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Abstract: Optical satellite images of Earth frequently contain cloud cover and shadows. This requires
processing pipelines to recognize the presence, location, and features of the cloud-affected regions.
Models that make predictions about the ground behind the clouds face the challenge of lacking
ground truth information, i.e., the exact state of Earth’s surface. Currently, the solution to that is to
either (i) create pairs from samples acquired at different times or (ii) simulate cloudy data based on a
clear acquisition. This work follows the second approach and proposes an open-source simulation
tool capable of generating a diverse and unlimited number of high-quality simulated pair data with
controllable parameters to adjust cloud appearance, with no annotation cost. The tool is available as
open-source. An indication of the quality and utility of the generated clouds is demonstrated by the
models for cloud detection and cloud removal trained exclusively on simulated data, which approach
the performance of their equivalents trained on real data.

Keywords: cloud removal; cloud detection; cloud simulation; deep learning; synthetic noise

1. Introduction

Clouds are reported to affect a significant fraction of all acquired satellite imagery,
with estimates as high as 55% over land and 72% over ocean [1]. For many downstream
applications, such as land and crop monitoring, this type of obstruction can have a severe
impact on the performance or altogether feasibility of a system. A significant amount of
research [2–9] has been carried out on the topic of understanding clouds in satellite imagery
as well as attempts to remove them.

The need for paired cloudy–clear image samples is particularly prominent in the
context of cloud removal. This need is present in both key aspects of the design pipeline,
namely, training and evaluation. At the training stage, it is often necessary to access a
clear-sky sample and use it as ground truth to compute a loss for optimization. For paired
image-translation frameworks, this ground truth should ideally correspond precisely to
the input cloudy sample. At the evaluation stage, access to ground truth data pairs is also
crucial, as computing a similar loss at inference is one of the key sources of information
about the model’s performance.

There are currently two approaches for obtaining paired cloudy data (a corresponding
pair of cloudy and cloud-free representations of the same image) explored in the literature.
These include (i) the acquisition of temporally proximate real samples (achieving merely
an approximation of the ground truth, with variable and hard-to-quantify precision) and
(ii) the simulation of clouds based on a real source image with no clouds present (with
precise ground truth).

This manuscript describes a new tool for simulating an unlimited number of diverse
pairs of clear-sky and cloudy examples, following the second approach. The tool offers the
capability to parameterize and control various features of the generated clouds.
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The contributions of this work are as follows:

• It proposes a framework to generate synthetic clouds for satellite imagery, with
adjustable parameters to synthesise diverse cloud types.

• It demonstrates that a cloud detection model trained solely on simulated data can
approach the performance of a model trained on real data.

• Similarly, it demonstrates that a cloud removal model trained exclusively on simulated
data can approach the performance of a model trained on real data.

• It demonstrates and highlights the advantages and disadvantages of synthetic and
real paired cloudy data and it shows the different kinds of insight each data source
can offer when evaluating cloud detection and cloud removal techniques.

Furthermore, the tool proposed in this work is openly shared on GitHub at https://
github.com/strath-ai/SatelliteCloudGenerator (accessed on 22 August 2023), allowing for
fast and easy incorporation into PyTorch-based deep learning schemes as an augmentation
operation (it can process batches of stacked tensor input directly on GPU), as well as for
evaluation.

The tool can be used for developing new methods for cloud detection and cloud
removal but also beyond that, where it could be used as an augmentation type for tasks that
deal with the risk of cloud presence, such as multi-sensor fusion, multi-temporal fusion,
satellite image segmentation, object detection, or change detection.

2. Related Work

There are at least two distinct paths to achieving paired cloudy samples explored
in the literature. Both approaches are motivated by the following limitation of the real
physical world, namely, that it is most likely not physically possible to acquire a clear-sky
observation and a corresponding cloudy observation, where all factors (such as lighting,
exact time, or exact conditions on the planet’s surface), apart from the presence of the cloud,
are kept constant.

The first approach to generating paired cloudy data relaxes this requirement for
constant factors and it links cloudy and clear-sky images that are proximate in time. This
occurs under the assumption that all other factors remain similar, rather than constant,
within some feasible margin. However, the assumption may be too optimistic, and the
conditions may vary enough to make the clear-sky sample an inaccurate approximation of
the cloudy image with clouds removed. This is shown in Figure 1 with a sample from a
commonly used SEN12MS-CR dataset [6]. To highlight the resulting changes better, two
crops from the original pair are shown in greater detail. The selected regions of considerable
change are indicated using the colored circles. As a result, inaccurate ground truth samples
could be used for evaluation or learning if this approach is followed.

Figure 1. The approach of using pairs of real data for training and evaluating cloud removal models
often results in fundamental differences in the ground surfaces. Examples from SEN12MS-CR [6].
It is apparent that some areas significantly change their state among acquisitions.

This approach has been explored in works such as [2–7]. In [2] and [5], Landsat image
pairs are gathered with a time gap of 16 or 32 days. In [3], this gap is up to 15 days apart,
while in [4] it could be up to 35 days. These lengths between acquired paired samples mean
that the changes in the ground surface view may be profound even without any clouds
present in either image. In the SEN12MS-CR dataset, it is ensured that the optical cloudy
and cloud-free images are captured within the same meteorological season, which appears

https://github.com/strath-ai/SatelliteCloudGenerator
https://github.com/strath-ai/SatelliteCloudGenerator
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to be a rather loose constraint, as demonstrated in Figure 1. In the related work on the
SEN12MS-CR-TS dataset [7], 30 samples evenly spaced in time are captured for each ROI
across the full year, leading to temporal gaps of about 12 days.

The alternative approach maintains the constant-factor requirement by simulating the
cloud component and adding it to a source clear-sky image. In this case, the compromise is
that it is not guaranteed how accurate the simulated clouds are as an approximation of real
clouds. This approximation could be improved by increasing the capability and quality of
the simulation engine, at the cost of heavier processing.

