) is the PDF of zk ∼ CN (0,Cl). The above
PDF will be used in place of the original PDF to form the

3Hereafter, we denote by η the generic detection threshold.
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LLRT. Notice that θ1(Am) depends on the specific choice
for the alphabet of the hidden random variables. As a matter
of fact, for each alternative hypothesis, each of the

(
4

m+1

)
combinations of the PCM structures identifies an alphabet
configuration. Thus, we come up with 6, 4, and 1 different al-
phabet configurations under H1,1, H1,2, and H1,3, respectively.
Nevertheless, as we will show in the next subsections, these
configurations can be handled without a dramatic increase of
the computational requirements.

The second approach does not account for the hypotheses
H1,1, H1,2, and H1,3 to set the number of classes but simply
considers all classes. As consequence, the hidden random
variables, ck say, share the same alphabet A = {1, 2, 3, 4}
and PMF P (ck = l) = Pl, l ∈ A. The LLRT under H1,m is
formed by selecting the m+ 1 most probable PCM structures
and modifying (16) according to the selected structures.

In the next subsections, we describe in the detail these
procedures that are based upon the EM-algorithm and exploit
the transformations introduced by Lemma 3.1 of [12]. As a
matter of fact, such transformations allow us to recast the PCM
in the objective function as a block-diagonal matrix leading
to different maximization problems according to the specific
structure.

For the reader ease, before describing the estimation proce-
dures, we recall here that Mk is the generic unknown PCM
of zk; C1, . . . ,C4 are the structures that the PCM of zk can
take on; Am contains the integers indexing a combination
of m structures under H1,m; Ω = {1, . . . ,K} is the set of
integers indexing the data vectors within the window under
test; Ωi, i = 1, . . . , 4, is a set of integers indexing a subset of
data vectors that share the same PCM structure; Pl,m is the
probability that the hidden random variable ck,m, associated
with zk under H1,m and for a specific Am, takes on the value
l, with l ∈ Am; similarly, Pl is the prior of the hidden random
variable ck associated with zk under H1,3.

A. First EM-based Estimation Strategy

Let us assume that under H1,m, m = 1, 2, 3, equation
(16) holds true and focus on problem (5). Now, given a
configuration for Am, the log-likelihood of Z is given by

log g1 (Z;θ1 (Am)) =
K∑

k=1

log
∑
l∈Am

Pl,mf(zk;Cl). (17)

The application of the EM-algorithm consists of the E-step
that leads to [17], [22]

q
(h−1)
k (l,m) =

f(zk; Ĉ
(h−1)

l )P̂
(h−1)
l,m∑

n∈Am

f(zk; Ĉ
(h−1)

n )P̂ (h−1)
n,m

, l ∈ Am,

(18)
where P̂ (h−1)

l,m , l ∈ Am, and Ĉ
(h−1)

n , n ∈ Am, are the available
estimates at the (h− 1)th step, and of the M-step requiring to

solve the following joint optimization problem4

max
pm

max
Cl

l∈Am

{ K∑
k=1

∑
l∈Am

q
(h−1)
k (l,m)[− log det(Cl)

− Tr (C−1
l zkz

†
k)]−

K∑
k=1

∑
l∈Am

q
(h−1)
k (l,m) logPl,m

}
, (19)

where5 pm = [Pi0,m, . . . , Pim,m]T ∈ R(m+1)×1.
It is not difficult to show that the maximization with respect

to pm, accomplished under the constraint∑
l∈Am

Pl,m = 1, (20)

returns the following stationary points

P̂
(h)
l,m =

1

K

K∑
k=1

q
(h−1)
k (l,m), l ∈ Am. (21)

On the other hand, the maximization with respect to Cl

is accomplished by finding the maximizer for each PCM
structure and, then, plugging those indexed by Am into (19).
Therefore, given l̄ ∈ Am, we solve

max
C l̄

K∑
k=1

q
(h−1)
k (l̄, m)

[
− log det(C l̄)− Tr

(
C−1

l̄
zkz

†
k

)]
.

(22)
Let us start with the case l̄ = 1 and, as shown in Appendix
A, the update rule for the estimate of C1 is given by

Ĉ
(h)

1 =

K∑
k=1

q
(h−1)
k (1,m)zkz

†
k

K∑
k=1

q
(h−1)
k (1,m)

. (23)

Now, assume that l̄ = 2. Then, in Appendix B, we prove that
the estimate of C2 can be updated according to

Ĉ
(h)

2 = U †

[
Â

(h)
0

0 d̂(h)

]
U , (24)

where U is the unitary matrix defined by (6) of [12, Lemma
3.1] and 

d̂(h) =

K∑
k=1

q
(h−1)
k (2,m)|zk,2|2

K∑
k=1

q
(h−1)
k (2,m)

,

Â
(h)

=

K∑
k=1

q
(h−1)
k (2,m)zk,1z

†
k,1

K∑
k=1

q
(h−1)
k (2,m)

,

(25)

4Equation (19) can be obtained recalling that zks are modeled in terms of
a convex combination of complex normal distributions. For brevity, we have
omitted some derivation details of the EM-algorithm and refer the interested
reader to [17], [22] for further information.

