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Abstract

Electrification of domestic heat and transport will
significantly increase loading on the distribution net-
work. Understanding the capacity implications will
require an increased focus on the impact of individual
household behaviours. A high resolution domestic en-
ergy model has been developed for the assessment of
demand at the individual distribution network feeder
scale. At this level stochastic variation in multiple
elements (e.g. occupancy, appliance ownership, use
timing, heating type, vehicle mileage etc.) are all im-
portant in determining the demand profile at different
timescales. Modules have been incorporated for each
stochastic element, with significant input flexibility
to alter behaviour and technical assumptions. The
output from the model indicates that understanding
use behaviours, particularly heating and EV charg-
ing behaviours, will be critical for understanding po-
tential impacts at the local level and to ensure that
maximum demand assumptions account for local con-
ditions.

Introduction

That increasing electrification of domestic heat and
transport demand will impact the capacity limits and
operating characteristics in the distribution network
is understood, however, models that simulate the im-
pact accurately, including the potential variability at
smaller scales, are required.

Increased domestic demand electrification will impact
at all grid scales, including low voltage feeders (Low
Carbon London (2014), Vivid Economics (2019)).
The main impact will be on peak loading, particu-
larly if the additional loads for heating and transport
are unconstrained. The increase in the peak can be
mitigated by controls that aim to shift some demand
away from the peak periods (e.g. at-home EV charg-
ing can be scheduled overnight) or by time-of-use tar-
iffs. However, if poorly understood and implemented,
these may only shift the peaks to a different time pe-
riod.

Without electric heating or vehicle charging, the peak
design load for an individual household is typically
18kW (based on a 80A connection). The current peak

design load for a network reduces significantly with
scale as individual household peak loads are rarely
simultaneous. This is known as After Diversity Max-
imum Demand (ADMD) and is used by Distribution
System Operators (DSO) for system design. The ex-
pected peak load reduces to c.2kW per household at
100 households (Barteczko-Hibbert, 2015).

The number of houses connected to low voltage feed-
ers can vary significantly from low numbers to 100+
(Hattam and Greetham, 2017). At this level, the
stochastic behaviour of individual households will be
a factor, requiring a different resolution of demand
modelling than has been typically used for larger scale
modelling requirements.

Existing Models

High resolution, domestic-scale models with electric-
ity, heat and hot water outputs are rare. The pri-
mary open-source UK model is the ‘Crest’ model
(McKenna and Thomson, 2016), but the calibration
basis for the model lacks the per-household differenti-
ation required for stochastic modelling of variation in
demand between households (Flett, 2017). Diversity
assessment at small scale (sub-100 houses) requires
the variation to be assessed and compared probabilis-
tically.

Aim

The aim of this work is to develop a flexible, high res-
olution tool for assessing the impact of further elec-
trification of domestic energy use at the household
scale. A modular, bottom-up approach, incorporat-
ing several existing validated elements, ensures it can
be modified on an ongoing basis as new behavioural
data emerges.

Model Development

An integrated stochastic assessment tool has been de-
veloped in Python that combines two principal exist-
ing ESRU software packages: domestic occupancy,
appliance and hot water demand from the ‘OccDem’
model and a black-box building thermal model from
the ‘IDEAS’ model. In addition, a stochastic car
use model has been developed to assess charging fre-
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Figure 1: Overall model structure

quencies for EV vehicles and a overall simulation en-
gine develop to assess demand and control actions per
timestep.

Figure 1 shows the structure and calculation sequenc-
ing for the overall model, with each module described
below.

Occupancy and Demand ‘OccDem’

The existing ‘OccDem’ model (Flett, 2017) is publicly
available. The model is highly stochastic and sep-
arately calibrated for a variety of household types,
with the aim to produce occupancy, appliance and
hot-water demand profiles that are representative of
individual households. This was achieved by addi-
tional statistical manipulations in comparison with
other models that typically use population-level prob-
ability models that converge to the population aver-
age (Flett and Kelly, 2021).

