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Abstract 
Background: Pseudomonas species are adapted to evade innate 
immune responses and can persist at sites of relative tissue hypoxia, 
including the mucus-plugged airways of patients with cystic fibrosis 
and bronchiectasis.  The ability of these bacteria to directly sense and 
respond to changes in local oxygen availability is in part consequent 
upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl 
hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is 
homologous with the human hypoxia inducible factor (HIF) prolyl 
hydroxylases. We report that PPHD expression regulates the 
neutrophil response to acute pseudomonal infection. 
Methods: In vitro co-culture experiments were performed with human 
neutrophils and PPHD-deficient and wild-type bacteria and 
supernatants, with viable neutrophil counts determined by flow 
cytometry. In vivo consequences of infection with PPHD deficient P. 
aeruginosa were determined in an acute pneumonia mouse model 
following intra-tracheal challenge. 
Results: Supernatants of PPHD-deficient bacterial cultures contained 
higher concentrations of the phenazine exotoxin pyocyanin and 
induced greater acceleration of neutrophil apoptosis than wild-type 
PAO1 supernatants in vitro.  In vivo infection with PPHD mutants 
compared to wild-type PAO1 controls resulted in increased levels of 
neutrophil apoptosis and impaired control of infection, with higher 
numbers of P. aeruginosa recovered from the lungs of mice infected 
with the PPHD-deficient strain.  This resulted in an overall increase in 
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mortality in mice infected with the PPHD-deficient strain. 
Conclusions: Our data show that Pseudomonas expression of its prolyl 
hydroxylase influences the outcome of host-pathogen interactions in 
vitro and in vivo, demonstrating the importance of considering how 
both host and pathogen adaptations to hypoxia together define 
outcomes of infection. Given that inhibitors for the HIF prolyl 
hydroxylases are in late stage trials for the treatment of anaemia and 
that the active sites of PPHD and human HIF prolyl hydroxylases are 
closely related, the results are of current clinical interest.
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Pseudomonas, neutrophil, hypoxia, Pseudomonas prolyl hydroxylase 
(PPHD), pyocyanin, apoptosis.
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Introduction
Pseudomonas aeruginosa is an opportunistic pathogen, which 
colonizes the airways of patients with chronic inflammatory lung 
diseases including cystic fibrosis (CF) and bronchiectasis1,2, 
and is an important pathogen in the setting of acute ventilation 
-associated pneumonia3. In the 2004 US CF patient registry,  
57% of patients were found to be colonized with P. aeruginosa4, 
whilst children with CF who have sputum positive for P. aeruginosa  
experience more frequent hospitalisation and higher  
mortality5. These patients have chronic sputum production, with 
areas of mucus ‘plugging’, resulting in local hypoxia, a condi-
tion in which bacteria thrive6. Despite high levels of neutrophilic 
inflammation, P. aeruginosa continues to survive in these  
patients, evidence that the bacteria employ a number of effective 
immune-evasion strategies.

A key mechanism by which P. aeruginosa impairs host neutrophil 
function is by generation of phenazine metabolites, particularly 
pyocyanin, which contributes to the characteristic blue-green  
colour of infected sputum7. Pyocyanin has previously been shown 
to accelerate neutrophil apoptosis through activation of the lyso-
somal death pathway, a process dependent upon the generation 
of reactive oxygen intermediaries within the neutrophil8–10 and 
thus on the availability of molecular oxygen11. More recently, the  
possibility Pseudomonas itself can directly sense and respond to 
changes in local oxygen availability was raised by the observation 
that Pseudomonas spp contain a 2-oxoglutarate (2OG)-dependent 
Pseudomonas prolyl hydroxylase (PPHD), which acts on the  
abundant translation elongation factor Tu (EF-Tu) and is homol-
ogous to the oxygen sensing hypoxia inducible transcription  
factor (HIF) prolyl hydroxylase (PHD) enzymes described in 
eukaryotes12.

