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Tutte introduced planar maps in the 1960s in connection with what later became the celebrated 
Four-Color Theorem. A planar map is an embedding of a planar graph in the plane. Description 
trees, in particular, 𝛽-description trees, were introduced by Cori, Jacquard and Schaeffer in 1997, 
and they give a powerful tool to study planar maps.

In this paper we introduce a relation on 𝛽-description trees and conjecture that this relation 
is a total order. Towards solving this conjecture, we provide an embedding of 𝛽(𝑎, 𝑏)-trees into 
𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-trees for 𝑡 ≤ 𝑎 ≤ 𝑏 + 𝑡, which is a far-reaching generalization of an unpublished result 
of Claesson, Kitaev and Steingrímsson on embedding of 𝛽(1, 0)-trees into 𝛽(0, 1)-trees that gives a 
combinatorial proof of the fact that the number of rooted nonseparable planar maps with 𝑛 + 1
edges is more than the number of bicubic planar maps with 3𝑛 edges.

1. Introduction

A planar map is a connected multigraph with a given embedding in the sphere. A planar map is rooted if one of its edges, called the 
root, is directed. In the 1960s, Tutte founded the enumeration theory of planar maps, motivated by what later became the Four-Color 
Theorem, in a series of papers [6–9]. In [8], Tutte determined that the number of rooted nonseparable planar maps (that is, rooted 
planar maps without cut vertices) with 𝑛 + 1 edges is given by

4(3𝑛)!
𝑛!(2𝑛+ 2)!

. (1)

This result was also given by Brown [1]. Moreover, the number of bicubic maps (that is, bipartite 3-regular rooted planar maps) with 
3𝑛 edges was given by Tutte [8]:

3 ⋅ 2𝑛−1(2𝑛)!
𝑛!(𝑛+ 2)!

. (2)

Description trees, in particular, 𝛽-description trees, were introduced by Cori, Jacquard and Schaeffer [4] in 1997 as a general 
framework related to planar maps. A rooted plane tree is either a single node (the elementary tree) or is a node (the root) connected 
to an ordered sequence of plane trees. A rooted plane tree is labeled if each node is assigned a nonnegative integer as its label. Let 𝑣
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be a node of a rooted plane tree 𝑇 , then the label of 𝑣 in 𝑇 is denoted by 𝑙𝑇 (𝑣), the degree of 𝑣 (that is, the number of nodes adjacent 
to 𝑣) is denoted by 𝑑𝑇 (𝑣), and the sum of its children’s labels by 𝑠𝑇 (𝑣).

A 𝛽(𝑎, 𝑏)-tree 𝑇 is a labeled rooted plane tree in which the following conditions, referred to as the 𝛽(𝑎, 𝑏)-rules, are satisfied for 
each node 𝑣:

(1) If 𝑣 is a leaf, then 𝑙𝑇 (𝑣) = 𝑎.

(2) If 𝑣 is the root, then 𝑙𝑇 (𝑣) = 𝑠𝑇 (𝑣) + 𝑏.

(3) If 𝑣 is neither a leaf nor the root, then 𝑎 ≤ 𝑙𝑇 (𝑣) ≤ 𝑠𝑇 (𝑣) + 𝑏.

There are four known bijections between 𝛽(𝑎, 𝑏)-trees with 𝑛 edges and corresponding families of planar maps [2,4,5]:

𝛽(1,0)-trees ⇔ rooted nonseparable planar maps with 𝑛+ 1 edges;

𝛽(0,1)-trees ⇔ bicubic planar maps with 3𝑛 edges;

𝛽(1,1)-trees ⇔ 3-connected cubic planar maps with 3𝑛+ 3 edges;

𝛽(2,2)-trees ⇔ cubic nonseparable planar maps with 3𝑛 edges.

