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A B S T R A C T   

There is a growing interest in developing environmentally-friendly substitution for Portland cement in soil 
stabilization. This study evaluated the feasibility of using volcanic ash (VA)-based geopolymer as an alternative 
soil stabilizer to cement by comparing their shear strength behavior and life cycle assessment (LCA). The effects 
of curing conditions, vertical confinements, binder contents, and alkali activator properties were investigated. 
The results revealed that regardless of the type of binder, increasing binder content changes the structure of 
clayey soil through aggregation, thus improves the shear resistance. The interparticle bonds developed faster at 
higher curing temperatures, and the interlocking of the particles increased at higher confining pressures. Based 
on the determined boundary conditions, the LCA suggested a comparative environmental impact for both binders 
to stabilize 1 m3 functional unit of clayey soil with similar shear strength.   

Introduction 

Strengthening of soil against shear loading is crucial for the stability 
of geotechnical profiles. During a shear process, there is a high risk in the 
breakage of interfacial soil structure when the maximum shear resis-
tance in any plane is only limited to the soil shear strength [1]. To date, 
several examples of weak shear strength of geological profile registered 
as sudden landslides which were triggered through rainfall or rise of 
groundwater level (e.g., 2018 Cebu landslide), earthquakes (e.g., 1999 
Tsao-Ling landslide), and by human activities such as building steep 
embankments and deep tunnels for roads construction (e.g., 2010 
landslide on Freeway No. 3, Taiwan) [2,3]. Shear base failure is more 
likely to occur in soft soils than granular structures due to the reduced 
cohesion and friction between soft soil particles at a high moisture level 
[4]. Different mechanical and chemical soil stabilization techniques are 
employed to prevent such failures. The principle of the mechanical ap-
proaches is to increase the friction between the soil particles (e.g., by 
water drainage) or transferring the internal stress of the soil into 
stronger elements (e.g., reinforcements) [5,6] while the chemical sta-
bilization approach is to provide strong chemical bonding and surface 

tension between soil particles using binders [7,8]. 
Of all binders, cement is the most favored material in soil stabiliza-

tion techniques. The main reason is its availability and cost-efficiency 
with respect to mechanical strength. However, complete hydration of 
cement requires sufficient moisture, which is not always available in 
geotechnical applications; therefore, the maximum mechanical strength 
is often not achievable, e.g., in a hot environment [9,10]. Besides, 
cement production releases a considerable fraction of the total anthro-
pogenic greenhouse gases [11–13]. It has been shown that depending on 
the clinker to cement ratio, the production of each ton of cement gen-
erates ~ 0.5–0.95 t CO2 [14]. The CO2 emission related to cement used 
in geotechnical applications such as soil stabilization and grouting has 
been counted as about 2 % of the total CO2 emission by cement. In this 
line, it has been estimated that replacing 10 % of cement usage with low- 
carbon materials in geotechnical engineering implementations leads to 
an annual reduction of 6.1 million tonnes of CO2 [15]. Therefore, sup-
plementary resources such as fly ash, silica fume, and ground granulated 
blast furnace slag have been considered partial replacements for cement 
in geotechnical applications [16–18]. 

Geopolymer has been emerging as a potential alternative to cement 
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with less CO2 footprint for soil stabilization application, produced 
through alkali activation of aluminosilicate-rich materials [19]. The 
aluminosilicate precursors obtain from waste materials (e.g., fly ash) or 
natural resources (e.g., volcanic ash (VA)) that often do not need sig-
nificant pre-treatment [20,21]. In addition, to tackle the environmental 
concerns, geopolymer-treated soil has shown enhanced compressive 
strength in hot environments compared with cement compartments 
[22]. Recent studies have demonstrated improved shear strength for 
both cohesive and granular soils when stabilized by geopolymer [23]. 
Accordingly, the shear strength of high plasticity clay and silty sand has 
been increased from 800 to 1500 kPa and 1000 to 1800 kPa, respec-
tively, when 10 wt% of the soil was replaced with FA-based geopolymer 
[23]. 

Several factors affect the mechanical properties of geopolymers 
which have been well discussed for the development of concrete. 
However, in geotechnical applications, the binder to filler ratio is low, 
and other mechanisms such as aggregation of small particles and 
interparticle friction play roles in the overall performance of the 
cemented soil [24]. To this end, this study systematically investigates 
the significant parameters which influence soil stabilization using VA- 
based geopolymer, including curing condition and time, vertical 
confinement, binder content, and mixing parameters of geopolymer, 
including alkali activator content and sodium hydroxide molarity. The 
measurements are compared with CEM1. Also, a comparative life cycle 
assessment (LCA) study on the environmental impacts of the production 
of two types of binders (i.e., CEM1 and VA-based geopolymer) is 
conducted. 

Material characterization and test procedures 

Soil characterization 

The particle size analysis of the as-received soil, as performed ac-
cording to ASTM D 422 [25], shows it contains 5 wt% of gravel, 19 wt% 
of sand, 33 wt% of silt, and 43 wt% of clay, see Fig. 1a. The soil was used 
after sieving below 4.75 mm to remove large aggregates. According to 
the Unified Soil Classification System, the soil was classified as low 
plasticity clay, CL, see Fig. 1b. The liquid limit (LL), plastic limit (PL), 
and plasticity index (PI) of the soil was measured as 31%, 22%, and 9%, 
respectively, according to ASTM D 4318 [26]. The optimum water 
content and maximum dry density of the soil were obtained 14 wt% and 
1.74 g/cm3, respectively, in accordance with ASTM D 698 [27] Fig. 1c. 