Importantly, an insertional mutant strain of P. aeruginosa lack-
ing PPHD manifests increased production of pyocyanin under 
normoxic (room oxygen) standardized broth culture conditions. 
Moreover, growth of P. aeruginosa under conditions of hypoxia 
has been observed to reduce the pathogenicity of P. aeruginosa  
through repression of production of the siderophores pyoverdine 
and pyochelin and the secreted virulence factor Exotoxin A13,14.  
Thus, the outcomes of host-pathogen interactions may be in 
part defined by adaptation of both the host and the pathogen to 
local oxygen availability. In this context, we hypothesised that 
(1) a PPHD-deficient P. aeruginosa sp might demonstrate a sur-
vival advantage in vivo as a consequence of increased pyocyanin  
production, leading to accelerated neutrophil apoptosis and 
impaired neutrophil mediated bacterial killing, and (2) that these 
effects would be influenced by oxygen availability.

Methods
Ethical approval
All participants gave written informed consent in accordance  
with the Declaration of Helsinki principles, with AMREC  
approval for the study of healthy human volunteers through the 
MRC/University of Edinburgh Centre for Inflammation Research 
blood resource (15-HV-013). Human peripheral blood neutrophils 
were isolated from whole blood using dextran sedimentation  
and discontinuous Percoll gradients15.

Bacterial growth curves
A Columbia blood agar culture plate (VWR International, UK) 
was inoculated with a single bead from a thawed master stock 
vial of either wild-type (PA01) or PA0310 insertional knockout 
mutant strain (PPHD knockout) pseudomonas and then incubated  
overnight at 37°C. The following day, ten colonies were taken  
from the plate using a sterile inoculating loop and used to inocu-
late 15 ml of sterile Luria-Bertani (LB) broth (Sigma, UK) in a  
50ml Falcon tube. The tube was then incubated at 37°C on a  
shaking platform with the lid loosened. Optical density at 595 nm 
was measured regularly until plateau.

Intratracheal pneumonia model
All animal experiments were conducted under an Home Office 
approved project license in accordance with the Home Office  
Animals (Scientific Procedures) Act 1986 and University of  
Edinburgh guidelines in line with the NC3Rs. Six to eight week 
male C57Bl6J mice were group-housed under standard 12hr  
light/dark cycles with access to food and water ad librium. All 
efforts were made to ameliorate any suffering of the animals.  
Mice were closely monitored over the course of the experiments 
and humanely culled once threshold of severity was reached.

Mice were anaesthetised with ketamine (76mg/kg, Willows  
Francis Veterinary, UK) and medetomidine (1mg/kg, Orion 
Pharma, UK) intraperitoneally. Once adequately anaesthetised, 
the animals were suspended from a frame by the upper incisors 
and a blunt needle was passed into the trachea via the orotracheal 
route. Each mouse then had 1×107 cfu of either PA01 (wild-type) 
or PPHD knockout out (mutant) pseudomonas instilled in 50μl PBS 
via the endotracheal. Twenty minutes after anaesthesia, the mice 
were given atipamezole (2mg/kg, Orion Pharma, UK), an anaes-
thetic reversal agent, and recovered for six hours. At indicated time 
points (6, 12, 24, 36 and 48h after instillation) mice were assessed 
and tissues harvested. For the Kaplan-Meier plots, mice were culled  
once the threshold of sickness was reached.

Assessment of lung injury
Bronchoalveolar lavage (BAL) was obtained by cannulation of the 
trachea. Total cell counts were calculated using haemocytometer 
counts and differential cell counts assessed on cytocentrifugation 
slides. IgM levels were quantified using commercially available 
kits (Mouse IgM ELISA quantitation set, Bethyl Laboratories Inc, 
Montgomery, USA; EnzChek Elastase Assay Kit, Molecular Probes 
Europe BV, Leiden, The Netherlands).

For histological analysis, lungs were fixed with 10% buffered  
formalin and embedded into paraffin blocks. Tissues slices were 
fixed and stained with haematoxylin and eosin.