This model allows for the generation of 1-minute reso-
lution profiles for both total electricity and hot water
demand, or demand differentiated by appliance or hot
water volume range.

Heating Model Characterisation

Heating behaviour modelling is complex and cur-
rently lacks comprehensive data differentiated by
household types. The Household Electrical Sur-
vey (Zimmermann et al., 2012) included tempera-
ture data over several months. Using the method
defined in (Huebner et al., 2013), the data was
analysed for heating patterns. Five broad patterns

were evident (no pattern/manual, always-on, wak-
ing hours, two-period (morning+evening), one-period
(evening)), with some additional variation in terms
of setpoint temperature variation and the likelihood
of manual boost heating outside of the normal pat-
tern. Within the model these base patterns are ap-
plied probabilistically, principally for gas boiler use
patterns.

Figure 2: Typical heating patterns from EDRP and
RHPP datasets (from Watson et al. (2021))

There is evidence from data gathered from over
400 households with heat pumps from the Renew-
able Heat Premium Payment (RHPP) scheme (2013-
2015) (Lowe, R., Department of Energy and Climate
Change, 2017), that heating use patterns were dif-
ferent for heat pump users in comparison with tradi-
tional gas boilers. Watson et al (Watson et al., 2021)
identified three broad heating patterns from both the
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RHPP data and the gas-heating Energy Demand Re-
search Project (EDRP) dataset with 6600 households
(AECOM Building Engineering, 2018) . These were
waking hours, two-period and always-on. Gas house-
holds had a 42/35/23% split, and the equivalent for
heat pump households was a 28/8/64% (see Figure 2).
The result is a significant increase in overnight and
mid-day demand and a lowering of the morning and
early evening peak demand. Further data is required
to fully confirm if this pattern is a inherent feature
of heat pump use, or a feature of the predominantly
social housing RHPP population.

To allow the model to be used both to predict energy
demand with heat pumps and to be used as a tool to
understand the impact of different operating pattern,
the proportion of households with each pattern type
and temperature setpoints can be modified.

It is assumed that for households without an ‘always-
on’ heating pattern, there is at least a partial corre-
lation between typical occupancy patterns and heat-
ing timing. The ‘OccDem’ occupancy model incorpo-
rates stochastic waking and sleep times for individu-
als. Heating schedules are linked based on the prob-
abilistic base pattern with variable offsets (i.e. 30-
90mins before waking). There is no current dataset
that links occupancy and heating schedules. How-
ever, further validation is planned against the general
heating patterns captured by the Energy Follow-Up
Survey (Department of Energy and Climate Change,
Building Research Establishment, 2016).

EV Use Model

National Travel Survey (NTS) data (Department of
Transport, 2018) has been used extensively for vehicle
use modelling and specifically for EV charging mod-
els. Travel survey data is considered representative
of EV use data in the absence of comprehensive EV
datasets (Pareschi et al., 2020).

Daily car use for the majority of households is signif-
icantly below typical EV ranges, and battery capac-
ities are increasing, therefore it is considered a rea-
sonable assumption that use patterns will not change
significantly. The focus on vehicle use with charg-
ing decisions treated separately allows the model to
be recalibrated for different charging behaviours with-
out significant modification of the underlying mileage
model.

The current model incorporates NTS data from 2002
to 2017 and has a total of 4.45 million individual jour-
neys. Data up to 2020 is available. Filtered for jour-
neys as the household car driver, this reduces to 2.04
million relevant journeys.

For multiple car households in the NTS data, the car
used is not identified. For initial analysis, the use by
the highest user by distance is used as a proxy for
a main car EV. Further work is required to deter-
mine how EV use in multiple car households should

# Start End Dist. End
Time. Time (miles) Location

19.21 Home(1)
1 08.32 08.57 10 Public Charger(3)
2 09.12 09.28 7 Work(2)
3 16.37 16.59 9 Home(1)

Table 1: Example car use output (inc. previous day
end time/location)

be modelled, but this work assumes a single EV per
household used as the main car.