Another limitation of both approaches is that they both rely on the presence of clear-
sky data. This in itself enforces a very strong bias on the resulting datasets, since only the
subset of all ground data is processed. The correlation between the cloud cover and the state
of the planet’s surface is likely not strong enough to completely hide away some features of
the ground surface data. However, in the practical context, only a finite number of image
samples are acquired over a finite temporal scope, which can contribute to substantial
sampling noise. In the presence of this noisy sampling, the bias of the clear-sky samples
could be quite strong, and it is not yet clear how that can be mitigated apart from aiming
for larger datasets.

While the phenomenon of clouds in Earth’s atmosphere is a complex process requir-
ing a respectively complex and expensive computational simulation, the majority of the
literature to date has focused on borrowing from the fields of computer graphics, where
the generation of random shapes that resemble structures encountered in nature has been
of interest for many years [10]. In a notable paper, Perlin noise was introduced [10] as
a relatively lightweight method for generating natural-looking random structures. The
method produces a texture by interpolating unit-length gradients on a grid, where the
direction of gradients is sampled randomly. Almost three decades later, the approaches
of applying procedural noise for the simulation of clouds received some attention in the
literature, starting with a rather brief description in [11] and eventually including some of
the more developed use cases, such as in [12,13].

Other than that, many hybrid approaches were proposed to find a trade-off between
the weaknesses of real and simulated data. In [14], cloud masks are extracted from real
images using either layer separation methods or channel threshold and then used to
synthesize a cloudy image. Some similar approaches were also previously applied to the
problem of dehazing [15,16] and later revisited for the thin cloud removal problem [17]. In
the case of [16,17], the transparency is adjusted by channel wavelength. In [9], a framework
for cloudy image arithmetic is proposed which relies on extracting real clouds (rather than
masks) from images and then the addition of those clouds to new scenes, which limits the
number of possible generated samples.

This work delivers a new type of approach, where the simplicity of Perlin noise is
combined with a flexible and versatile framework for simulating realistic clouds using
that mask. It includes previously unexplored features such as control over the scale of
the synthesized clouds, the thickness of the clouds, the influence of the ground image
over the perceived color of the cloud, the spatial misalignment of the cloud layer between
image channels, the blurring of the cloud, the simulation of cloud shadows, and channel-
specific magnitude. It is also shown how these settings can be easily managed by adjusting
configuration objects and also how the generated cloud masks and shadows can be easily
converted to segmentation masks, if needed. The key focus of the proposed techniques
is to achieve a lightweight simulation of the visual features of clouds, aimed to improve
the quality of computer vision machine learning models that detect or remove clouds
on relatively small patches of satellite images. The precise visual features of clouds may
be difficult to define explicitly, and hence, the quality of the simulator is measured by
the impact it has on the performance of the machine learning models trained on its data.
In this version of the simulator, the shadows and clouds are generated as uncorrelated
factors, motivated by two observations: (i) a cloud removal or cloud detection model that
can perform well on uncorrelated clouds and shadows should also perform well when
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they are correlated (the converse is not necessarily true) and (ii) for smaller patches of
satellite imagery, the shadows in the patch will often be cast by clouds outside of the view,
appearing uncorrelated with the clouds in the view.

Overall, the SatelliteCloudGenerator (https://github.com/strath-ai/SatelliteCloudGenerator,
accessed on 22 August 2023) framework attempts to deliver a tool that provides a high level of
flexibility for generating an unlimited number of cloudy–clear image data pairs.

3. Method

The proposed framework integrates several new techniques for cloud simulation
(cloud locality degree, ground shadow, automated segmentation mask) and further incor-
porates several methods already discussed in the literature (cloud color, channel misalign-
ment, ground blurring) under a unified scheme. It provides a set of interpretable control
parameters for adjusting the types of generated clouds, which makes it easy to adopt in
new studies. Additionally, the software framework has been designed to facilitate easy
integration with PyTorch with support for parallel execution. This design is illustrated in
Figure 2, where an input cloud-free source Iclear undergoes several transforms to obtain the
final output of a simulated cloudy image Icloudy. This consists of the two underlying simu-
lation processes within the cloud generation (shown in Figure 3) and shadow generation
blocks (Figure 4). More detail on the computation pipeline is provided in the subsequent
sections describing the mechanism of generation.

Figure 2. Diagram of the main pipeline of SatelliteCloudGenerator. The tool takes a cloud-free input
satellite image Iclear and first mixes it with a shadow generated using a shadow generation process
(detailed in Figure 4), then blurs the image locally, and finally mixes it with a cloud generated using
the cloud generation process (detailed in Figure 3).

https://github.com/strath-ai/SatelliteCloudGenerator
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Figure 3. Diagram of the cloud generation component responsible for generating the cloud shape
using Perlin noise and applying several operations to control the final appearance. The output is a
transparency mask and a channel-wise cloud image. The cloud-free source image is used to determine
the magnitude of the cloud component in each channel.

Figure 4. Diagram of the shadow generation component. The shadow generation component,
similar to the cloud generation component, is based on Perlin noise shape but is followed only by
thresholding and range adjustment to produce the output shadow mask.

3.1. Synthetic Shape

The key structure of the generated clouds is derived using a function based on Perlin
noise [10]. The use of Perlin Noise has been explored in earlier literature [11–13], but little
detail has been provided about the generation process. This work explicitly reports on the
generation process and defines a set of parameters to simulate a diverse range of cloud
transparency maps.

The first stage of the process involves generating the base shape of the cloud trans-
parency map. This can be accomplished using many different synthetic noise generation
methods, and here, a type of Perlin noise is employed, where Perlin noise generated as
several harmonic scales is used. As shown in Figure 5a–c, Perlin noise can be generated at
various scales, resulting in different frequencies present in the spectrum. These different
scales can be weighted and summed in order to generate more complex-looking noise
structures, as shown in Figure 5d.