Flow cytometry for BAL neutrophil apoptosis
BAL cells were counted and 1×106 cells were centrifuged at 300g 
for 5 minutes at 4°C. Cell pellets were resuspended in 50uL of 
FC block (1:100 anti-CD16/32 Ab, RRID:AB_312801; Bioleg-
end) and 1:10 mouse serum in FACS buffer (PBS with 0.5% BSA 
and 0.02mM EDTA) and incubated on ice for 15 minutes. Subse-
quently, cells were stained with 50ul anti-Ly6G Ab (RRID:AB_
1236494; BioLegend) at 1:200 final concentration and incubated on 
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ice for 30 minutes in the dark. Following a wash with FACS buffer  
and centrifugation at 300g for 5 minutes at 4°C, cells pellets were 
resuspended in Annexin-binding buffer and Annexin-V PE stain 
(Becton Dickinson) for 15 minutes at room temperature in the  
dark. Prior to flow cytometry acquisition, cells were stained with 
Topro3 APC (Molecular Probes). Neutrophils were gated based 
on Ly6G expression and Annexin-V and Topro3 expression was  
quantified.

Cells were acquired using a BD Calibur machine and analysed 
using FlowJo version 10 software (Tree Star).

Quantification of viable bacterial counts
10-fold serial dilutions were performed on whole blood aliq-
uots and lungs homogenized in sterile tubes following collection  
of BAL fluid. Three 10μl drops from each of 6 dilutions were then 
plated onto blood agar plates and cultured overnight in 37°C to  
calculate viable bacterial counts, which were normalized to count 
per ml of blood or per pair of lungs.

Production of bacterial supernatants
Ten colonies were taken from the blood agar culture plate and  
used to inoculate plates containing 20ml of pseudomonas  
isolation agar (Difco). These plates were incubated overnight at 
37°C and then placed in direct sunlight for 48h to allow pigment 
to develop. Each plate was then flooded with 6ml RPMI media 
(Sigma, UK) and left at room temperature for 2 hours. The RPMI 
was removed, spun at 4000g for 15 min, twice, and filter sterilised 
through a 0.22μm filter to remove any bacteria. To ensure sterility,  
100μl of each supernatant was used to inoculate a blood agar plate 
and cultured for 48h at 37°C. Supernatants were stored at -80°C.

Quantification of pyocyanin concentration
PPHD mutant and wildtype colonies were inoculated into 10 ml 
of LB broth and incubated overnight at 37°C in a shaking incuba-
tor. 1ml of the overnight cultures were then inoculated into 9ml  
of LB broth and incubated for 2 hours at 37°C in a shaking  
incubator. 100 μl of each strain was then pipetted onto Pseudomonas 
Isolation agar (Difco) plates and incubated overnight under  
conditions of normoxia (21% O

2
) and hypoxia (3% O

2
) and super-

natants produced as detailed above. 4.5ml of chloroform was  
added to 7.5ml of sterile bacterial supernatant and vortexed.  
Samples were centrifuged at 2000g for 10 minutes. 3ml of the  
chloroform layer was transferred to a clean tube and 1.5ml 0.2M 
hydrochloric acid was added. Tubes were vortexed and spun  
at 2000g for 2 minutes. 1ml of the top layer was removed, 
absorbance at 520nm measured and pyocyanin concentrations  
determined16.

Isolation and culture of human neutrophils
Human peripheral blood neutrophils were isolated from whole 
blood using dextran sedimentation and discontinuous Percoll  
gradients. Neutrophils were resuspended in RPMI with 20% 
fetal calf serum (Lifetech, Paisley, UK) at 10x106/ml. 75μl of this  
suspension was cultured with 75μl of either wild-type (PA01) 
or mutant (PPHD knockout) pseudomonas supernatant for five 
hours in either normoxia (room air) or hypoxia (1% oxygen,  
in vivo 400 hypoxia workstation, Ruskinn). After 5 hours, cells were 
removed from the culture plate and pelleted at 400g for 5 minutes. 
The pellets were resuspended in 95μl annexin binding buffer and  

5μl annexin V/PE (Becton-Dickinson) and incubated on ice for  
20 minutes. 100μl of Topro3/APC (Molecular Probes) and 
5×104 Countbright™ absolute counting beads (ThermoFisher, 
UK) were added to each sample, and samples run using a BD  
FACSCalibur (BD Biosciences, UK).