5Notice that the entries of pm are nonnegative.
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where Uzk = [zTk,1 zk,2]T with zk,1 ∈ C2×1 and zk,2 ∈ C.
The next case is l̄ = 3. Appendix C contains the derivations
leading to the following estimate of C3

Ĉ
(h)

3 = T †E−1V †

[
â(h) 0

0 B̂
(h)

]
V E−1T , (26)

where the transformations E, T , and V are used in (7) of [12,
Lemma 3.1] while

â(h) =

K∑
k=1

q
(h−1)
k (3,m)|xk,1|2

K∑
k=1

q
(h−1)
k (3,m)

,

B̂
(h)

=
1

2

K∑
k=1

q
(h−1)
k (3,m)

(
xk,2x

†
k,2 + Jxk,2x

†
k,2J

)
K∑

k=1

q
(h−1)
k (3,m)

,

(27)
with V ETzk = [xk,1 x

T
k,2]T , xk,1 ∈ C, xk,2 ∈ C2×1, and

J ∈ R2×2 a permutation matrix (see Appendix C).
The derivations related to the final case, i.e., l̄ = 4, are

confined to Appendix D. Specifically, it is shown that the
update rule for the estimate of C4 is (see also (8) of [12,
Lemma 3.1])

Ĉ
(h)

4 = T †E−1

b̂(h) 0 0
0 ĉ(h) 0
0 0 ĉ(h)

E−1T , (28)

where 

b̂(h) =

K∑
k=1

q
(h−1)
k (4,m)|yk,1|2

K∑
k=1

q
(h−1)
k (4,m)

,

ĉ(h) =
1

2

K∑
k=1

q
(h−1)
k (4,m)y†k,2yk,2

K∑
k=1

q
(h−1)
k (4,m)

.

(29)

with ETzk = [yk,1 y
T
k,2]T , yk,1 ∈ C, and yk,2 ∈ C2×1.

The actual implementation of the EM-algorithm, necessary
to obtain an estimate of θ1(Am), needs to specify the con-
vergence criterion that can be used to terminate the iterations.
In what follows, for each Am, m = 1, 2, 3, we adopt the
following criterion

∆Lm(h) =

∣∣∣∣∣
[
Lm

(
θ̂

(h)

1 (Am);Z

)

−Lm

(
θ̂

(h−1)

1 (Am);Z

)]
/Lm

(
θ̂

(h−1)

1 (Am);Z

)∣∣∣∣∣ < εm,

(30)

where Lm(θ̂
(h)

1 (Am);Z) = log g1(Z; θ̂
(h)

1 (Am)) (see (17))
and εm > 0 is set accounting for the requirements in

terms of system reactivity. The above estimation procedure
is summarized in Algorithm 1.

The decision statistic of test (11) also requires to estimate
the unknown parameters under H0. The MLE of Ci is given
by Proposition 3.2 of [12].

B. Second EM-based Estimation Strategy

The second procedure builds up the term associated with
H1,m of the left-hand side of (11) by considering the esti-
mates obtained through the first procedure under H1,3 only.
Specifically, it relies on the following steps

1) assume that there exists at least one pixel for each
considered PCM structure within the window;

2) estimate the unknown parameters through the procedure
based upon the EM-algorithm under H1,3;

3) exploit the estimates of the class priors at the previous
step to select the most plausible subset of PCM struc-
tures associated with the window.

As shown below, the third item allows us to build up an
estimate of Am based upon the most plausible structures.
Thus, starting from the first step, let us define A3 = {1, 2, 3, 4}
and, given m, select the m+1 structures corresponding to the
indices of the m + 1 highest entries of the final estimate of

p3 that is denoted by p̂3 =
[
P̂1,3, P̂2,3, P̂3,3, P̂4,3

]T
.