As per the ‘OccDem’ model the dataset has been split
into a complementary set of multiple household types.
20 sub-populations are defined based on employment
status, household type, number of owned cars and
number of licensed drivers.

The following data was generated for each household:
(1) average distance per day
(2) average number of daily car journeys
(3) daily zero use probability
(4) maximum number of daily journeys
(5) standard deviation of journeys per non-zero day
(6) maximum total daily distance
(7) standard deviation of distance per non-zero day
(8) skewness of daily distance per non-zero day

From this data, a number of probability models were
generated to allow average and variation in number of
journeys and distance to be determine for each mod-
elled household. The average distance per day is the
primary statistic generated for each household and
the main driver in determining charging requirement
when not in use.

The NTS data also includes a ‘purpose’ for each jour-
ney. 23 potential purposes are available, including
commuting, food shopping, entertainment etc. For
EV modelling the location of the car when not in use
is critical information for at-home vs. public station
charging. The purposes have therefore been simpli-
fied to four assumed destinations (home(1), work(2),
locations where public charging availability is likely
(education, shopping) (3) and all other locations (4)).

To allow the location to be assessed, markov chain
probability data has been generated to determine the
destination based on the start location. This has been
differentiated by 6 time periods (00.00-07.00, 07.00-
10.00, 10.00-13.00, 13.00-16.00, 16.00-18.00, 18.00-
00.00), and separately for weekdays and weekends.
This logic will allow future development of charg-
ing behaviour strategies when the factors determin-
ing whether a car is charged at home, at work or at
a commercial charging location are more apparent.

Table 1 shows an example output for a day’s car use.
The ‘Energy Demand Engine’ module (see below) al-
lows the charging behaviour, per-mile energy use, bat-
tery capacity and charger capacity to be defined. This
allows the impact of variation in these factors on de-
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(a) 60-min (b) 10-min (c) 1-min

Figure 3: Demand profile at different time-average resolutions for a single house

(a) 60-min (b) 10-min (c) 1-min

Figure 4: Demand profile at different time-average resolutions for 10 houses

mand patterns to be assessed against the same car
usage.

Weather

Weather is a critical input for a number of elements
within the overall model. Temperature affects build-
ing heat loss, heat pump COP and PV panel per-
formance. Cloud cover, humidity and ozone can be
used to determine PV output. Detailed weather data
from a number of sources (Metar, Renewablesninja,
Tomorrow.io, etc.) are used depending on location
and specific model requirements.

Space heating requirements and renewables genera-
tion can vary significantly from year-to-year, there-
fore the ability to run multiple years is critical to
assess potential performance variability.

Generation and Storage

Incorporating local electricity generation (typically
using solar PV in a domestic context) and energy
storage (typically battery or thermal storage) is in-
creasingly common in both new-build and retrofitted
properties. In the context of grid impact, generation
and storage can be used to mitigate peak loads, par-
ticularly using optimisation controls.

Energy Demand Engine

The controllable and shiftable loads (heating and EV
charging) are modelled within a sub-model that al-
lows per-timestep intervention.

The ESRU developed model ‘IDEAS’ (Murphy, 2012)

was primarily developed to assess specific control
schemes on domestic heating but includes an single
zone heating model that incorporates standard heat
loss equations, fabric properties and use behaviours.
The heat gains from the ‘OccDem’ model have been
integrated with the building model to ensure consis-
tency between occupancy, appliance use and heating
demand.

The heating setpoint for the specific timestep and
zone temperature for the previous timestep are used
to determine the ideal heat input for the current
timestep to meet the setpoint. This heat input can be
modified to account for a surplus or shortfall in heat
availability (i.e. grid restricted heat pump operation,
excess renewable generation etc.).

For EV charging, the charge and location are de-
termined at each timestep based on the use model.
The model currently assumes that the vehicle will
be charged at home unless below 20% of full charge
while away from the home location. This logic will
be updated as charging behaviour data becomes avail-
able to account for different behaviours and incentives
(e.g. free or subsidised workplace charging).