Statistical analysis
Data were analysed using Prism 7.0 software (GraphPad  
Software Inc., San Diego, CA). Unpaired t-tests were used for  
comparisons between wild-type and knockout sample means.  
Two-way ANOVA with Bonferroni’s post-test comparisons was 
performed if multiple time points were used. For comparison 
of viable bacterial counts, Mann-Whitney test was performed.  
Survival was analysed using log-rank test. Statistical significance 
was accepted when p<0.05.

Results
Neutrophil co-culture with PPHD mutant bacterial supernatants 
induced cell loss, which was reversed with hypoxic culture
To directly address whether expression of the hypoxia sensing 
prolyl hydroxylase PPHD by P. aeruginosa would affect rates of 
neutrophil apoptosis, freshly isolated human peripheral blood  
neutrophils were cultured for 5h with sterile supernatants harvested  
from wild type PA01 and PPHD-deficient bacterial cultures in 
vitro, a time-point at which pyocyanin markedly accelerates 
neutrophil apoptosis8. Total neutrophil numbers and neutrophil 
viability were assessed by flow cytometry (Figure 1A). In nor-
moxia, both PA01 and PPHD-deficient supernatants caused  
significant loss of neutrophil numbers (Figure 1B) and a reduction 
in Annexin V- /Topro 3- (viable) neutrophils recovered. Greater  
reductions in viable cell numbers (Annexin V-/Topro 3-) were 
observed when neutrophils were cultured in the presence of 
PPHD-deficient supernatants (Figure 1C). Hypoxic cell culture  
reversed the increases in both cell loss and apoptosis observed  
with PAO1 and PPHD-deficient supernatants (Figure 1A–C), in 
keeping with the dependence of pyocyanin-induced apoptosis on 
the availability of oxygen11.

To address whether the observed differences in neutrophil loss 
reflected altered pyocyanin production, we measured pyocy-
anin production over a 48 hour inoculation of blood agar follow-
ing recovery into RPMI media. Under conditions of normoxia  
(21% O

2
), the PPHD-deficient strain produced significantly higher  

levels of pyocyanin than the wild-type strain (Figure 1D), in 
keeping with the greater loss of viable neutrophil numbers  
(Figure 1C). Elevated pyocyanin production by the PPHD-defi-
cient strain was abrogated entirely by use of a hypoxic (1% O

2
) 

cell culture (Figure 1D). This was not a consequence of differential 
bacterial growth rates, with equivalent 595 nm absorbance and bac-
terial counts being observed for PA01 and PPHD mutants at each  
oxygen tension studied (Figure 1E, F). Hypoxia (1% O

2
), whilst 

impairing bacterial growth, had no differential growth effects on 
PAO1 compared with the PPHD-deficient strain.