The weights applied to individual shapes at each scale control the spectral content of
the image (spatial frequency domain). Hence, they can be adjusted to obtain shapes that
are smoother by applying a strong decay for finer scales or sharper by reducing that decay.
This is controlled by the decay_factor parameter. By default, this factor is set to 1, and
higher values will result in smoother shapes.
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Figure 5. Demonstration of the Perlin noise generated at several scales (32, 16, 8) (a–c) and the result
of their weighted sum (d). An example of the resulting cloud mask mixed with a real image is shown
in (e).

The resulting shape computed using the Perlin noise method is likely to have a few
sparse global minimum points, instead of a larger region of floor values that would simulate
an area where no clouds are present. To produce that effect, a clear_threshold can be
applied, which will assign a value of 0.0 to all values below that threshold, as illustrated in
Figure 6.

Figure 6. Example of the clear_threshold of 0.30 applied to the cloud mask from Figure 5. This
means that any value less than 0.30 will be clipped to zero, resulting in the black (0.00) regions in the
mask (a), which appear as cloud-free portions of the satellite image (b).

Once the shape passes through the threshold operation, the value range can be adjusted
by setting the min_lvl and max_lvl parameters, which shift the minimum and maximum
values of the shape to these two levels, correspondingly. For example, a min_lvl value
of 0.0 will indicate that the most transparent pixels will have no cloud cover at all. By
increasing the min_lvl, it can be ensured that all pixels have cloud presence at least at that
level. An example of range adjustment is shown in Figure 7.

Figure 7. Example of mask range adjusted to [min_lvl = 0.0, max_lvl = 0.5] from the original
shape. This means that the strongest influence of the cloud in (a) is at 0.5, which corresponds to the
reflectance of the ground still contributing to 50% of the value for that pixel, giving the impression of
semi-transparent clouds in (b).
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The shape mask adjusted to the range of [min_lvl, max_lvl] is treated as the final
transparency map of the simulated cloud. The final step of the process involves using
this mask in a mixing operation with the clear-sky source sample. As in the earlier works
of [9,14], the mixing operation for the clouds is defined as

Icloudy = Iclear ∗ (1−MC) + MC ∗ Icloud (1)

where the output is the cloudy image Icloudy, based on a source clear-sky image Iclear
and a cloud-component image Icloud. In the simplest setting, the cloud-component image
Icloud could be equal to the static color of the ambient cloud. The cloud transparency mask
is indicated by MC.

3.2. Cloud Locality Degree

Another desirable feature is to be able to make the generated clouds more local (mean-
ing that individual cloud objects extend over a smaller portion of the image). In many
cases, real clouds only occupy a limited area of the image. The approach proposed in
this work is to multiply several generated cloud mask shapes Icloud (followed by normal-
ization). Each shape element in multiplication decreases the likelihood of a high value
being preserved for a given pixel in the resulting product, increasing the total number
of cloud-free or almost-cloud-free pixels. An example is shown in Figure 8, where the
parameter of locality_degree indicates the number of noise shapes multiplied by each
other. As shown, the clouds become sparser with the increasing value of this parameter.

Figure 8. Varying levels of locality degree obtained for a range of locality_degree parameter values.
For the value of 1, the cloud generates a single Perlin shape with default parameters (a). For the
values of 2–4 in (b–d), the same Perlin shape is multiplied by another 1, 2, or 3 independent Perlin
shapes, resulting in more local (smaller-area) clouds.

Notably, a changed locality of the clouds can also be achieved by increasing the
clear_threshold value, as shown in Figure 9. This, however, brings another effect of
sharper cloud edges compared to the example with changed locality degree (Figure 8).

Figure 9. Increased locality can also be achieved by adjusting the clear_threshold parameter value
(as shown with values between 0.00 and 0.90 illustrated in (a–d)), but the cloud edges tend to become
sharper, giving the resulting clouds a distinct look, different from the default.



Remote Sens. 2023, 15, 4138 8 of 23

3.3. Channel Misalignment

The real cloud data will often exhibit an effect of channel misalignment, where in-
dividual channels of the cloud object are spatially misaligned due to the velocity of the
acquiring sensor. This occurs when the individual sensor channels are acquired at slightly
different time instants, which is often the case [14].

This effect can be simulated by adding an artificial offset between the individual
channels of the raw cloud mask MC, as shown in Figure 3. The effect is controlled by
a channel_offset parameter, which determines the maximum possible spatial offset be-
tween two consecutive channels in either the x or y direction, in terms of the number of
pixels. During simulation, the exact value of shift in each dimension is sampled uniformly
from [−channel_offset, +channel_offset], resulting in a range of potential discrete off-
sets. Subpixel values are not considered. An example of the feature is shown in Figure 10,
where a three-channel (RGB) cloud mask MC is shown without any misalignment in the
left panel (a) compared to one with misalignment (b), and the resulting mixture results in
(c).

Figure 10. An example of a sample with channel-wise misalignment controlled by the
channel_offset parameter. Without this effect, the cloud component is fully aligned across im-
age channel as shown in (a). However, to simulate a common feature of satellite images, a small
spatial shift can be introduced to individual channels as shown in (b), resulting in what often appears
as colored cloud edges as in (c).

3.4. Cloud Color

As described in the earlier work [14], the clouds present in satellite imagery do not
generally resemble a purely white component but instead are colored by the ambient light
reflected from the ground. Based on the observation shared in [14], the cloud color will
tend to be similar to the mean color reflected from the ground surface in that area. This
color can be computed by averaging all pixels in the source clear-sky image. Furthermore,
this effect is partially dependent on cloud thickness, meaning that a thicker cloud will let
through less light from the ground and reflect light of a color closer to pure white.

To simulate this feature, the color cloud component Icloud is adjusted to have a color
interpolated between pure white and the mean color of the underlying cloud-free image
Iclear, depending on the thickness of the cloud component Icloud. With the default scale of
1.0, the resulting Icloud color for a given pixel will be pure white if the input Icloud is equal
to 1.0 (thick cloud) or equal to the mean cloud-free image color if the input Icloud is equal to
0.0 (no cloud). For the semi-transparent cloud values, the resulting color will be a linear
mixture of the two extreme colors. This effect is demonstrated in Figure 11.
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Figure 11. An example of a cloud with color adjusted by the ground reflectance. To simulate the
global light reflected from the ground affecting the cloud color, the cloud image (a) is adjusted,
depending on the thickness of the cloud, to a value between the mean reflected color of the ground
and pure white, before it is used for the mixture (b).