Comparing formulas (1) and (2), for 𝑛 ≥ 2, we see that the number of rooted nonseparable planar maps with 𝑛 +1 edges is less than 
the number of bicubic planar maps with 3𝑛 edges. To explain this fact combinatorially, Claesson, Kitaev and Steingrímsson, in an 
unpublished work [3], provided an embedding of 𝛽(1, 0)-trees into 𝛽(0, 1)-trees. In this paper, we generalize this result by introducing 
Algorithm A that embeds 𝛽(𝑎, 𝑏)-trees into 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-trees, for 𝑡 ≤ 𝑎 ≤ 𝑏 + 𝑡; the result of Claesson et al. is obtained by letting 𝑎 = 𝑡 = 1
and 𝑏 = 0 in our embedding. Moreover, our embedding is a step towards solving the conjecture on the relation on 𝛽(𝑎, 𝑏)-trees to be 
introduced next.

Let 𝑁(𝑎, 𝑏, 𝑛) be the number of all 𝛽(𝑎, 𝑏)-trees with 𝑛 edges. We say that 𝛽(𝑎, 𝑏) ⪯ 𝛽(𝑐, 𝑑) if 𝑁(𝑎, 𝑏, 𝑛) ≤𝑁(𝑐, 𝑑, 𝑛) for all 𝑛 ≥ 𝑛0
where 𝑛0 is a natural number.

Clearly, the relation is reflexive and transitive. We state the following conjectures regarding the relation, where Conjecture 2

implies Conjecture 1. Recall that a partial order is a reflexive, anti-symmetric and transitive relation, where the anti-symmetry in our 
case means that if 𝛽(𝑎, 𝑏) ⪯ 𝛽(𝑐, 𝑑) and 𝛽(𝑐, 𝑑) ⪯ 𝛽(𝑎, 𝑏) then 𝑎 = 𝑐 and 𝑏 = 𝑑.

Conjecture 1. The relation on 𝛽-description trees is a partial order.

Conjecture 2. The relation on 𝛽-description trees is a total order.

Towards confirming the conjectures, in Section 3 we prove the following theorem.

Theorem 1. We have the following facts about the relation on 𝛽(𝑎, 𝑏)-trees:

(1) If 𝑛 ≥ 2, then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑎, 𝑏 + 𝑡, 𝑛) for any nonnegative integers 𝑎, 𝑏, 𝑡, so 𝛽(𝑎, 𝑏) ⪯ 𝛽(𝑎, 𝑏 + 𝑡).
(2) If 𝑛 ≥ 3, then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑎 + 𝑡, 𝑏, 𝑛) for any nonnegative integers 𝑎, 𝑏, 𝑡, so 𝛽(𝑎, 𝑏) ⪯ 𝛽(𝑎 + 𝑡, 𝑏).
(3) If 𝑛 ≥ 2 and 𝑡 ≤ 𝑎 ≤ 𝑏 + 𝑡, then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑎 − 𝑡, 𝑏 + 𝑡, 𝑛) for any nonnegative integers 𝑎, 𝑏, 𝑡, so 𝛽(𝑎, 𝑏) ⪯ 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡).
(4) If 𝑛 ≥ 2 and 𝑎 > 𝑏, then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑏, 𝑎, 𝑛) for any nonnegative integers 𝑎, 𝑏, so 𝛽(𝑎, 𝑏) ⪯ 𝛽(𝑏, 𝑎) for 𝑎 > 𝑏.

(5) If 𝑛 ≥ 2, then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(0, 𝑎 + 𝑏, 𝑛) for any nonnegative integers 𝑎, 𝑏, so 𝛽(𝑎, 𝑏) ⪯ 𝛽(0, 𝑎 + 𝑏).

Fig. 1 presents known comparisons for 0 ≤ 𝑎, 𝑏 ≤ 3 based on Theorem 1; the pattern can be continued for other values of 𝑎 and 𝑏. 
However, for the moment, we cannot compare, for example, 𝛽(𝑎, 𝑏)-trees and 𝛽(𝑎 −2, 𝑏 +1)-trees with the smallest unknown example 
being comparing 𝛽(2, 0)-trees and 𝛽(0, 1)-trees. We cannot also compare 𝛽(𝑎, 𝑏)-trees and 𝛽(𝑎 − 1, 𝑏 + 1)-trees for 𝑎 > 𝑏 + 1 with the 
smallest unknown example being comparing 𝛽(2, 0)-trees and 𝛽(1, 1)-trees.