PPHD-deficient P. aeruginosa infection results in increased 
mortality and lung injury during acute pneumonia and 
greater impairment of neutrophil-mediated host defense 
compared with wild-type PAO1 infection
To define whether PPHD deficiency results in an altered course 
of acute P. aeruginosa infection in vivo, mice were challenged 
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Figure 1. Supernatants from Pseudomonas prolyl hydroxylase (PPHD) knockout P. aeruginosa induce neutrophil death via increased 
production of pyocyanin. Human neutrophils were cultured with PA01 wildtype (WT) or PPHD knockout (MT) bacterial supernatant for  
5 hours in normoxia (N; filled bars) or hypoxia (H; open bars). Flow cytometry (A) was performed to calculate total (B) and viable neutrophil 
numbers (C). n= 5 *p<0.05. (D) Pyocyanin concentrations in supernatants from wildtype (WT) and PPHD knockout P. aeruginosa (MT) in 
normoxia and hypoxia were measured. n=3, *p<0.05, **p<0.01. Wildtype (WT) and PPHD knockout P. aeruginosa (MT) were grown in nor-
moxia (N, 21% oxygen) and hypoxia (H, 1% oxygen). Absorbance at 595nm (E) and viable bacterial count (F) were recorded to plot growth 
curves.
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via the trachea with 1×107 cfu PAO1 (wildtype) or PPHD- 
deficient bacteria. 50% of animals receiving PPHD-deficient  
P. aeruginosa reached sickness thresholds requiring the animals 
to be culled by day 5 (Figure 2A). In contrast, all PAO1 infected 

mice were viable up to 5 days following infection challenge  
(Figure 2A, *p<0.05). Importantly, this increase in mortal-
ity was associated with a 2.5-fold greater bacterial burden in the  
lungs of PPHD mutant infected (11.1×104CFU/lung± 5.99×104) 

Figure 2. Infection with Pseudomonas prolyl hydroxylase (PPHD) knockout P. aeruginosa carries higher mortality. C57/BL6 mice were 
instilled intratracheally with 1×107 cfu of PA01 wildtype (WT) or PPHD knockout (MT) P. aeruginosa. (A) Survival was recorded for 5 days 
post infection, n=10 mice per group. (B) At 12 hours post infection lungs were harvested and viable bacteria count calculated, n=8 mice per 
group *p<0.05. Bronchoalveolar lavage (BAL) total cell count (C), % neutrophils (D), neutrophil count (E), macrophage count (F) and BAL 
supernatant immunoglobulin M (IgM) (G) were measured at timepoints from 12–48 hours post infection, n= 4–7 mice per group, *p<0.05, 
***p<0.001, ****p<0.0001. (H) H+E staining of lung tissue taken at 36h after infection (arrows point to neutrophils, x20 magnification). Images 
representative for n=2 mice per group. (I) BAL was harvested and the cell pellets analysed by flow cytometry for apoptosis at 12 hours post 
infection, n=8 mice per group **p<0.01.
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compared to wildtype infected mice (4.48×104CFU/lung ± 3.48×104,  
Figure 2B, p<0.05).

In light of the equivalent growth of wild-type and PPHD mutant 
strains we had observed in vitro, we questioned whether the 
increase in bacterial numbers in PPHD mutants was a consequence 
of an impaired host response. Whilst the initial recruitment of 
inflammatory cells to the lungs (6h and 12h) was similar between  
wildtype and PPHD-deficient P. aeruginosa infected mice  
(Figure 2C–F), significantly fewer cells were recovered from the 
airways of PPHD-deficient infected mice by 24h after infection 
(Figure 2C, **p<0.01), as a consequence of reductions in both 
the percentage (Figure 2D, *p<0.05) and total number of airway 
neutrophils (Figure 2E and F, **** p<0.0001). In keeping with 
a more severe infection in PPHD-deficient infected mice, higher 
levels of IgM, an indirect marker of vascular leak and lung injury, 
were detected in mice infected with mutant PPHD (Figure 2G,  
*p<0.05). Histological analysis of lungs of mice infected with 
P. aeruginosa supported the observed differences in BAL, with  
fewer neutrophils in the lungs of mice infected with mutant PPHD 
(Figure 2H).

In light of the increased production of pyocyanin by PPHD mutant 
P. aeruginosa and the observed increase in neutrophil loss with 
PPHD supernatants, we hypothesised the reduction in neutrophil 
numbers observed at 24 hours to be a consequence of increased 
levels of neutrophil apoptosis. Ly6G+ airway recovered neutrophils 
were therefore dual stained with Annexin V/Topro3 to directly 
quantify the number of apoptotic cells following Pseudomonas 
infection. Infection with mutant PPHD P. aeruginosa resulted in 
higher detectable levels of apoptosis than infection with the PAO1 
wild type strain (Figure 2I, p<0.01).