To be more formal, let us sort the P̂l,3s in descending order,
namely

P̂l0,3 ≥ P̂l1,3 ≥ P̂l2,3 ≥ P̂l3,3, (31)

and form the following subsets Ãm = {l0, . . . , lm}, m =
1, 2, 3, along with the estimate θ̃1(Ãm) that can be drawn
from θ̂1(A3) by picking the components corresponding to the
indices l0, . . . , lm. Then, decision rule (11) becomes

max
m∈{1,2,3}

[
log g1

(
Z; θ̃1

(
Ãm

))
− h1

(
Ãm

)]
−max

A0

[
log g0

(
Z; θ̂0 (A0)

)
− h0 (A0)

] H1,m̂
>
<
H0

η, (32)

where

logg1

(
Z; θ̃1

(
Ãm

))
=

K∑
k=1

log
∑
l∈Ãm

P̂l,mf(zk; Ĉl). (33)

The entire procedure is summarized in Algorithm 2.
The estimation of the unknown parameters under H0 is the

same as that of previous subsection.

C. Architecture Summary and Classification Rules

According to the specific penalty term in (11), that depends
on (14), and the procedure pursued to come up with the
parameter estimates, we can form the following architectures
(see also Figure 2):
• AIC-D coupled with procedure 1 (AIC-D-P1) or proce-

dure 2 (AIC-D-P2);
• BIC-D coupled with procedure 1 (BIC-D-P1) or proce-

dure 2 (BIC-D-P2);

PolSAR covariance structure detection and classification based on the EM algorithm
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Figure 2: Block diagram for the computation of the left-hand side of (11)

• GIC-D coupled with procedure 1 (GIC-D-P1) or proce-
dure 2 (GIC-D-P2).

Finally, regardless of the estimation procedure applied to data
under test, once the unknown parameters have been estimated,
data classification is accomplished according to the following
association procedure
• if test (11) returns H0, then z1, . . . , zK are characterized

by the same PCM structure whose estimate is obtained
by selecting C î0

where

Â0 =
{
î0

}
= arg max

A0

[
log g0

(
Z; θ̂0 (A0)

)
− h0 (A0)

]
;

(34)
• on the other hand, when (11) selects H1,m̂, then we know

that the number of structures within the window is m̂
(that is the final estimate of m) and the structure forms
are indexed by Âm̂ (that is the final estimate of A). In
this case, the association procedure is based upon the
following maximum a posteriori rule

zk −→ C î if î = arg max
l∈Âm̂

q
(hmax)
k (l, m̂), (35)

where hmax is the maximum number of EM iterations
used to come up with the final parameter estimates.

It is worth noticing that such an association rule exploits the
estimates obtained by processing all the vectors within the
window under test.

IV. NUMERICAL EXAMPLES

In this section, the behaviors of the proposed architectures
are assessed using synthetic data as well as real polarimet-
ric SAR data. Specifically, the first subsection contains the
performance results over simulated data obtained by means
of standard Monte Carlo (MC) counting techniques, whereas
in Subsection IV-B, the proposed procedures are tested using
real polarimetric SAR data. In addition, Subsection IV-B also
contains an illustrative example that provides evidence of the
practical value of the PCM structure information. In fact, it
shows how such an information can be exploited to enhance
the segmentation performance of the H/α method [14], [23].
Specifically, we force the PCM structures identified by means
of the proposed approaches on the PCMs processed by the

Algorithm 1 First EM-based estimation procedure

Require: Am, Ĉ
(0)

l , P̂ (0)
l,m, εm, l ∈ Am, m = 1, 2, 3

Ensure: Âm̂ and the related estimates Ĉl, P̂l,m̂, l ∈ Âm̂

1: For m = 1, 2, 3 do
2: For each Am do
3: Compute h1(Am) (eq. (12))
4: Set h = 1
5: Compute q(h−1)

k (l,m), l ∈ Am (eq. (18))
6: For each l ∈ Am do
7: Compute Ĉ

(h)

l using (23), (24), (26), or (28)
8: Compute P̂ (h)

l,m using (21)
9: End For

10: If ∆Lm(h) ≥ εm (eq. (30)) set h = h+ 1 and
go to line 5 else go to line 11

11: End For
12: Select the Am and the Ĉ

(h)

l s, l ∈ Am, that maximize
y(Am, θ̂1(Am)) = log g1(Z; θ̂1(Am))− h1(Am),
where log g1(Z; θ̂1(Am)) is defined by (17)

13: End For
14: Select the m that maximizes y(Âm, θ̂1(Âm)), where Âm

is the Am selected at line 12
15: Return: Âm̂ and θ̂1(Âm̂) where m̂ has been selected at

line 14

H/α method. Notice that other PCM-based segmentation
methods or frameworks can be considered such as multi-
model based detection, scene classification, or even target
recognition.