2. Embedding 𝜷(𝒂, 𝒃)-trees into 𝜷(𝒂 − 𝒕, 𝒃 + 𝒕)-trees

2.1. Modified trees

Before introducing Algorithm A, we give some required notations. Assume that 𝑇 is a rooted plane tree. We say that a node 𝑢 is 
above another node 𝑣 if 𝑢 is on the path from 𝑣 to the root of 𝑇 . If a node 𝑣 is not above a node 𝑢, and vice versa, then we say that 𝑣
is to the left of 𝑢 in 𝑇 , or 𝑢 is to the right of 𝑣 in 𝑇 , if 𝑣 is found first in the pre-order traversal of 𝑇 . For example, in the tree to the left 
in Fig. 2, 𝑢1 is to the left of 𝑢2 and 𝑢′. For any node 𝑣 in 𝑇 , the 𝑅-path of 𝑣 is the path 𝑣 = 𝑣0, 𝑣1, … , 𝑣𝑙 such that 𝑣𝑖+1 is the rightmost 
2

child of 𝑣𝑖 and 𝑣𝑙 is a leaf of 𝑇 . We call 𝑣𝑙 the 𝑅-leaf of 𝑣. In particular, if 𝑣 is a leaf, then the 𝑅-leaf of 𝑣 is 𝑣 itself.
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𝛽(0,0)-trees 𝛽(1,0)-trees 𝛽(2,0)-trees 𝛽(3,0)-trees

𝛽(0,1)-trees 𝛽(1,1)-trees 𝛽(2,1)-trees 𝛽(3,1)-trees

𝛽(0,2)-trees 𝛽(1,2)-trees 𝛽(2,2)-trees 𝛽(3,2)-trees

𝛽(0,3)-trees 𝛽(1,3)-trees 𝛽(2,3)-trees 𝛽(3,3)-trees

Fig. 1. Known comparisons on 𝛽-description trees for 0 ≤ 𝑎, 𝑏 ≤ 3. Arrows indicate which objects are being embedded.

Fig. 2. A rooted plane tree 𝑇 and its modified tree 𝑇 ′ with respect to 𝑢. The 𝑅-path of 𝑢2 consists of the thick edges. 𝑢′ is the 𝑅-leaf of 𝑢2 in 𝑇 and the mark in 𝑇 ′ . It 
can be noted that 𝑢 is the first node on the path from 𝑢′ to the root of 𝑇 ′ such that 𝑢′ is not on the 𝑅-path of 𝑢.

For a node 𝑢 with at least three children 𝑢1, … , 𝑢𝑘 from left to right, the modified tree of 𝑇 with respect to 𝑢 is a tree obtained from 
𝑇 by deleting 𝑢𝑢1 and adding the edge between 𝑢1 and the 𝑅-leaf of 𝑢2. We say the 𝑅-leaf of 𝑢2 is the mark in the modified tree (see 
Fig. 2 for an illustration).

Conversely, assume that 𝑇 ′ is the modified tree of 𝑇 with respect to 𝑢. Suppose that the mark of 𝑇 ′ is 𝑢′ and the unique child 
of 𝑢′ is 𝑢1. Since 𝑢 has at least three children in 𝑇 , the rightmost child of 𝑢 is not 𝑢2. Then 𝑢 is the first node on the path from 𝑢′ to 
the root of 𝑇 ′, such that 𝑢′ is not on the 𝑅-path of 𝑢. 𝑇 can be obtained from 𝑇 ′ by deleting 𝑢′𝑢1 and adding the edge 𝑢𝑢1. We have 
proved the following lemma.

Lemma 1. 𝑇 can be determined uniquely from a given modified tree 𝑇 ′ with a mark 𝑢′.