Discussion
A significant focus of research from our group and others has  
centered round defining the mechanisms by which hypoxia  
directly regulates immune cell function17–22. Innate responses to 
bacterial challenges are critically regulated by oxygen availability, 
with neutrophils in particular being adapted to survive in hypoxic 
tissues where they phagocytose and kill bacteria11,21,23. Until 
recently, the possibility that oxygen may also regulate the behavior 
of bacterial pathogens has not been considered. This is of particular 
relevance to Pseudomonas spp that persist in chronically inflamed 
tissues characterized by limited oxygen availability24 and induce 
oxidant-dependent cell death via the production of the phenazine, 
pyocyanin10,25. The results described here reveal the importance 
of the Pseudomonas prolyl hydroxylase, PPHD, in regulating the 
effectiveness of neutrophil mediated host defenses in vivo, likely, 
at least in part, as mediated by variations in the levels of the toxic 
metabolite pyocyanin.

Suppression of PHD activity is described in eukaryotic systems 
in the context of hypoxia – indeed is central to regulation of the 
hypoxic response26–30. Diminished Pseudomonas aeruginosa  
pathogenicity in hypoxia has recently been described as a  
consequence of reduced expression of the virulence factors  
pyoverdine and exotoxin A14, with our work extending this to include 
production of pyocyanin. This is of interest, given that neutrophil 
respiratory burst activity, a key anti-microbial defence, is associ-
ated with promotion of a hypoxic niche22. It is also of relevance 
to the oxygen requiring process by which the pyocyanin induces  
ROI-mediated lysosomal dysfunction and neutrophil apoptosis10, 

as evidenced by the reduction in cell loss we observed when  
neutrophils were challenged with P. aeruginosa conditioned media 
in the context of hypoxia. Thus in clinical scenarios in which  
tissue oxygen availability is severely limited, oxygen dependent  
regulation of the balance between innate immune responses and 
bacterial virulence and replicative capacity may be critical in 
defining the outcomes of infection and host morbidity and mor-
tality. This is, however, further complicated by the observations 
that differential expression of oxygen sensing prolyl hydroxylase 
enzymes either by immune cells20,31,32, or bacterial pathogens12 
can also directly regulate cellular function and bacterial virulence 
when oxygen is not a limiting factor. For example, neutrophil loss 
of PHD2 under physiological normoxia promotes a phenotype of 
excessive neutrophilic inflammation33, whilst deletion of PPHD 
is associated with increased production of pyocyanin12. In vivo  
therefore, the dominant phenotype is likely to be in part deter-
mined by the physiological Κ

m
, in which both PPHDs and PHDs  

function in both innate immune and bacterial cells. Of interest, 
kinetic analysis of the isolated PPHD enzyme has identified a 
lower apparent  Κ

m
 for O

2
 than PHD2, but a higher Κ

m
 for Fe(II),  

suggesting that iron regulation may also be of critical importance 
in defining the activity of PPHD enzyme activity in a physiologi-
cal setting12. This is of particularly relevance to Pseudomonas spp 
where enhanced iron redox states enable competitive outgrowth 
from other bacterial species34.

In this work, we provide in vivo data, describing the clinical  
outcomes when mice are challenged with acute P. aeruginosa  
infection in the context of normal lung architecture and there-
fore relatively preserved local tissue oxygenation. In this setting 
we observe increased mortality with PPHD-deficient strains as a  
consequence of insufficient neutrophil host defense and fail-
ure to control bacterial replication. Thus, we can now extend the  
concept that immune cell loss of PHD2 in the context of preserved 
tissue oxygenation promotes a detrimental immune response 
to also include detrimental consequences of prokaryotic loss of  
PPHD expression. This has potentially important ramifications in 
light of the current development of relatively non-selective PHD 
inhibitors (which may well inhibit PPHD), as well as the use of 
iron chelators in the clinical arena, and how they may impact more 
widely on the host pathogen response with consequence both for 
the host and the pathogen.
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In this manuscript the authors clearly describe the fatal effects of PPHD knockout for the clinical 
outcome of mice challenged with this bacterial strain. The data are convincing and point to the 
problems possibly occurring with the use of small molecule inhibitors of PHDs. 
 