From the point of view of classification, natural competitors
of the proposed techniques are represented by the solutions
proposed in [12] that exploit the same classification features
used here, namely, the PCM structures corresponding to spe-
cific scattering symmetries (see (1)-(4)). These competitors are
devised assuming that all the pixels within the window under
classification share the same PCM structure. Finally, we also
consider a more conventional competitor based upon the well-
known K-nearest neighbors (KNN) algorithm trained with the
actual values of the PCMs [22].

PolSAR covariance structure detection and classification based on the EM algorithm
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Figure 3: Log-likelihood variations versus the iteration number
h of the EM-algorithm for different values of K.

Algorithm 2 Second EM-based estimation procedure

Require: A3, Ĉ
(0)

l , P̂ (0)
l,3 , ε3, l ∈ A3

Ensure: Ãm̂ and the related estimates Ĉl, P̂l,m̂, l ∈ Ãm̂

1: Set h = 1
2: Compute q(h−1)

k (l, 3), l ∈ A3 (eq. (18))
3: For each l ∈ A3 = {1, 2, 3, 4} do
4: Compute Ĉ

(h)

l using (23), (24), (26), or (28)
5: Compute P̂ (h)

l,3 using (21)
6: End For
7: If ∆L3(h) ≥ ε3 (eq. (30)) set h = h+ 1 and

go to line 2 else go to line 8

8: Sort P̂ (h)
l,3 , l ∈ A3, in decreasing order to form P̂l0,3 ≥

P̂l1,3 ≥ P̂l2,3 ≥ P̂l3,3

9: For m = 1, 2, 3 do
10: Form Ãm = {l0, . . . , lm}
11: Select θ̃1(Ãm) from θ̂1(A3)
12: Compute y(Ãm, θ̃1(Ãm)) = log g1(Z; θ̃1(Ãm))

−h1(Ãm), where log g1(Z; θ̃1(Ãm)) and h1(Ãm) are
defined by (33) and (12), respectively

13: End For
14: Select m that maximizes y(θ̃1(Ãm), Ãm)
15: Return: Ãm̂ and θ̃1(Ãm̂) where m̂ has been selected at

line 14

A. Simulated Data

The simulated data obey the multivariate circular complex
Gaussian distribution with zero mean and nominal covariance
matrices related to four scenarios: no symmetry, reflection,
rotation, and azimuth symmetries. Specifically, they are given
by

C1 =

 1 0.2 + 0.3j 0.5− 0.3j
0.2− 0.3j 0.25 −0.2− 0.2j
0.5 + 0.3j −0.2 + 0.2j 0.8

 , (36)

C2 =

 1 0 0.5− 0.3j
0 0.25 0

0.5 + 0.3j 0 0.4

 , (37)

C3 =

 1 0.3j 0.2
−0.3j 0.4 0.3j

0.2 −0.3j 1

 , (38)

C4 =

 1 0 0.5
0 0.25 0

0.5 0 1

 , (39)

respectively. In the numerical examples below, the number of
data (K) ranges from 60 to 240, and data are partitioned into
adjacent subsets characterized by different PCM structures.
The parameter ρ (of GIC-based architectures) is set to 3 for
the competitor [12], 1.3 for GIC-D-P1, and 11 for GIC-D-
P2 (these values are selected in order to guarantee a good
compromise between underestimation and overestimation of
the model order). Finally, we consider Pfa = 10−2 and the
related detection thresholds are estimated as follows

1) compute the detection threshold under H0 and for each
PCM structure;

PolSAR covariance structure detection and classification based on the EM algorithm
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Figure 4: Classification results for a single MC trial under H0.

2) the final threshold (namely, η in (11)) is set by selecting
the maximum of the thresholds obtained at the previous
step.

The above procedure guarantees that the actual Pfa is less
than or equal to the nominal Pfa.

As a preliminary analysis, we focus on the requirements of
the proposed procedures in terms of the EM iterations. To this
end, in Figure 3, we plot the log-likelihood variations, i.e.,
∆Lm(h), m = 1, 2, 3, as a function of h, averaged over 1000
MC trials. It turns out that, for all the analyzed cases, a number
of 10 iterations (this value will be used in the subsequent
analysis) is sufficient to ensure log-likelihood variations less
than 10−4, namely, εm < 10−4.

In Figures 4-7, we investigate the instantaneous behavior
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Figure 5: Classification results for a single MC trial under
H1,1.

of the proposed architectures by showing the classification
outcomes of a single Monte Carlo trial using a window of
size 9× 20. These figures are obtained by generating data as
follows

• under H0, all data share C1;
• under H1,1, data are split in two equal parts, where the

PCM of the first and second halves are C1 and C2,
respectively;

• under H1,2, data are partitioned into three subsets with
the same cardinality and characterized by C1, C2, and
C3;

• under H1,3, four equal subsets are generated and, clearly,
all the PCMs are used.