2.2. Algorithm A

Suppose 𝑇 is a 𝛽(𝑎, 𝑏)-tree and 𝑆 is the set of nodes in 𝑇 with at least three children. Assume that the children of a node 𝑢 ∈ 𝑆

are 𝑢1, … , 𝑢𝑠 (𝑠 ≥ 3). Then we denote the set consisting of all (𝑠 − 2) 𝑅-leaves of 𝑢2, … , 𝑢𝑠−1 by 𝑆𝑢. None of the leaves in ⋃𝑢∈𝑆 𝑆𝑢 are 
on the same path to the root of 𝑇 , and hence the leaves in this set can be ordered from left to right. Also, it should be noted that 𝑆𝑢
3

does not contain the 𝑅-leaf of 𝑢𝑠 and that of 𝑢, which implies that 𝑆𝑢 ∩𝑆𝑢′ = ∅ for 𝑢 ≠ 𝑢′. Provided 𝑆 ≠ ∅, we introduce a function 𝑇
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Fig. 3. 𝑆 consists of the black nodes and the 𝑅-leaves in ⋃𝑢∈𝑆 𝑆𝑢 are ordered from left to right. Then, the set of all pre-images of each node in 𝑆 for the function 𝑇

is given next to the respective node.

from {1, 2, … , ||
⋃

𝑢∈𝑆 𝑆𝑢
||} to 𝑆. For any 1 ≤ 𝑘 ≤ ||

⋃
𝑢∈𝑆 𝑆𝑢

||, if the 𝑘-th 𝑅-leaf 𝑣 ∈⋃
𝑢∈𝑆 𝑆𝑢 belongs to 𝑆𝑢, then we set 𝑇 (𝑘) ∶= 𝑢 (see 

Fig. 3 for an illustration). In general, the function 𝑇 (𝑘) is not injective.

We now present Algorithm A producing a 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-tree from a 𝛽(𝑎, 𝑏)-tree. In Theorem 2 we will show that the outcome of 
the algorithm is well-defined and unique, and in Fig. 4 we will illustrate the work of Algorithm A on an example.

Algorithm A: Turning a 𝛽(𝑎, 𝑏)-tree into a 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-tree.
Input: A 𝛽(𝑎, 𝑏)-tree 𝑇 with 𝑛 edges (𝑡 ≤ 𝑎 ≤ 𝑏 + 𝑡).

Output: A 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-tree 𝑇 ′ with 𝑛 edges.

Steps of the algorithm:

Step 1. Set 𝑖 ∶= 0 and 𝑇0 ∶= 𝑇 .

Step 2. If each node in 𝑇𝑖 has at most two children, then go to Step 6. Otherwise, assume that 𝑢 is the node 𝑇 (𝑖 + 1).1
Step 3. Let the children of 𝑢 in 𝑇𝑖 be 𝑢1, … , 𝑢𝑠 from left to right (𝑠 ≥ 3). Let 𝑇𝑖+1 be the modified tree of the underlying tree of 𝑇𝑖 (that 
is obtained by erasing all labels in the tree 𝑇𝑖) with respect to 𝑢. Suppose that the mark of 𝑇𝑖+1 is 𝑢′.
Step 4. Set the labels of 𝑇𝑖+1 as follows. Firstly, 𝑙𝑇𝑖+1 (𝑢1) ∶= 𝑙𝑇𝑖

(𝑢1). Then, for each node 𝑣 on the path from 𝑢′ to 𝑢2, 𝑙𝑇𝑖+1 (𝑣) ∶=
𝑙𝑇𝑖

(𝑣) − 𝑎 + 𝑏 + 𝑡 + 𝑙𝑇𝑖
(𝑢1). In particular, we have 𝑙𝑇𝑖+1 (𝑢

′) = 𝑙𝑇𝑖+1
(𝑢1) + 𝑏 + 𝑡. Furthermore, for each node 𝑣 on the path from 𝑢 to the root 

of 𝑇𝑖+1, 𝑙𝑇𝑖+1 (𝑣) ∶= 𝑙𝑇𝑖
(𝑣) − 𝑎 + 𝑏 + 𝑡. Finally, for any other node 𝑣, 𝑙𝑇𝑖+1 (𝑣) ∶= 𝑙𝑇𝑖

(𝑣).
Step 5. Set 𝑖 ∶= 𝑖 + 1 and go back to Step 2.