3.5. Channel-Specific Magnitude

In several works [17,18], it has been noted that the exact magnitude of the cloud
transparency mask will depend on the wavelength of the specific image channel. This is
further affected by the specific channel scaling applied during pre-processing. In the context
of evaluating techniques for the detection and removal of clouds, this aspect is important
for obtaining realistic simulated data. During training, this could also be important for
many tasks, since optimizing the loss only on simulated clouds could make the real clouds
be perceived as out of domain objects and, as a consequence, prevent successful detection
or removal.

The intensity of the cloud component can be adjusted by applying a set of channel-
specific weights to Icloud before mixing with the cloud-free input image, as shown in
Figure 3. However, it is not immediately clear what the values of those weights should
be. In this work, the channel magnitude weights are extracted from real cloudy images
accounting for the ratio ρ between a selected statistic feature cclear in the cloud-free region
and another statistic feature ccloud in the cloud-affected region of the image. Figure 12
demonstrates how a real cloudy sample can be used for sampling cloud-free and cloudy
regions using the cloud detection technique of s2cloudless [19].

ρ =
ccloud
cclear

(2)

For example, the statistic feature can be chosen as the mean reflected color. However,
in some cases, the cloudy region may be heavily influenced by the non-cloudy region
due to the likely presence of nearly cloud-free pixels in the cloud mask, as illustrated in
Figure 12 (this depends on the quality of the used cloud mask). This interference can lead
to an underestimated reflection statistic from the cloudy region. To reduce this effect, the
statistic ccloud is instead selected as the 95% quantile of the distribution observed in the
cloudy region. This value can be expected to be close to the maximum reflected value in
the true cloudy region, with more stability than the maximum value (100% quantile). This
approach should work well for the vast majority of scenarios, as long as more than 5% of
the cloud mask coverage does, in fact, contain a cloud.
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Figure 12. Example of cloud-free (b) and cloudy (c) regions masked from a real cloudy sample (a) us-
ing the s2cloudless cloud detection tool. This allows us to approximate the reflectance characteristics
of the cloud-free and cloudy regions separately.

A further illustration of the relationship between the distribution of values in the
cloudy and cloud-free regions is shown in Figure 13, where histogram curves are shown
for the distribution of pixels in the cloud-free (blue) and cloudy (orange) regions of the
image, individually for each band. It is apparent that the cloudy region tends to contain
higher values for each channel. The leakage of cloud-free pixels to the cloud mask can also
be observed, manifested by similar histogram shapes for the lower values.

Figure 13. Histogram curves for the example image. In each case, it is shown that the cloudy region
(orange plot) contains higher values but also exhibits some resemblance to the cloud-free histogram
(blue) due to the leakage of the ground component in the cloudy region (as shown in Figure 12).

Since the cloud-free mask is generally unlikely to contain any clouds, the statistic cclear
extracted from that region can be closer to the center and is indeed selected as the central
50% quantile (median) of the distribution.

ρ =
c95%

cloud

c50%
clear

(3)

The ratio ρ can then be multiplied with the statistic ĉclear extracted from a new cloud-
free image and give a predicted channel weight vector ĉcloud for the cloud strength:

ĉcloud = ĉclearρ (4)

The cloud component Icloud is then multiplied by ĉcloud to give a magnitude-adjusted
cloud component:

Icloud ← ĉcloud � Icloud (5)

Figure 14 shows the effect of applying this approach, showing that the application of
CSM scaling results in an image more visually similar to a real reference (in both cases, the
values go well above 1.0 and are hence saturated in this figure).
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Figure 14. Example of a sample simulated with (c) and without (b) channel-specific magnitude (CSM)
scaling. The real image reference used for magnitude scaling is shown in (a).

3.6. Ground Shadow

Satellite imagery with cloud presence will often include shadows cast on the ground
surface. Depending on the sun angle and other lighting parameters, the shadows present
in the image could be a result of clouds that are outside of the view. For that reason, the
shadows could be simulated in an uncorrelated fashion and look plausible. An example
is shown in Figure 15. The mixture process for a shadow is similar to the cloud mixing
operation, in a manner analogous to Equation (1):

Ishadowed = Iclear ∗ (1−MS) + MS ∗ Ishadow (6)

But since the shadow component image Ishadow can be approximated by all zeroes, the
operation will simply be

Ishadowed = Iclear ∗ (1−MS) (7)

Figure 15. An example of a shadow generation feature. In this case, the mask (a) determines which
regions of the ground image will appear darker, resulting in an image with shadows (b).

3.7. Ground Blurring

Another effect of the through-cloud scattering, besides changed cloud color, is the
blurring of the underlying ground image, as noted in [14]. There, the source clear-sky image
is transformed into a mixture of itself and the result of a blur with a constant Gaussian
kernel. The mixture is performed based on an alpha mask dependent on cloud thickness.

As shown in Figure 16, this approach is developed here further by convolving the
source clear-sky image with a locally changing Gaussian blur kernel, as opposed to a static
one. The variance of the used kernel is directly proportional to the cloud thickness and can
be adjusted using the blur_scaling factor.
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Figure 16. An example of the cloud-dependent ground blur effect. Before mixing with the cloud, the
cloud-free image is blurred with the strength of the effect proportional to the thickness in the cloud
mask, as shown in (a). This is later followed by the standard mixture process to give the final result
(b) with a cloud on top of a locally blurred ground image.

3.8. Configuring CloudGenerators

The use of a synthetic noise source allows us to effectively generate an unlimited
number of cloudy samples for every single cloud-free source image. Consequently, it is
possible to sample from a very wide distribution of samples, much larger than what can be
stored and packaged into a single dataset. To model this source of data as a sampler, this
work introduces modules termed as CloudGenerators.