Modelling Resolution

Identifying the peak loads on an electrical system
using stochastic, bottom-up modelling of potential
loads, requires a modelling resolution consistent with
the input data and typical run times of individual de-
mands. ‘OccDem’ has a 1-minute resolution, which
is consistent with most power-intensive appliances
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(cooker/oven, kettle, microwave, shower) being typi-
cally run for at least 1 minute (Zimmermann et al.,
2012). The modelling does not reflect transient power
impacts, therefore a smaller timestep would be im-
practical. The model, however, has the flexibility to
run a longer timesteps, with 30 to 60-minute demand-
averaged steps typically used for annual demand anal-
ysis.

Figure 3 shows the impact of running the same house
at a 1-, 10- and 60-minute resolution. Figure 4 shows
the same results for a 10-house network. This high-
lights that capturing the demand peaks requires a
1-minute resolution, with absolute peak value infor-
mation lost at 10-minute and very limited peak infor-
mation at 60-minute resolutions.

Assessment Period

Analysis of full year results indicates that heating is
the main driver of peak loading. Car use is largely
non-seasonal and therefore any peaks associated with
EV charging are as likely in the winter heating period
than other periods. To reduce modelling time to allow
for a 1-minute resolution basis, ADMD modelling is
focused on the November to March period (217,440
timesteps).

Figure 5: Average heat per household

Validation

Model calibration and validation will be an ongoing
process as new behavioural data linked to domestic
heat pump and EV charger use emerge.

For validation, 100 sets of 2-bedroom houses have
been modelled with a mix of ages and a 80m2 floor
area for comparison with the RHPP dataset. The
RHPP is acknowledged as not being representative of
UK housing (Love et al., 2017), with two-thirds be-
ing social housing against 17% as a proportion of UK
housing, and as stated, a preponderance of ‘always-
on’ heating. Without a detailed breakdown of the
RHPP housing and household characteristics, the 100
houses were modelled broadly as per the average UK
house.

Figure 5 shows the average heat pump heat output

from the RHPP dataset for the Nov-Mar period, in
comparison with the average for the 100 modelled
houses with the demand normalised to the RHPP av-
erage to account for the uncertainty between mod-
elled and RHPP populations. The results indicate
that the timing and extent of both the morning and
late afternoon peaks is consistent, indicating that the
timing behaviour assumptions are broadly accurate.

The primary discrepancies are (1) a lower mid-
afternoon demand, which may be consistent with a
lower quality housing stock requiring higher heat in-
put to maintain temperature and (2) a higher mid-to-
late evening demand, which indicates that the timing
of the heating switch-off may be earlier, on average,
than currently assumed, or there is a tendency to re-
duce heating temperature in this period.

Overall, the model output shows a good correlation
with the RHPP data given the uncertainty over the
specific housing in the RHPP data.

The reduction in demand in late evening and the
overall lower overnight demand level, when they high
prevalance of always-on heating is considered, is only
achieved if a reduction in temperature setpoint is as-
sumed. In the model, this reduction is allowed to vary
between 0-2oC from the daytime setpoint.

The car use model has been verified as statistically
consistent with the NTS dataset. Further calibration
and validation of the EV charging data is ongoing
using the ‘My Electric Avenue’ dataset.

Case Study

To illustrate the primary applications for the devel-
oped model, the 100 sets of households modelled for
the validation phase are used to consider a variety of
potential ADMD related issues. The modelled houses
have individual, stochastic occupancy, appliance, hot
water, and EV use profiles, with the linked building
fabric, and space heating and car charging behaviours
allowed to vary for each model run.

The case study population is an extreme case where
100% heat pump (all air-source) and EV ownership is
assumed, the results are therefore solely indicative of
model potential not realistic near-term demand pro-
files.

Overall Results

Figure 6 shows the average electricity demand for
each end use for the 100 modelled households in the
Nov-Mar heating period. The morning demand peak
is primarily driven by space heating, with the after-
noon demand peak having a more mixed end-use bal-
ance, although heating remains predominant.