Step 6. Set 𝑇 ′ ∶= 𝑇𝑖. Then set 𝑙𝑇 ′ (𝑣) ∶= 𝑙𝑇𝑖
(𝑣) − 𝑡 for each non-root node 𝑣 and 𝑙𝑇 ′ (𝑟) ∶= 𝑠𝑇 ′ (𝑟) + 𝑏 + 𝑡 for the root 𝑟 of 𝑇 ′. Return 𝑇 ′.

Theorem 2. Algorithm A produces, in an injective way, a 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-tree.

Proof. Firstly, we prove that 𝑇 ′ is a 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-tree. Note that 𝑇𝑖+1 is the modified tree of the underlying tree of 𝑇𝑖 in Step 3. Let 
𝑀0 = ∅ and 𝑀𝑖+1 =𝑀𝑖 ∪ {𝑢′}, where 𝑢′ is the mark of 𝑇𝑖+1.

Claim 1. In 𝑇𝑖, each node 𝑣 in 𝑀𝑖 has a single child and it satisfies 𝑙𝑇𝑖 (𝑣) = 𝑠𝑇𝑖
(𝑣) +𝑏 + 𝑡. Each node not in 𝑀𝑖 satisfies the 𝛽(𝑎, 𝑏)-rules.

We prove Claim 1 by induction on 𝑖. It is clear that Claim 1 holds for 𝑖 = 0 since 𝑇0 = 𝑇 is a 𝛽(𝑎, 𝑏)-tree and 𝑀0 = ∅ (nothing to 
check for node in 𝑀𝑖). Suppose that Claim 1 holds for 𝑇𝑖 and consider 𝑇𝑖+1.

Since only the nodes above 𝑢1 may have different labels in 𝑇𝑖 and 𝑇𝑖+1, any node 𝑣 in 𝑀𝑖 but not above 𝑢1 and the child 
of 𝑣 (𝑣 has a single child by the induction hypothesis) have the same labels in 𝑇𝑖 and 𝑇𝑖+1. So for any 𝑣 ∈ 𝑀𝑖 not above 𝑢1, 
𝑙𝑇𝑖+1

(𝑣) = 𝑙𝑇𝑖
(𝑣) = 𝑠𝑇𝑖

(𝑣) + 𝑏 + 𝑡 = 𝑠𝑇𝑖+1
(𝑣) + 𝑏 + 𝑡.

Also, for 𝑣 ∈𝑀𝑖, assume that 𝑣 is above 𝑢1, then both 𝑣 and its unique child 𝑣′ are either on the path from 𝑢′ to 𝑢2, or on the 
path from 𝑢 to the root. Indeed, 𝑣 cannot be 𝑢 because 𝑢 has at least two children in 𝑇𝑖+1. Then 𝑙𝑇𝑖+1 (𝑣) − 𝑙𝑇𝑖

(𝑣) = 𝑙𝑇𝑖+1
(𝑣′) − 𝑙𝑇𝑖

(𝑣′) =
𝑠𝑇𝑖+1

(𝑣) − 𝑠𝑇𝑖
(𝑣), which implies 𝑙𝑇𝑖+1 (𝑣) = 𝑠𝑇𝑖+1(𝑣) + 𝑏 + 𝑡 holds.

Besides, recall that 𝑢′ is the mark of 𝑇𝑖+1 and 𝑢1 is the unique child of 𝑢′. So 𝑙𝑇𝑖+1 (𝑢
′) = 𝑙𝑇𝑖+1

(𝑢1) + 𝑏 + 𝑡 = 𝑠𝑇𝑖+1
(𝑢1) + 𝑏 + 𝑡, as claimed.