The introduction of CloudGenerators allows us to encapsulate a specific simulation
configuration (corresponding to a type of generated cloud) with a sampling function.
A CloudGenerator module behaves in a manner similar to torchvision image augmentation
modules and inherits from torch.nn.module. That way, new samples of specific types can
be generated by simply passing through this module.

Four predefined configurations are provided in the software release, and new ones can
be created as Python dictionaries. Table 1 contains the parameter levels for each of these
four configurations, with examples of resulting samples shown in Figure 17. The first one
uses a wide range between the min_lvl and max_lvl values to simulate large thick clouds
in the image. The other three generators focus on more specific types of clouds, namely,
local (thick clouds covering a smaller portion of the image), thin (local semi-transparent
clouds), and fog (semi-transparent layer over the entire image). Thick clouds are achieved
by setting the max_lvl parameter to 1.0, meaning that portions of the image will contain
pixels completely dominated by the cloud component. The thick and local configurations
differ only by the value of the locality_degree parameter, where thick has it set to 1 (large
clouds) and local has it set to a [2, 4] range (various degrees of more local clouds). For any
part of the configuration expressed as range, the used value is extracted by sampling from
a uniform distribution (discretised, if necessary). The thin configuration limits the max_lvl
parameter to the [0.4, 0.7] range, to ensure semi-transparency. Finally, fog lifts the min_lvl
parameter to the [0.3, 0.6] range, resulting in the full image containing a semi-transparent
cloud.

Table 1. Configuration parameters for four types of clouds. Different cloud types have been achieved
primarily by adjusting the range of cloud thickness and the locality degree of the clouds.

Parameter Config: Thick Config: Local Config: Thin Config: Fog

min_lvl 0.0 0.0 [0.0, 0.1] [0.3, 0.6]
max_lvl 1.0 1.0 [0.4, 0.7] [0.6, 0.7]
threshold [0.0, 0.2] [0.0, 0.2] 0.0 0.0
locality_degree 1 [2, 4] [1, 3] 1

decay_factor 1.0 1.0 1.0 1.0
cloud_color True True True True
channel_offset 2 2 2 2
blur_scaling 2.0 2.0 2.0 2.0
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Furthermore, this allows for the easy combination of different configurations by using
the “|” operator. The output of the operator will be another instance of a CloudGenerator
that each time uses a random configuration from one of its parent objects.

Figure 17. Random samples synthesized using 4 different CloudGenerator configurations used for
this work. The configurations contain parameters that can easily adjust the visual appearance of
clouds, as listed in Table 1.

3.9. Generation of Segmentation Masks

For many applications, especially that of cloud detection, segmentation labels are
required to train the models. Since the cloud simulation tool described herein has direct
access to the cloud mixing mask, it can be used to generate discrete segmentation data.
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The process of transforming the exact cloud and shadow mixing masks to discrete
segmentation-like labels is as follows. The format of the segmentation labels in this example
will follow the approach in CloudSEN12 [8] but could be easily adapted to other formats.
In this case, the segmentation map is composed of 4 classes, 0 for clear sky, 1 for thick cloud,
2 for thin cloud, and 3 for cloud shadow. This way, the label output Mseg can be based on
3 binary masks:

Mseg = 1 ∗ Bthick + 2 ∗ Bthin + 3 ∗ Bshadow (8)

where Bthick, Bthin, and Bshadow are the binary segmentation masks for thick clouds, thin
clouds, and shadows, respectively, as shown in Figure£18.

Figure 18. An example of a precise segmentation mask derived from the simulation tool. It is possible
to obtain an accurate segmentation representation for the simulated data, since the cloud mask is
generated explicitly as part of the simulation process.

4. Evaluation

The utility of images with clouds simulated using the proposed framework is tested
on the two tasks directly related to clouds: cloud detection and cloud removal. In the
experiments, the models are trained on the specific task from scratch on either real data or
simulated data. Once trained, each variant is tested on both real and simulated datasets.
This enables comparison between the two data sources to determine whether a model
trained exclusively on simulated data can perform well on real data and vice versa. This
can give some information about whether the simulated data are similar enough to the real
data to produce models that generalise to real data. The main goal of these experiments
is to preserve the training settings as much possible and compare the impact of the types
of images (real versus simulated) used for training and testing, rather than push the state
of the art in each task. The procedure should highlight differences with respect to both
training and evaluating models for these tasks.

4.1. Cloud Detection Task

For the task of cloud detection, the lightweight fully convolutional architecture of Mo-
bileNetV2 [20] (which achieved the highest performance on the CloudSEN12 high-quality
cloud detection benchmark [8]) is trained from scratch on Sentinel Level-2A images. The
networks are optimized without any pre-training in order to match the exact optimization
conditions for the explored data variants. The baseline variant (a) is optimized on the
manually annotated data of real clouds sourced from the official high-quality subset of
the CloudSEN12 dataset (the first released version) [8]. The alternative variants (b–d) use
the clear images from that subset and simulate the clouds using the simulation method
proposed in this work. The variants involving the use of simulator data include two
variants that use samples simulated without channel-specific magnitude (b) and (c) and
two variants (d) and (e) where channel-specific magnitude is used. In each case, a fully
synthetic approach is tested as in (b) and (d), as well as a hybrid approach that mixes 50%
of real data with 50% of simulated data as in (c) and (e).

For this experiment, the network operates on the bands contained in the Sentinel-2
L2A product. The networks are trained with the standard cross entropy loss for three
classes (clear, cloud, shadow), until a point where the validation loss does not decrease
for 240 epochs. Each batch contains 32 clear images and 32 cloudy images, but the loss on
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the clear images is multiplied by a factor of 0.1 so that the cloudy images are prioritized
during learning. The weights parameters are optimized using an AdamW [21] optimizer
with an initial learning rate of 10−3, which is scaled down by a factor of 0.1 whenever the
validation loss does not decrease for 128 epochs.