I have a question regarding the signalling pathway(s) underlying the increased Pyocyanin 
production in PPHD knockout bacteria. If the classical inhibition of PHD activity under hypoxic 
conditions is involved why is the production of Pyocyanin not increased in the wt strain under 
these conditions?
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expertise to confirm that it is of an acceptable scientific standard.
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Sarah Walmsley, University of Edinburgh, Edinburgh, UK 

We thank Dr Frede for her review of our manuscript.  In regard to the question raised, the 
pyocyanin concentrations reported in Figure 1D are expressed as ug/ul and do not take into 
account differences in bacterial number under different conditions. In Figure 1F we show 
the viable bacterial count is greatly reduced for both the wt and mutant PSA strains when 
incubated in hypoxia compared to normoxia. If we correct for pyocynanin concentration per 
cfu we see an increased level of pyocyanin produced in the wt bacteria in hypoxia.  
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In this manuscript, Dickinson and colleagues reveal the impact of P. aeruginosa PPHD on the 
bacteria virulence using in vitro and in vivo models. In particular, the PPHD mutation-dependent  
increased concentration of pyocyanin in bacterial supernatants was characterized and associated 
with increased neutrophil apoptosis. The manuscript is clear, well written and the presented data 
support the conclusions. 
 
In order to better appreciate the contribution of pyocyanin on P. aeruginosa mediated neutrophil 
apoptosis, the following points should be addressed:

The authors studied the impact of pyocyanin on neutrophil survival using bacterial 
supernatants form WT and PPHD-deficient mutant. In order to evaluate the contribution of 
pyocyanin on P. aeruginosa-dependent neutrophil apoptosis induction, the authors should 
additionally infect neutrophils with WT and PPHD-deficient mutant strains and assess 
neutrophil viability (w/wo oxygen). The comparison with neutrophil apoptosis levels induced 
with bacterial supernatant should be then discussed. 
 

1. 

It would be informative to assess the ability of neutrophils to kill WT and MT strains (w/wo 2. 
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oxygen) and the results should be discussed to better interpret in vivo results. 
 
In the discussion, the authors say that "the possibility that oxygen may also regulate the 
behavior of bacterial pathogens has not been considered”. This statement is not true, 
additional references should be included regarding the O2-modulation of bacteria 
virulence, adhesion, secretion, etc.

3. 
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expertise to confirm that it is of an acceptable scientific standard, however I have 
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Author Response 22 Nov 2017
Sarah Walmsley, University of Edinburgh, Edinburgh, UK 

We thank Dr Marteyn for the review of our manuscript.
In vitro co-culture of neutrophils directly with pseudomonas species rapidly results in 
neutrophil loss. This is why we firstly explored the consequence of neutrophil culture 
with bacterial supernatants before undertaking in vivo experiments in which we were 
able to directly address the consequence of infection with the different strains of P. 
aeruginosa on neutrophil survival in a biological setting.  
 

1. 