In the following, we only consider these nodes 𝑣 not in 𝑀𝑖+1. For each node 𝑣 on the path from 𝑢′ to 𝑢2, if 𝑣 ≠ 𝑢′, then we have

𝑙𝑇𝑖+1
(𝑣) =𝑙𝑇𝑖 (𝑣) − 𝑎+ 𝑏+ 𝑡+ 𝑙𝑇𝑖

(𝑢1)

≥𝑙𝑇𝑖
(𝑣) + 𝑙𝑇𝑖

(𝑢1)

≥𝑎,

where the first inequality holds because 𝑎 ≤ 𝑏 + 𝑡 and the second inequality holds because 𝑙𝑇𝑖 (𝑢1) ≥ 𝑎. On the other hand,

𝑙𝑇𝑖+1
(𝑣) =𝑙𝑇𝑖 (𝑣) − 𝑎+ 𝑏+ 𝑡+ 𝑙𝑇𝑖

(𝑢1)

1 In fact, in Step 2, any node 𝑢 from the set 𝑆 (of nodes in 𝑇 with at least three children) can be selected. However, we select the node 𝑢 =𝑇 (𝑖 + 1) to simplify the 
4

proof of injectivity of Algorithm A given below.
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Fig. 4. Turning a 𝛽(3,2)-tree into a 𝛽(1,4)-tree. The black and grey nodes are the nodes 𝑢 chosen in different 𝑇𝑖 ’s.

≤𝑠𝑇𝑖
(𝑣) + 𝑏− 𝑎+ 𝑏+ 𝑡+ 𝑙𝑇𝑖

(𝑢1)

=𝑠𝑇𝑖+1 (𝑣) + 𝑏,

where the first inequality holds because of the induction hypothesis and the last equality holds because all children of 𝑣 not on the 
path from 𝑢′ to 𝑢2 have the same labels in 𝑇𝑖 and 𝑇𝑖+1.

Hence, each node on the path from 𝑢′ to 𝑢2, except 𝑢′, satisfies the 𝛽(𝑎, 𝑏)-rules. By similar arguments, each node on the path from 
𝑢 to the root of 𝑇𝑖+1 satisfies the 𝛽(𝑎, 𝑏)-rules. Moreover, any other node neither in 𝑀𝑖+1 nor on the path from 𝑢′ to the root of 𝑇𝑖+1
satisfies the 𝛽(𝑎, 𝑏)-rules by the induction hypothesis. Claim 1 is proved.

Now we shall focus on 𝑇 ′ in Step 6. Note that we go to Step 6 if and only if each node in 𝑇𝑖 has at most two children. According to 
Step 6, the root 𝑟 satisfies the 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-rules. By Claim 1, for each node 𝑣 in 𝑀𝑖, we have 𝑙𝑇 ′ (𝑣) = 𝑙𝑇𝑖

(𝑣) − 𝑡 = 𝑠𝑇𝑖
(𝑣) +𝑏 = 𝑠𝑇 ′ (𝑣) +𝑏 + 𝑡, 

which implies that 𝑣 satisfies the 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-rules. Also, each leaf has label 𝑎 − 𝑡. Moreover, for each node 𝑣 not in 𝑀𝑖, if 𝑣 is neither 
a leaf nor a root, then we have 𝑎 − 𝑡 ≤ 𝑙𝑇𝑖

(𝑣) − 𝑡 = 𝑙𝑇 ′ (𝑣) and

𝑙𝑇 ′ (𝑣) =𝑙𝑇𝑖 (𝑣) − 𝑡
5

≤𝑠𝑇𝑖
(𝑣) + 𝑏− 𝑡
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=𝑠𝑇 ′ (𝑣) + (𝑑𝑇 ′ (𝑣) − 1) ⋅ 𝑡+ 𝑏− 𝑡

≤𝑠𝑇 ′ (𝑣) + 𝑏+ 𝑡,

where the last inequality holds because 𝑑𝑇 ′ (𝑣) ≤ 3. Hence, 𝑇 ′ is a 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-tree.