PolSAR covariance structure detection and classification based on the EM algorithm
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Figure 6: Classification results for a single MC trial under
H1,2.

In these figures, the estimated structure is mapped to its
structure index, namely, i (∈ {1, . . . , 4}) means that Ci has
been selected. The ground truth is reported at the beginning of
each subfigure. As for the KNN-based competitor, the training
stage comprises 500 vectors for each PCM class, assuming that
the PCMs are perfectly known, whereas, from an operating
point of view, the number of neighbors is 50.

From the figures’ inspection, it is evident the advantage
(at least from a qualitative point of view) of the proposed
architectures. As a matter of fact, they overcome the KNN-
based competitor under each hypothesis, whereas, competitor
[12] has worse performance than the new architectures when
H1,m,m = 1, . . . , 3, is in force. Moreover, as expected, it
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Figure 7: Classification results for a single MC trial under
H1,3.

clearly turns out that H1,3 represents the most challenging
scenario with the major difficulties in correctly classifying the
azimuth symmetry (yellow pixels present in the last partition
of data set). As a matter of fact, AIC-D-P1, AIC-D-P2, BIC-
D-P2, GIC-D-P1, and GIC-D-P2 are capable of only partially
classifying such pixels as characterized by azimuth symmetry.

In Figures 8 and 9, we investigate the behavior of the
proposed architectures6 from a more quantitative standpoint.
In fact, these figures contain the histograms of correct classi-
fication over 1000 independent MC trials assuming K = 120
and K = 180, respectively. Such histograms are representative

6We do not include the competitors in this analysis since they experience
poor performances.
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Figure 8: Pc (%) versus H0 and H1,m, m = 1, 2, 3, assuming that K = 120.
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Figure 9: Pc (%) versus H0 and H1,m, m = 1, 2, 3, assuming that K = 180.

PolSAR covariance structure detection and classification based on the EM algorithm



12

100 150 200

K

0

0.2

0.4

0.6

0.8

1

P
d

AIC-D-P1

BIC-D-P1

GIC-D-P1

AIC-D-P2

BIC-D-P2

GIC-D-P2

(a) Pd

100 150 200

K

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
C

E

AIC-D-P1

BIC-D-P1

GIC-D-P1

AIC-D-P2

BIC-D-P2

GIC-D-P2

(b) RMSCE

Figure 10: Pd and RMSCE versus K assuming that H1,3 is
true.

of the probability of correct classification (Pc) defined as the
probability of declaring H0 or H1,m, m = 1, . . . , 3, under H0

or H1,m, respectively. As expected, under H0, all the proposed
architectures return Pc values very close to 100%. Under H1,1,
all the considered architectures can provide percentages of cor-
rect classification close to 100% except for AIC-D-P2 whose
Pc values are around 0.70. Almost similar behaviors can be ob-
served under H1,2 with the difference that architectures based
upon the second EM-based procedure have lower classification
capabilities with respect to the results under H1,1. Under this
hypothesis, the performance of AIC-D-P2 is very poor due
to a strong overestimation inclination. Such inclination is also
experienced by BIC-D-P2 for K = 180 since the resulting
Pc is about 0.56. Under H1,3, which represents the most
challenging case, we notice that for K = 120 the classification
values are below 0.75 for all the considered architectures with
BIC-D-P1 returning the worst performance. When K increases
to 180, the situation is clearly better than for K = 120 even
though the classification performance of BIC-D-P1 is less than
0.5. The other architectures ensure Pc values greater than 92%.

The curves reported in Figure 10 pertain to the probability
of PCM variation detection (Pd) and the normalized root mean
square classification error (RMSCE) values both as functions
of K; notice that the Pd is defined as the probability of
rejecting H0 under H1,m, whereas the RMSCE is the root

mean square number of misclassified vectors divided7 by K.
Data are generated under the most challenging hypothesis H1,3

and, again, the performance parameters are estimated over
1000 MC independent trials. From Subfigure 10(a), it turns
out that the curves associated with the considered architectures
are close to each other when K > 120 with a maximum dif-
ference of about 0.1. This difference becomes negligible as K
increases. As a matter of fact, AIC-D-P1, AIC-D-P2, and GIC-
D-P1 are capable of achieving Pd = 1 at K = 240, whereas
BIC-D-P1, BIC-D-P2, and GIC-D-P2 return Pd = 0.998,
Pd = 0.994, and Pd = 0.978, respectively, at K = 240. In
Subfigure 10(b), we plot the normalized RMSCE versus K.
The figure points out that the error curves for AIC-D-P1, AIC-
D-P2, and GIC-D-P1 are almost overlapped outperforming the
other classifiers at least for K < 240. The worst performance
is returned by BIC-D-P1 as expected from the analysis of the
classification histograms.