For the 100 households, the peak modelled demand
was 411kW (compared to 91kW without heat pumps
and EVs). This occured at 7.50am on Nov 19th, and
was 79% heating demand, 15% appliance demand, 4%
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Figure 6: Average per-household end-use electricity
demand for 100 representative households

# Date Time Peak Heat EV
(kW) % %

1 Nov. 10th 16.21 55.8 44.8 26.3
2 Nov. 20th 08.30 55.1 55.5 26.7
3 Nov. 19th 18.20 56.9 45.5 38.8
4 Nov. 19th 19.42 58.4 33.2 25.2
5 Dec. 26th 18.10 52.2 43.7 28.2
6 Nov. 16th 17.45 50.8 43.1 43.5
7 Nov. 19th 07.35 51.4 77.0 14.4
8 Feb. 28th 18.39 54.7 37.8 26.9
9 Nov. 19th 19.09 56.4 41.8 39.2
10 Nov. 29th 19.01 56.2 45.0 39.3

Table 2: Peak load timing and breakdown for each
10-house sub-group

hot water heating, 2% EV charging. Heating is the
main driver for all highest load values. EV charg-
ing, even if opportunistic, is not a key driver to peak
loading at this network scale based on the assump-
tions and modelled behaviours.

Table 2 shows the breakdown of the maximum de-
mand for each 10-house sub-group in the dataset. At
this network scale, the proportional heating contri-
bution to the peak demand is significantly lower than
the 100-household case, with a significantly greater
influence from opportunistic EV charging. EV charg-
ing impact on peak loads is therefore likely to increase
in significance with a decrease in network size.

At the individual house level, there is a high incidence
of concurrent heating and opportunistic EV charging
demand, often in the same period as peak appliance
loads. This indicates a potential value in shifting heat
demand via storage and overnight EV charging via
timing controls, and tackling high individual house-
hold peak loads in parallel with overall feeder peaks.

Impact of heating behaviours and fabric per-
formance

As outlined above, the RHPP dataset for heat pump
households shows a significantly greater prevalance

Figure 7: Average total 10-house heating demand for
different heating patterns and building fabric perfor-
mance

Building Heat HP HP Total
Standard Behaviour (kWe) % kWe

Pre-76 Waking 48.5 100 59.0
Pre-76 Always 43.3 100 52.5
Pre-76 2-Period 43.9 100 64.6
2015 Waking 34.5 80 45.6
2015 Always 30.2 70 47.4
2015 2-Period 33.6 72.5 44.2

Table 3: Total peak load variation for different build-
ing fabric and heating behaviours for 10 houses

of ‘always-on’ and ‘waking hours’ heating patterns
(see Figure 2). Further data is required, particularly
for heat pumps installed in newer housing with sig-
nificantly better thermal performance. More typical
heating patterns associated with gas boilers, i.e. be-
haviours typical where the system is not heat output
or temperature limited, may predominate.

Figure 7 shows the average for a 10-house group of
Nov-Mar heating patterns for different behaviours
(‘Waking’, ‘Always’ and ‘2-Period’) and building fab-
ric standards (pre-76 (with standard upgrades) and
2015), with significant variation and potential im-
pact on ADMD level. The older ‘pre-76’ housing
shows significant variation in the peak average de-
mand, with the ‘2-Period’ behaviour resulting in the
highest value. For the new-build ‘2015’ housing, there
is limited variation as the much lower heat loss means
the daytime setpoint is reached quickly during the
morning peak period and maintained with only mi-
nor heat input.

Table 3 shows the peak heat pump and total electric-
ity demand, plus the percentage of heat pump capac-
ity in use at the peak period, for the six behaviour and
fabric cases. The is more variability with behaviour in
the older housing, with significant instances of 100%
heat pump use seen. This is important for assess-
ing ADMD in areas with different levels of building
thermal performance.
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Impact of EV charging and charging be-
haviours

EV charging, particular with the assumed higher
power 7.36kW chargers, have the potential to add
a significant additional load at the individual house
level. However, in comparison with heating, the fre-
quency and timing of at-home charging is less pre-
dictable.