Due to the ability of pseudomonas to induce neutrophil apoptosis, this is a difficult 
question to directly address.  We would however argue that it is the ability of 
Pseudomonas to evade the host response that is critical in defining the outcome of 
the infection challenge, a concept supported by the published literature (Usher et al. 
JI 2002; Allen et al. JI 2005; Prince et al. JI 2008) and our in vivo observations. 
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We are sorry for any confusion caused, in the discussion we do actually state that 
“until recently, the possibility that oxygen may also regulate the bacterial pathogens 
has not been considered” and provide a number of references specific to 
Pseudomonas throughout the text that reference that capacity of hypoxia to alter 
pathogenicity (Scotti et al. PNAS 2014; Schaible et al. PLOS One 2013; Schaible et al. J 
Infect Dis 2017).
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The authors very elegantly describe a key role for Pseudomonas prolyl hydroxylase (PPH) in the 
sensing of oxygen tension and the release of the phenazine exotoxin pyocyanin, this enhances the 
rate of neutrophil apoptosis and compromises the host innate immune response. The authors 
competently used two model systems, human neutrophil incubated in the presence of 
supernatants from wt Pseudomonas or mutant lacking PPH cultured in either normoxia or 
hypoxia, and a murine pneumonia model. Both systems clearly show that infection with 
Pseudomonas deficient in PPH results with increased neutrophil cell death and compromised host 
response to the infection resulting in increased mortality in the murine model. 
  
I have one minor question regarding the murine model used. Fig 2E shows a significant drop in 
BAL neutrophil number at 24hrs, however in Fig 2I the authors analysed BAL from the 12hr time 
point showing a small but significant shift in neutrophil cell death. The description in the results 
refers to BAL 24hr data set. If the data is available from 24hr BAL I believe this would enhance Fig 
2 and benefit the readers understanding. 
  
This manuscript further highlights the importance of understanding how the new generation of 
small molecular inhibitors that interact with the oxygen sensing pathway need to be 
comprehensively investigated not only at the cellular/tissues level but also at the point of host 
pathogen interaction.
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Author Response 22 Nov 2017
Sarah Walmsley, University of Edinburgh, Edinburgh, UK 

We thank Dr Cowburn for highlighting the importance of the observations detailed in the 
manuscript.  With respect to the time points studied, given we were already detecting a 
marked difference in BAL neutrophil counts at 24 hours, and that apoptotic cells are rapidly 
cleared in the in vivo setting, we chose to study a time point preceding one associated with 
significant cell loss (12 hours), to enable us to measure changes in surface apoptosis 
markers.  
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Institute, Stockholm, Sweden 

The authors provide convincing in vivo evidence that prolyl hydroxylase-decient P. aeruginosa 
infection results in increased levels of neutrophil apoptosis, impaired control of infection, and 
consequently increased mortality in mice. The authors conclude that the expression of the oxygen 
sensing prolyl hydroxylase homologue (PPHD) in Pseudomonas regulates neutrophil host 
responses in vivo. The importance of this finding is in light of current development of relatively 
non-selective PHD inhibitors that most likely inhibit both, the host and Pseudomonas prolyl 
hydroxylase and thus impact both, host and pathogen. 
 
The in vivo experiments and analyses presented in this work appear robust and of high quality. 
 
I only have a minor comment regarding in vitro studies in Fig 1B: 
It seems that under normoxia, there was no significant change in neutrophil numbers cultured 
with WT or PPHD mutant supernatant (Fig 1B normoxia -black bar- WT versus MT). Since pyocyanin 
was significantly increased in the MT under normoxia (Fig 1D), why was that not reflected in 
significant decrease of neutrophil counts under normoxic conditions in MT versus WT (FIG 1B)? 
Please provide comments. What is the p value: WT versus MT under normoxia in Fig 1B? Is the 
mild reduction of neutrophil counts significant under normoxia (WT vs MT)? 
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Sarah Walmsley, University of Edinburgh, Edinburgh, UK 

We thank Dr Schlisio for her careful review of our manuscript and comments. Although the 
mean number of neutrophils following co-culture with mutant supernatants is lower than 
wildtype (1610±426 MT vs 2591±749) this does not reach statistical significance (P=0.89 by 
two way ANOVA).  We attribute this to significant cell loss with both wildtype and mutant 
supernatants under normoxic culture conditions given both strains of P. aeruginosa 
produce toxic levels of pyocyanin in normoxia.  
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