Summarizing, the above analysis indicates that AIC-D-
P1 and GIC-D-P1 can guarantee an excellent compromise
between detection performance and classification results under
each hypothesis for K > 120. In addition, notice that if we
consider subsets of hypotheses, other architectures can provide
reliable classification and detection performance starting from
K > 120.

B. Real Recorded Data

In this last subsection, we consider the fully polarimetric
SAR data acquired by the EMISAR airborne sensor8 in the L-
band (1.25 GHz). The set is formed by 1750 rows and 1000
columns. The scene under investigation, shown in Figure 11,
is over the Foulum Area, Denmark. Precisely, in the figure
we show on the left the Pauli decomposition of the fully-
polarimetric SAR image while on the right we have the same
image acquired through an optical sensor. It turns out that the
scene contains a mixed urban, vegetation, as well as water
scene. Therefore, it is representative of different scattering
mechanisms that allow us to suitably verify the classification
capabilities of the proposed algorithms in a real-world mani-
fold scenario. The rectangular boxes in the figure highlight the
two urban areas of Tjele and Orum. In the ensuing numerical
examples, we do not include the classification results provided
by the KNN-based algorithm since it requires a training stage
that should be fed by data adhering as much as possible to
the ground truth. However, in this case, the actual values for
the PCMs are not available and, given the classification results
of Subsection IV-A, the KNN-based competitor would suffer
from a further performance degradation due to the mismatched
operating conditions.

In Figure 12, we compare the classification results of the
proposed architectures with those of the natural competitors
[12]. Thus, such a figure contains maps of structures (identified
by the considered algorithms) that can be used as described at
the beginning of this section. A window of size 11×11 pixels

7This normalization is necessary for comparison purposes.
8Data can be downloaded at: https://earth.esa.int/web/polsarpro/data-

sources/sampledatasets.
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is used9 and the threshold is set to the value obtained with
the synthetic simulations. The figure clearly sheds light on the
fact that the proposed architectures are capable of providing
enhanced details and finer resolutions with respect to the com-
petitor due to the inherent best classification capabilities. In all
the considered cases, the absence of symmetry (blue pixels)
is revealed over the water. Red pixels indicating a detected
reflection symmetry, in place of crops and bare fields, are
predominant for the BIC-like and GIC-D-P2 architectures. Yel-
low pixels (azimuth symmetry) are classified in the presence
of forest areas. Rotation symmetries (green pixels) are very
few for the classification maps obtained by the competitor,
whereas, they are more present in the results obtained with the
proposed architectures and appear in the regions containing
buildings (for example in the two highlighted urban areas)
and roads (that are more clearly visible for the proposed
architectures with respect to the competitor).

In order to show the practical value of the structure informa-
tion and, hence, of the proposed methods, in what follows we
present an illustrative example of how PCM structure informa-
tion can be used in conjunction with a classical segmentation
method. More precisely, we focus on the H/α classifier, which
returns nine classes as defined in [14], [23], and compare
its classification results when data are preprocessed using the
PCM structures identified by the proposed algorithms with
those obtained without any side information. The processing
scheme exploiting the PCM structure information is referred
to in the following as EM H/α and, for conciseness, only the
AIC-D-P1 detector is considered in this analysis (the other
architectures provide similar results).

The confusion matrix between the two mentioned classifiers
is reported in Table I, in which the H/α classes are assumed as
references. The results obtained are in agreement with those in
[12], with the larger difference between the EM H/α and the
H/α, visible in the migration of areas classified as medium
entropy vegetation (class 5) to high entropy vegetation (class
2). The row corresponding to class 3 contains zero entries
due to the fact that the original H/α classifier does not label
any pixel as belonging to that class. Moreover, it turns out
that structures corresponding to buildings would result more
visible in the image produced by the EM H/α classifier
(i.e., pixels classified as 1 that are representative of double-
bounce mechanisms). This is evident in the two highlighted
urban areas of Figure 13 that contain the classes returned
by the H/α method when it is aided by PCM structure
information and when it does not use any side information.
The figure highlights that for the EM H/α classifier, the Tjele
and the Orum areas contain more details with respect to the
classic H/α classifier that returns more homogeneous regions.
In fact, exploiting the PCM structure identification obtained
through the proposed EM-based algorithm, pixels of these
areas are labeled as class-1, which corresponds to echoes from
buildings.