As a result, each network was trained for about 20,000 optimization steps until the
validation loss ceased to improve. Although this process could be tuned further to optimize
various learning hyperparameters and yield a lower validation loss, the motivation for the
experiments conducted here is to compare the effect of the real and simulated training data
for these models.

The metrics reported for the performance were selected based on the CloudSEN12
work [8], where producer’s accuracy (PA), user’s accuracy (UA), and balanced overall accu-
racy (BOA) are reported. The first two metrics are more widely known in the field of object
classification as recall (producer’s accuracy) and precision (user’s accuracy). Additionally,
the false positive rate is reported in addition to the metrics used in CloudSEN12.

The producer’s accuracy (PA), or recall, is computed as the fraction of positives that
are correctly detected. For an example of the cloud class, it corresponds to the number
of correctly detected cloud pixels divided by the number of all true cloud pixels. It can
be interpreted as an approximate probability of a pixel containing a cloud being assigned
cloud class by the model. A high level of PA means that a large portion of the cloud present
in the image is contained in the cloud mask.

PA =
TP

TP + FN
(9)

User’s accuracy (UA), or precision, corresponds to the fraction of all positive detections
that are correct detections. For the example of the cloud class, it is computed as the number
of correctly detected cloud pixels divided by the number of all pixels detected as cloud. It
can be interpreted as an approximate probability of a pixel detected as cloud containing, in
fact, cloud. A high level of UA means that a large portion of the cloud mask produced in
the model contains cloud pixels, with minimal leakage of non-cloudy pixels into the mask.

UA =
TP

TP + FP
(10)

The balanced overall accuracy (BOA) is the average of true positive rate (producer’s
accuracy or recall) and true negative rate. This is particularly helpful for non-balanced
datasets, where there is a significant imbalance between positives and negatives in the
ground truth. The true negative rate corresponds to the ratio of all negative instances
correctly labeled as negatives.

BOA =
TP

TP+FN + TN
TN+FP

2
(11)

Finally, the false positive rate (FPR) is provided as the rate of falsely rejected positive
instances. For the example of cloud detection, it can be interpreted as the number of pixels
incorrectly detected as cloud divided by the total number of cloud-free pixels.

FPR =
FP

FP + TN
(12)

Table 2 contains the metrics computed on the cloudy images of the test dataset contain-
ing the original real cloudy samples. In terms of balanced overall accuracy for the cloud
class, the performance is quite comparable across variants, with the model trained on real
data performing best (0.79). Yet, models (b) and (d) trained exclusively on simulated data
can achieve a non-trivial performance of 0.75 and 0.78, respectively. This also demonstrates
the improvement achieved with the realistic channel-specific magnitude (CSM) feature of
the simulator, where higher BOA is observed for all three classes, especially for the shadow



Remote Sens. 2023, 15, 4138 16 of 23

class increasing from 0.50 (without CSM, effectively no discriminative capability) to 0.72.
These benefits are also observed for the hybrid approaches (c) and (e), where the BOA
increases from 0.73 to 0.76 for the clear class and from 0.71 to 0.74 for the shadow class.

Table 2. Evaluation on the real cloudy images for the cloud detection task.

Model Trained on Label Test on Real: Cloudy Subset
BOA PA UA FPR

Cloud 0.79 0.68 0.85 0.11
(a) Real Clear 0.78 0.86 0.66 0.31

Shadow 0.72 0.47 0.65 0.03

Cloud 0.75 0.84 0.70 0.34
(b) Simulated Clear 0.68 0.63 0.61 0.28

Shadow 0.50 0.01 0.67 0.00

Cloud 0.78 0.87 0.72 0.32
(c) Hybrid Clear 0.73 0.60 0.74 0.14

Shadow 0.71 0.45 0.60 0.04

Cloud 0.78 0.75 0.78 0.20
(d) Simulated Clear 0.75 0.76 0.67 0.25

with CSM Shadow 0.72 0.47 0.66 0.03

Cloud 0.78 0.75 0.79 0.19
(e) Hybrid Clear 0.76 0.74 0.69 0.23

with CSM Shadow 0.74 0.53 0.59 0.05

These observations motivate two important conclusions. First, it is possible to train
cloud detection models exclusively on simulated data and achieve good performance when
tested on real samples. Second, channel-specific magnitude appears to consistently lead to
improved accuracy in real test data.

An important aspect of this test that should be acknowledged is that the real data
labels have been produced by humans, who have inevitably instilled some bias into the
ground truth. This bias is the net effect of many factors and may be difficult to determine
precisely; however, it can be understood that any type of error consistently produced
by humans leads to a certain bias in both real training and test data. Consequently, the
models trained only on simulated data, (b) and (d), have no access to observe this type of
bias, yet they are expected to reproduce it when tested on real data. Hence, they may be
put at an unavoidable disadvantage. To understand this effect better, models (c) and (e)
can be inspected. In terms of BOA, these models perform marginally lower for the cloud
class (both scoring 0.78 compared to 0.79 achieved with (a)), meaning that the presence of
simulated data in the training samples makes it more difficult to learn the biases present in
the real data.

The other metrics beyond BOA provide more insight into the results. Producer’s
accuracy (PA), as discussed earlier, measures the amount of coverage for each class, which
can be understood as how much of the present class is actually contained in the detected
region. In this case, all of the models trained on simulated data (b–e) strongly outperform
the real data model (a) for the cloud class. This means that those models are more likely
to contain complete sets of cloudy pixels in the cloud masks they produce, which could
often be considered beneficial for the purpose of masking out the cloud-affected regions.
Conversely, they consistently achieve lower user’s accuracy (UA) values, which means
that the cloud masks they produce will often contain higher portions of cloud-free pixels.
Models trained with simulated data are less conservative in the process of producing
cloud masks, meaning that they tend to overestimate the cloud-affected region compared
to models trained on real data. Depending on the application, this behavior could be
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considered more or less beneficial (this depends on whether precise cloud-free region
masks with no presence of cloud are prioritised or not).