Figure 8: Average per-house EV charging power for
100 households

Modern EVs have a typical range of 140-280 miles
with a 40-80kWh battery. The average daily journey
distance from the NTS data is 24.2 miles, therefore
the majority of cars could either manage several days
between charging or only require a small daily top-up
charge to maintain a full battery.

Figure 9: Average EV charging power per 10 house-
hold groups

The base model assumes opportunistic charging (i.e.
the car is charged immediately on return). The aver-
age per-house demand for the 100 modelled houses
shows a peak in the 4-6pm period (see Figure 8),
which is consistent with typical ‘rush-hour’ pattern
of returning home from work or other external activi-
ties in this period. This would also place EV charging
peaks in the same period as the late afternoon appli-
ance and heating peaks.

Within the average charging data is significant vari-
ation per household and per smaller groupings. At
the 10-house level, Figure 9 shows significant tim-

Figure 10: Average EV charging power per household
within a 10-house sub-group

ing and average power variation in comparison with
the 100-house average profile. Figure 10 shows the
per-household variation for one of the 10-house sub-
groupings, indicating a wide range of charging pat-
terns are possible at this resolution.

Figure 11: 1-minute total charging profile for a 10-
house sub-group

At the network feeder level, the diversity implications
of either opportunistic or forced EV charging timing
needs to be understood. For the 10 10-house sub-
groupings, over the 5-month modelling period, for
9 of the groupings, the maximum concurrent use is
4 chargers, with 3 for the 10th grouping. A exam-
ple 5-month at 1-minute profile for one of the group-
ings is shown in Figure 11, which indicates that the
4 charger-in-use cases are relatively common at this
scale. At the 100 household scale, 15 was the maxi-
mum concurrent use (see Figure 12).

Time-of-use tariffs are the current principal means
to force charging away from the peak total demand
periods. Care, however, need to be taken to ensure
that this does not result in significant peaks if the
same cheaper charging periods are common. Taking
at extreme case with all households having a low-cost
charging tariff starting at 1am and 100% overnight
charging behaviours, Figure 13 shows the potential
impact on total electricity demand for a 10-house
sub-group. This would indicate that, even if this be-

7



uSIM2022 - Urban Energy in a Net Zero World, November 25th, 2022

Figure 12: 1-minute total charging profile for the 100
modelled households

haviour was only partially prevalant, the impact on
peak charging in specific periods could be significant.

Figure 13: Average total electricity demand for a 10-
house sub-group with a low-cost EV charging period
from 1am

Discussion / Future Work

The current model basis assumes no alteration to
occupant behaviours or optimisation controls based
on tariff variations, and energy generation and stor-
age utilisation. The probability models in the appli-
ance and hot water demand models can be easily ad-
justed to reflect different forcing mechanisms. Moving
horizon optimisation is currently being implemented
within the model to allow both control of individual
household demand and across multiple households in
communal schemes.

Conclusion

The current progress of model development has
demonstrated that 1-minute resolution stochastic
modelling of the impact of heat pump and EV charg-
ing is both necessary and viable. Comprehensive
datasets for calibration and validation in a UK-
context are rare. While this makes calibration chal-
lenging, it does highlight the need for accurate mod-
elling to understand the impact of behaviours and

forcing mechanisms as long-term monitoring is diffi-
cult to implement.

The initial results would indicate that the impact of
heat pumps and EV will vary with the network scale.
The impact of EV charging on peak loads being pro-
portionally higher in smaller networks based on the
assumption of a high likelihood of at-home charging
and cars being charged when available. Significant
work is required to understand to what extent heating
system operation is modified from typical boiler use
patterns, and whether the tendency for more ‘always-
on’ heating in the RHPP dataset used was typica or
anomalous. However, the bottom-up approach and
the extensive use of easily modified probability mod-
ules within the model should ensure that the model
provides a platform for future research in this area.
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