9The window moves over the entire image without data overlapping
between consecutive positions.

V. CONCLUSIONS

In this paper, we have addressed the problem of detecting
and classifying PCM structure variations within a data window
moving over a polarimetric SAR image. Unlike the existing
structure classification procedures that assume a specific PCM
structure for all vectors belonging to the sliding window, in this
case, data might exhibit different unknown PCM structures.
More importantly, the partition of the entire data set according
to the respective PCM structures is unknown and must be
estimated. This problem naturally leads to a multiple hypoth-
esis test with one null hypothesis and multiple alternative
hypotheses. In order to avoid a significant computational load,
we have devised a design framework, grounded on hidden
random variables, which assign a PCM structure label to
data vectors, and the EM-algorithm tailored to the considered
PCM structures. Interestingly, PCM structure information can
be exploited in conjunction with other (possibly PCM-based)
segmentation techniques or frameworks such as multi-model
based detection, scene classification, or even target recogni-
tion.

The performance analysis, conducted on both simulated and
real-recorded data also in comparison with a suitable competi-
tor, has highlighted that AIC-D-P1 and GIC-D-P1 are capable
of providing an excellent compromise between detection and
classification performance under all the considered hypotheses
and for K > 120. In addition, if we restrict the set of
hypotheses of interest, other architectures can guarantee good
classification/detection performance at least for values of K
greater than 120.

Future research tracks might encompass the extension of
such architectures to the heterogeneous environment where the
reflectivity coefficient within the window under investigation
is not spatially stationary.

APPENDIX A
DERIVATION OF (23) (UPDATE RULE FOR C1)

When l̄ = 1, then the objective function in (22) can be
recast as

K∑
k=1

q
(h−1)
k (1,m)

[
− log det(C1)− Tr

(
C−1

1 zkz
†
k

)]
= q(h−1)(1,m)

{
log det(C−1

1 )− Tr
[
C−1

1 Sq(1,m)(h−1)
]}

,

(40)

where

q(h−1)(1,m) =
K∑

k=1

q
(h−1)
k (1,m),

Sq(1,m)(h−1) =
K∑

k=1

q
(h−1)
k (1,m)zkz

†
k/q

(h−1)(1,m).

It follows that

max
C1

log det(C−1
1 )− Tr

[
C−1

1 Sq(1,m)(h−1)
]

(41)

PolSAR covariance structure detection and classification based on the EM algorithm



14

Figure 11: Observed scene. Left subplot: Pauli decomposition of the fully-polarimetric SAR image. Right subplot: optical
image drawn from Google Earth ©.
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(a) AIC-based competitor
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(b) AIC-D-P1
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(c) AIC-D-P2
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(d) BIC-based competitor
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(e) BIC-D-P1
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(f) BIC-D-P2
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(g) GIC-based competitor
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(h) GIC-D-P1
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(i) GIC-D-P2

Figure 12: Classification maps with real SAR data: urban area of Tjele (small rectangle) and Orum (great rectangle).
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EM H/α

H/α classes

1 2 3 4 5 6 7 8 9
1 99.27 0.73 0 0 0 0 0 0 0
2 3.39 96.61 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 9.17 11.57 0 79.26 0 0 0 0 0
5 0 17.02 0.51 2.93 76.85 2.69 0 0 0
6 0 0 0 0 1.09 98.91 0 0 0
7 8.25 5.71 0 7.77 0.51 0 77.77 0 0
8 0 12.02 0.05 3.47 5.73 0.05 1.71 76.96 0
9 0 0 0 0 0.01 3.09 0 0 96.89

Table I: Confusion matrix (values expressed in percentage).
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Figure 13: H/α classification. On the top: H/α classifier. On
the bottom: EM H/α classifier.

is tantamount to maximize

log det
(
C−1

1 Sq(1,m)(h−1)
)
− log det

(
Sq(1,m)(h−1)

)
− Tr

[
C−1

1 Sq(1,m)(h−1)
]
. (42)

The maximizer can be obtained resorting to the following
inequality [24]

log det(A) ≤ Tr [A]−N, (43)

where A is any N -dimensional matrix with nonnegative
eigenvalues, and, hence, we obtain

Ĉ
(h)

1 = arg max
C1

K∑
k=1

q
(h−1)
k (1,m)

×
[
− log det(C1)− Tr

(
C−1

1 zkz
†
k

)]
= Sq(1,m)(h−1).

The last equality concludes the proof.