For the thick simulated cloud test images, as shown in Table 3, the BOA achieved
by models (b–e) is higher compared to that of the real data, which could indicate that
the ground truth labels between the training and test images are more consistent. This
is consistent with the fact that simulated data allow for precise ground truth extracted
from the synthesis process. Another interesting observation is that the models (b) and (c)
trained without channel-specific magnitude achieve the best trade-off between PA and
UA, meaning that they achieve values above 0.90 for both. This means that these models
can mask out most of the cloudy area and include few non-cloudy pixels in the resulting
cloud mask. On the other hand, models (a), (d), and (e) consistently achieve much higher
UA than PA, which means that they tend to produce masks that mostly contain cloudy
pixels, but not all of the cloudy pixels in the image are contained in that mask. Finally, the
issue with model (b) not being able to detect shadows is still present and appears to be
minimized when channel-specific magnitude is used for the clouds, as in model (d).

Table 3. Evaluation on the simulated thick clouds for cloud detection.

Model Trained on Label Test on Simulated: Thick
BOA PA UA FPR

Cloud 0.78 0.58 0.99 0.02
(a) Real Clear 0.72 0.83 0.32 0.40

Shadow 0.67 0.40 0.29 0.06

Cloud 0.80 0.95 0.90 0.34
(b) Simulated Clear 0.77 0.64 0.61 0.10

Shadow 0.51 0.02 0.37 0.00

Cloud 0.85 0.93 0.93 0.23
(c) Hybrid Clear 0.76 0.60 0.62 0.08

Shadow 0.70 0.45 0.39 0.04

Cloud 0.81 0.66 0.98 0.04
(d) Simulated Clear 0.75 0.82 0.36 0.33

with CSM Shadow 0.67 0.38 0.30 0.05

Cloud 0.83 0.70 0.98 0.05
(e) Hybrid Clear 0.74 0.74 0.39 0.27

with CSM Shadow 0.71 0.51 0.28 0.08

For local clouds, the model trained on real data still achieves superior performance of
BOA at 0.80, compared to the value of 0.77 achieved by channel-specific magnitude with
only simulated data, as shown in Table 4. However, the models (b–d) trained on simulated
images achieve higher PA, meaning that they are capable of including larger portions of
the cloud in the resulting cloud mask.

For the thin simulated clouds in Table 5, the simulated data models (b–d) achieve
higher accuracy than the real model (a), and their PA values are considerably higher, which
again suggests that they can extract larger portions of clouds in their cloud masks.

Finally, two more subsets are tested in Table 6 and Table 7, which contain simulated
foggy image examples and cloud-free image examples, respectively. In the case of foggy
images (where the entire image is covered by cloud), only user’s accuracy is reported,
which corresponds to the fraction of pixels correctly classified as cloud. In this case, all
models achieve maximum performance, meaning that they assign the correct label to all
examples in the test dataset.
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Table 4. Evaluation on the simulated local clouds for cloud detection.

Model Trained on Label Test on Simulated: Local
BOA PA UA FPR

Cloud 0.80 0.75 0.66 0.14
(a) Real Clear 0.74 0.80 0.82 0.32

Shadow 0.61 0.26 0.35 0.05

Cloud 0.76 0.89 0.47 0.37
(b) Simulated Clear 0.69 0.63 0.82 0.24

Shadow 0.50 0.00 0.45 0.00

Cloud 0.77 0.90 0.48 0.36
(c) Hybrid Clear 0.71 0.55 0.88 0.14

Shadow 0.64 0.35 0.32 0.07

Cloud 0.77 0.78 0.55 0.23
(d) Simulated Clear 0.71 0.71 0.81 0.29

with CSM Shadow 0.60 0.25 0.35 0.04

Cloud 0.79 0.83 0.55 0.25
(e) Hybrid Clear 0.72 0.66 0.84 0.23

with CSM Shadow 0.63 0.32 0.31 0.07

Table 5. Evaluation on the simulated thin clouds for cloud detection.

Model Trained on Label Test on Simulated: Thin
BOA PA UA FPR

Cloud 0.70 0.49 0.91 0.09
(a) Real Clear 0.67 0.83 0.41 0.49

Shadow 0.62 0.28 0.27 0.05

Cloud 0.72 0.87 0.79 0.44
(b) Simulated Clear 0.68 0.54 0.56 0.17

Shadow 0.51 0.02 0.37 0.00

Cloud 0.74 0.85 0.81 0.36
(c) Hybrid Clear 0.68 0.51 0.59 0.14

Shadow 0.67 0.40 0.32 0.06

Cloud 0.71 0.58 0.87 0.16
(d) Simulated Clear 0.69 0.77 0.44 0.40

with CSM Shadow 0.61 0.27 0.28 0.05

Cloud 0.72 0.63 0.86 0.19
(e) Hybrid Clear 0.68 0.68 0.45 0.33

with CSM Shadow 0.65 0.38 0.25 0.08

Table 6. Evaluation on the detection task for simulated fog images.

Model Trained on Test on Simulated: Fog
UA

(a) Real 1.0
(b) Simulated 1.0
(c) Hybrid 1.0
(d) Simulated with CSM 1.0
(e) Hybrid with CSM 1.0
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Table 7. Evaluation on the cloud-free images for the detection task.

Model Trained on Test on Real: Cloud-Free Subset
UA

(a) Real 1.0
(b) Simulated 1.0
(c) Hybrid 1.0
(d) Simulated with CSM 1.0
(e) Hybrid with CSM 1.0

This concludes the analysis of the cloud detection task, which demonstrates that
cloud detection models can be trained exclusively on simulated cloudy data and achieve
performance comparable to the models trained on real data. Furthermore, the realistic
magnitude of the cloud component in each channel of multi-spectral data has been found
to be beneficial for performance on real clouds when learning from simulated data.