Injectivity. It is clear that Step 6 is injective. So it suffices to confirm that 𝑇𝑘 can be determined from a given 𝑇𝑘+1 uniquely for 
0 ≤ 𝑘 ≤ 𝑖 −1. By Claim 1, 𝑀𝑘+1 consists of all nodes in 𝑇𝑘+1 that do not satisfy the 𝛽(𝑎, 𝑏)-rules. So 𝑀𝑘+1 can be determined from 𝑇𝑘+1
uniquely. In particular, |𝑀𝑘+1| = 𝑘 + 1.

Note that to construct 𝑇𝑘+1, for 0 ≤ 𝑘 ≤ 𝑖 − 1, we repeated 𝑘 times Step 2, and 𝑇 (𝑘 + 1) is a node chosen in Step 2. Thus, the 
underlying tree of 𝑇𝑘+1 is the modified tree of that of 𝑇𝑘 with respect to 𝑇 (𝑘 + 1).

Suppose that 𝑚𝑘+1 is the mark of 𝑇𝑘+1. Then 𝑚𝑘+1 must be the 𝑅-leaf of a child of 𝑇 (𝑘 +1) in 𝑇 and {𝑚𝑘+1} =𝑀𝑘+1∖𝑀𝑘. For any 
𝑚𝑠 ∈𝑀𝑘 (1 ≤ 𝑠 ≤ 𝑘), 𝑚𝑠 must be the 𝑅-leaf of a child of 𝑇 (𝑠), and by definition of the function 𝑇 , 𝑚𝑠 is to the left of 𝑚𝑘+1 in 𝑇 . By 
definition of a modified tree, during the process 𝑇0 → 𝑇1 →⋯ → 𝑇𝑘, 𝑚𝑠 is always to the left of 𝑚𝑘+1. Hence, 𝑚𝑘+1 is still the 𝑅-leaf of 
a child of 𝑇 (𝑘 + 1) in 𝑇𝑘. Furthermore, there exists no 𝑚𝑠 above 𝑚𝑘+1 in 𝑇𝑘+1 because 𝑇𝑘+1 is obtained from 𝑇𝑘 by adding a subtree 
to 𝑚𝑘+1. Therefore, 𝑚𝑘+1 is the rightmost node among all nodes in 𝑀𝑘+1 with no other 𝑚𝑠 above it, so that we can determine where 
the mark of 𝑇𝑘+1 is.

By Lemma 1, the underlying tree of 𝑇𝑘 can be determined uniquely from 𝑇𝑘+1. Moreover, based on Step 4, the labels of nodes 
in 𝑇𝑘 can also be determined uniquely from 𝑇𝑘+1. Hence, 𝑇𝑘 can be determined uniquely from a given 𝑇𝑘+1 for 0 ≤ 𝑘 ≤ 𝑖 − 1, which 
implies the injectivity of Algorithm A. □

3. Proof of Theorem 1

(1) Clearly, it is sufficient to consider the case of 𝑡 = 1. Assume that 𝑇 is a 𝛽(𝑎, 𝑏)-tree. Then each node in 𝑇 satisfies the 𝛽(𝑎, 𝑏)-rules. 
Note that any node except for the root 𝑟 of 𝑇 also satisfies the 𝛽(𝑎, 𝑏 + 1)-rules. Replace 𝑙𝑇 (𝑟) by 𝑠𝑇 (𝑟) + 𝑏 + 1 in 𝑇 to obtain 
a 𝛽(𝑎, 𝑏 + 1)-tree in an injective way. Hence, 𝑁(𝑎, 𝑏, 𝑛) ≤𝑁(𝑎, 𝑏 + 1, 𝑛). Clearly, turning a 𝛽(𝑎, 𝑏)-tree into a 𝛽(𝑎, 𝑏 + 1)-tree is not 
surjective for 𝑛 ≥ 2, so then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑎, 𝑏 + 1, 𝑛).