APPENDIX B
DERIVATION OF (24) (UPDATE RULE FOR C2)

As first step, let us notice that

UC2U
† =

[
A 0
0 d

]
, (44)

where A ∈ C2×2 is positive definite and d > 0. It follows
that problem (22) can be recast as

max
A

max
d>0

K∑
k=1

q
(h−1)
k (2,m) [− log det(A)− log d

−z†k,1A
−1zk,1 − |zk,2|2d−1

]
(45)

where Uzk = [zTk,1 zk,2]T with zk,1 ∈ C2×1 and zk,2 ∈ C.
In order to maximize (45) with respect to d, it is not difficult

to show that

lim
d→0

d→+∞

[
−

K∑
k=1

q
(h−1)
k (2,m)(log d+ |zk,2|2d−1)

]
= −∞.

(46)
Thus, the stationary points over d > 0 can be found by setting
to zero the first derivative with respect to d of the argument
of (45), to obtain

−
K∑

k=1

q
(h−1)
k (2,m)

d
+

1

d2

K∑
k=1

q
(h−1)
k (2,m)|zk,2|2 = 0. (47)

Thus, the update of the estimate of d is given by the first row
of (25). As for A, let us consider

max
A

K∑
k=1

q
(h−1)
k (2,m)

[
− log det(A)− z†k,1A

−1zk,1

]
, (48)
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which can be recast as

max
A

q(h−1)(2,m) log det(A−1)− Tr
[
A−1S(2,m)(h−1)

]
,

⇒ max
A

log det
[
A−1S(2,m)(h−1)/q(h−1)(2,m)

]
− Tr

[
A−1S(2,m)(h−1)/q(h−1)(2,m)

]
, (49)

where

q(h−1)(2,m) =
K∑

k=1

q
(h−1)
k (2,m),

S(2,m)(h−1) =
K∑

k=1

q
(h−1)
k (2,m)zk,1z

†
k,1.

Exploiting (43), it turns out that

Â
(h)

= S(2,m)(h−1)/q(h−1)(2,m). (50)

Thus, (24) naturally follows and the proof is complete.

APPENDIX C
DERIVATION OF (26) (UPDATE RULE FOR C3)

Matrix C3 can be suitably manipulated by applying the
transformations E, T , and V (see [12, Lemma 3.1]) as follows

V ETC3T
†EV † =

[
a 0
0 B

]
, (51)

where a > 0 and B ∈ R2×2 is centrosymmetric.10 Then, the
objective function can be accordingly expressed as

max
a

max
B

K∑
k=1

q
(h−1)
k (3,m) [− log a− log det(B)

−|xk,1|
2

a
− x†k,2B

−1xk,2

]
, (52)

where V ETzk = [xk,1 x
T
k,2]T with xk,1 ∈ C and xk,2 ∈

C2×1. Since B is centrosymmetric, the following equality

B−1 =

(
B−1 + JB−1J

)
2

(53)

holds. As a result, (52) can be written as

max
a

max
B

K∑
k=1

q
(h−1)
k (3,m) [− log a− log det(B)

−|xk,1|
2

a
− 1

2
Tr
[
B−1

(
xk,2x

†
k,2 + Jxk,2x

†
k,2J

)]]
. (54)

Exploiting the same line of reasoning as for the estimation of d
and A in Appendix B, it is possible to show that the estimate
of a is given by the first row of (27), whereas, using (43),
the estimate of B can be written as the second row of (27).
Gathering the above results, (26) follows and we conclude the
proof.

10B is such that B = JBJ , where

J =

[
0 1
1 0

]
.

APPENDIX D
DERIVATION OF (28) (UPDATE RULE FOR C4)

Exploiting equation (8) of [12, Lemma 3.1], C4 can be
transformed as follows

ETC4T
†E =

b 0 0
0 c 0
0 0 c

 ∈ R3×3, (55)

where b > 0 and c > 0. As a consequence, the optimization
problem to be solved becomes

max
b>0

max
c>0

K∑
k=1

q
(h−1)
k (4,m) [− log b− 2 log c

−|yk,1|
2

b
− 1

c
y†k,2yk,2

]
, (56)

where ETzk = [yk,1 y
T
k,2]T with yk,1 ∈ C and yk,2 ∈ C2×1.

Now, observe that

lim
b→0

b→+∞

{
−

K∑
k=1

q
(h−1)
k (4,m)

[
log b+

|yk,1|2

b

]}
= −∞,

(57)

lim
c→0

c→+∞

{
−

K∑
k=1

q
(h−1)
k (4,m)

[
2 log c+

1

c
y†k,2yk,2

]}
= −∞,

(58)

and, hence, setting to zero the first derivatives of the above
functions with respect to b and c, respectively, it is not difficult
to obtain (29) and the final estimate of C4 defined by (28).
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