4.2. Cloud Removal Task

For the task of cloud removal, the dataset of SEN12MS-CR is used, containing real
pairs of cloudy and non-cloudy Sentinel-2 images, along with corresponding Sentinel-1
samples. The dataset contains Sentinel-2 Level-1C product, which consists of 13 bands
of multi-spectral data. Furthermore, Band 10 is excluded from the experiment, since it
primarily responds to the top of atmosphere reflections of cirrus clouds [22], which often
have a different effect than in other bands, as can be observed in Figures 19 and 20. This
effect is not currently modeled by the cloud simulator and hence the exclusion. The two
figures contain visualizations of individual bands from a Sentinel-2 L1C product for a
cloudy and a clear sample. In both cases, all bands except for Band-10 (SWIR–Cirrus)
appear to be highly correlated. In the cloudy image, the bands tend to contain a similar
presence of the cloud, while in Band-10 this object appears absent. Similarly, Band-10 in the
clear image appears to detect a fairly different structure than the other bands.

Figure 19. Example of content of individual multi-spectral bands in each channel for a cloudy
Sentinel-2 L1C image. Intensity range for each band is listed in square brackets.
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Figure 20. Example of content of individual multi-spectral bands in each channel for a cloud-free
Sentinel-2 L1C image.

The baseline architecture used for the experiments on cloud removal is DSen2-CR [6],
a simple residual-based deep neural network architecture consisting primarily of convolu-
tional operations. In each case, it is trained from scratch to a point where no improvement
in validation loss occurs for 30 epochs. The networks are trained using an AdamW opti-
mizer [21] with a starting learning rate of 10−4 and the same decay strategy as the cloud
detection model above. Each batch of data contained four clear and four cloudy images,
and, similarly to the cloud detection scheme, the loss on the clear images is multiplied by a
factor of 0.1. Due to the large dataset size of SEN12MS-CR, during each epoch, the loss is
optimized on 1000 random samples from the training dataset, and the validation loss is
computed on 500 random samples from the validation dataset.

Similar to the previous example with cloud detection, the models are tested on five dif-
ferent test datasets, one with real clouds and another four with simulated-only data of
different cloud types. The commonly used metrics of SSIM (Table 8) and RMSE (Table 9)
are used to evaluate the models. Furthermore, each metric is reported for the whole image
(the first listed value) as well as the isolated cloud-affected region (the second listed value).

The results in Table 8 indicate that while the model trained on the real data (a) per-
forms best on that type of data (an SSIM of 0.623 for the whole image and 0.561 for the
inpainted region), the model (d) trained exclusively on simulated data with channel-specific
magnitude achieves an SSIM of 0.544/0.462. On the other hand, for any type of simulated
test data, model (d) outperforms model (a). Similar to the detection task, model (b), which
was trained on simulated cloudy images without channel-specific magnitude, consistently
produces results of the lowest quality. In Figures 21 and 22, it can be observed that model
(b) does not really apply any visible changes to the input image, indicating that it does not
recognize the cloud objects as something that should be removed. It achieves an SSIM of
0.444/0.323, compared to 0.544/0.462 in the equivalent model trained with channel-specific
magnitude. This demonstrates that the channel-specific magnitude feature is crucial for
cloud removal models to generalize from simulated data to real instances, indicated by the
improved quality achieved with models (d) and (e).

Table 8. Evaluation on the cloud removal task— (↑) SSIM metric (whole/masked).

Trained on Real Thick Local Thin Fog

(a) Real 0.623/0.561 0.619/0.541 0.858/0.668 0.842/0.803 0.740/0.739

(b) Simulated 0.444/0.323 0.474/0.343 0.837/0.530 0.846/0.790 0.669/0.669
(c) Hybrid 0.603/0.538 0.619/0.531 0.873/0.666 0.859/0.814 0.746/0.745

(d) Sim-CSM 0.544/0.462 0.682/0.604 0.899/0.737 0.882/0.846 0.755/0.753
(e) Hyb-CSM 0.567/0.485 0.670/0.595 0.889/0.728 0.872/0.839 0.749/0.748
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Table 9. Evaluation on the cloud removal task— (↓) RMSE metric (whole/masked).

Trained on Real Thick Local Thin Fog

(a) Real 0.217/0.229 0.289/0.323 0.142/0.233 0.165/0.187 0.266/0.266

(b) Simulated 0.884/1.042 1.108/1.271 0.330/0.628 0.300/0.364 0.802/0.802
(c) Hybrid 0.227/0.236 0.303/0.344 0.136/0.247 0.162/0.193 0.276/0.276

(d) Sim-CSM 0.261/0.264 0.198/0.223 0.099/0.170 0.126/0.146 0.196/0.196
(e) Hyb-CSM 0.238/0.251 0.209/0.235 0.107/0.180 0.134/0.154 0.209/0.209

Figure 21. Examples of cloud removal output for the five model variants on real cloudy images.

Figure 22. Examples of cloud removal output for the five model variants on simulated cloudy images
(test images simulated with channel-specific magnitude).
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5. Conclusions

This manuscript introduced a novel open-source SatelliteCloudGenerator (https:
//github.com/strath-ai/SatelliteCloudGenerator, accessed on 22 August 2023) tool for
simulating cloudy satellite images with a number of controllable parameters responsible
for many features, including cloud structure, locality, color, thickness, or sensing channel
misalignment. The tool can be used on image batches directly on GPU and act as an
augmentation operation in the PyTorch library commonly used for training deep neural
networks.

To shed more light onto the problem, deep neural networks have been trained in the
tasks of cloud detection and cloud removal. The results show that learning from simulated
data alone has the effect of good performance on real data, especially when channel-specific
magnitudes are adjusted. Compared to real data, this approach incurs zero annotation
cost. Furthermore, the simulation framework can be used to generate unlimited data for
evaluation; in which case, the models trained on simulated data outperform the model
trained solely on real data.

Ultimately, neither real nor simulated data appear to be universally more advanta-
geous. The ideal, potentially impossible, case is an abundant source of real images with
precise ground truth. Real image sources are not abundant and are likely to contain dis-
torted ground truth. Simulated sources are abundant and with precise ground truth, but a
certain gap between real and simulated images can be expected. Given this state of matters,
a good way to achieve a trade-off is to perform training as well as evaluation on both data
sources, which has been demonstrated herein.
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