(2) Clearly, it is sufficient to consider the case of 𝑡 = 1. Assume that 𝑇 is a 𝛽(𝑎, 𝑏)-tree and 𝑇 ′ is the tree obtained from 𝑇 by adding 
1 to each node’s label. Clearly, any node except for the root 𝑟 of 𝑇 ′ satisfies the 𝛽(𝑎 + 1, 𝑏)-rules. Adjusting the label of 𝑟 in 𝑇 ′ so 
that it also satisfies the 𝛽(𝑎 +1, 𝑏)-rules, we obtain a 𝛽(𝑎 +1, 𝑏)-tree in an injective way. Hence, 𝑁(𝑎, 𝑏, 𝑛) ≤𝑁(𝑎 +1, 𝑏, 𝑛). It is easy 
to see that turning a 𝛽(𝑎, 𝑏)-tree into a 𝛽(𝑎 + 1, 𝑏)-tree is not surjective for 𝑛 ≥ 3, so then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑎 + 1, 𝑏, 𝑛).

(3) This is a direct consequence of Theorem 2 and the following observation. Let 𝑇0 be a 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-tree with at least two edges 
that satisfies the following conditions:

(a) each node in 𝑇0 has at most one child;

(b) each node in 𝑇0 except for the root and its unique child has label 𝑎 − 𝑡;

(c) the root of 𝑇0 has label 𝑎 + 2𝑏 + 𝑡 and the child of the root has label 𝑎 + 𝑏.

Then 𝑇0 is not in the image of Algorithm A. Indeed, suppose 𝑇 ′
0 is the pre-image of 𝑇0 under Algorithm A. Because each node in 

𝑇0 has at most one child, Algorithm A applied to 𝑇 ′
0 never implemented steps 2–5, so 𝑇 ′

0 can be obtained from 𝑇0 by adding 𝑡 to 
the label of each node different from the root. Then 𝑙𝑇 ′

0
(𝑢) = 𝑎 + 𝑏 + 𝑡 > 𝑎 + 𝑏 = 𝑙𝑇 ′

0
(𝑣) + 𝑏, where 𝑢 is the son of the root and 𝑣 is 

that of 𝑢, and 𝑇 ′
0 is not a 𝛽(𝑎, 𝑏)-tree; contradiction. So Algorithm A is not surjective when 𝑛 ≥ 2 hence 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑎 − 𝑡, 𝑏 + 𝑡, 𝑛).

(4) Setting 𝑡 = 𝑎 − 𝑏 in (3), we obtain that if 𝑎 > 𝑏 then 𝑁(𝑎, 𝑏, 𝑛) <𝑁(𝑏, 𝑎, 𝑛).
(5) Setting 𝑡 = 𝑎 in (3), we obtain that 𝑁(𝑎, 𝑏, 𝑛) <𝑁(0, 𝑎 + 𝑏, 𝑛).

4. Concluding remarks

In this paper, we defined a reflexive and transitive relation on 𝛽-description trees. We conjecture (Conjecture 1) that the relation is 
a partial order. Moreover, we conjecture (Conjecture 2) that the relation is a total order. If Conjecture 1 is true, settling Conjecture 2

will require arguing, for (𝑎, 𝑏) ≠ (𝑐, 𝑑), why if 𝑁(𝑎, 𝑏, 𝑖) ≤𝑁(𝑐, 𝑑, 𝑖), for 𝑖 ∈ 𝐼 , and 𝑁(𝑎, 𝑏, 𝑗) ≤𝑁(𝑐, 𝑑, 𝑗), for 𝑗 ∈ 𝐽 , then one of 𝐼 and 𝐽
is finite or empty. Regardless of settling Conjectures 1 and 2, we are in need of introducing new embeddings/algorithms, similar to 
our embedding of 𝛽(𝑎, 𝑏)-trees into 𝛽(𝑎 − 𝑡, 𝑏 + 𝑡)-trees, to be able to compare 𝛽(𝑎, 𝑏)-trees and 𝛽(𝑐, 𝑑)-trees for any 𝑎, 𝑏, 𝑐, 𝑑. We finish 
this paper with stating another conjecture about the relation.

Conjecture 3. 𝛽(𝑎, 𝑏) ⪯ 𝛽(𝑎 − 1, 𝑏 + 1) for any 𝑎 ≥ 1 and 𝑏 ≥ 0.

Note that Algorithm A confirms Conjecture 3 in the case of 𝑎 ≤ 𝑏 + 1.
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