Chemical composition of VA and CEM1 

The Taftan Mountain’s VA was supplied by Zabol Cement Industries 
Company and was sieved to below 200 µm. The CEM1 was obtained 
from Fars Cement Company. The oxide composition of VA and CEM1 are 
provided in Table 1. 

Specimen preparation 

To prepare the binders, predetermined concentrations of VA and 
CEM1 were mixed with sodium hydroxide solution and water, respec-
tively, for 5 min. Then the slurry was mixed with the soil for 10 min to 
obtain a visually homogeneous mixture. The effect of binder content was 
investigated by substitution of soil with either VA or CEM1 in 0, 5, 10, 
and 15 wt%. A constant activator content of 14 wt% of the soil was used 
for all the specimens. This value was determined the same as the opti-
mum water content of the untreated specimen, see Fig. 1c. Direct shear 
tests were scheduled in three sets. The role of binder type, binder con-
tent, curing time, and curing conditions were investigated in set 1. Sets 2 
and 3 explored the effects of alkali activator content and sodium hy-
droxide concentration on geopolymer treated specimens for long-term 
curing up to 90 days. Regarding Set 2, VA content and sodium hy-
droxide solution molarity were fixed at 15 wt% and 8 M, respectively, 
while the alkali activator to optimum water ratio was varied in the range 
of 1 to 1.4. At Set 3, two different sodium hydroxide solutions of 8 M and 
12 M were selected, while the binder content and alkali activator to 
optimum water content ratio were kept constant at 15 wt% and 1.4, 
respectively. The specimens were cured at three different conditions, 
including dry condition (DC), optimum water condition (OC), and 
soaked condition (SC) (refer to Table 2). Details of the experiments are 
shown in Table 3. 

Procedure to measure the reactivity of VA 

The reactivity of the VA was quantified by measuring the dissolved 
fraction of VA in sodium hydroxide solution. Therefore, 1 g of VA was 
first stirred in 100 mL of 8 M sodium hydroxide solution at different 
temperatures and time ranges of 25 to 105 ◦C for 1 to 256 h, respec-
tively. Then, the insoluble particles were separated using a centrifuge, 
washed three times with tap water, dried for 1 h at 250 ◦C, and weighted 
[28]. 

Fig. 1. Soil characterization (a) grain size distribution curve, (b) unified soil classification system, and (c) compaction curve to find the optimum water content.  
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Direct shear test 

The direct shear tests were performed using an ELE machine on 
specimens with 60 × 60 × 20 mm dimensions with three different 
vertical confinements of 50, 100, and 150 kPa, according to ASTM D 
3080 [29]. Shear rates of 0.08 mm/min for SC, and 0.133 mm/min for 
OC and DC were used. These rates were adopted based on previous 
research and the consolidation rate of as-received soil [30,31]. A higher 
loading rate was used for the OC and DC as there was no drainage effect 

at these conditions. The shear box was kept dry at the OC and DC con-
ditions while it was filled with distilled water at the SC specimens. For 
the SC condition, the specimens were kept underwater for 24 h before 
the shear test. 

The peak shear strength (τf), interparticle cohesion (c), and friction 
angle (φ) values were determined by direct shear tests using the Mohr- 
Coulomb criterion as in Eq. (1). In this equation, σ is normal stress 
acting on the failure surface in the form of vertical confinement. 

Table 1 
Oxide compositions of VA and CEM1.  

Oxide composition SiO2 CaO Al2O3 Fe2O3 K2O Na2O MgO TiO2 SrO SO3 P2O5 MnO 

VA [wt.%]  46.8  19.1  13.5  8.5  4.3  4.1  1.7  0.9  0.3  0.3  0.2  0.2 
CEM1 [wt.%]  11.8  69.6  3.2  8.4  1.4  0.4  2.4  0.3  0.1  1.9  0.0  0.2  

Table 2 
Curing and test condition of the soil specimens.  

Curing type Curing type Temperature (◦C) Relative humidity (%) 

DC Oven curing 45 ± 2 15 ± 2 
OC Wrapped by cling film 25 ± 2 80 ± 2 
SC Wrapped by cling film and soaked in water for 24 h before testing 25 ± 2 –  

Table 3 
Direct shear test schedule in this study.  

Material 
set 

Binder 
type 

Binder content 
[%] 

Type of activator Sodium hydroxide molarity 
[M] 

Testing age 
[day] 

Curing 
condition 

Activator content to optimum water content 
ratio 

Set 1 VA 0, 5, 10, 15 Sodium 
hydroxide 

8 1, 28 DC, OC, SC 1a 

CEM1 0, 5, 10, 15 Water – 1, 28 DC, OC, SC 1 
Set 2 VA 15 Sodium 

hydroxide 
8 28, 90 DC, OC, SC 1, 1.2, 1.4 

Set 3 VA 15 Sodium 
hydroxide 

8,12 28, 90 DC, OC, SC 1.4  

a Optimum water content = 14 wt%. 

Fig. 2. Reactive phase quantification of VA a) for 1 to 256 h at a constant temperature of 25 ◦C, b) at different temperatures of 25 to 105 ◦C for 1 h.  
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τf = c + σtan(φ) (1) 

All specimens were statically compacted into three layers. The 
moisture content was measured by heating the specimens up to 110 ◦C 
for 24 h immediately after the direct shear tests. 

A Dino-Lite digital microscope (with 200X magnification) was used 
to take optical images. 

Results 

VA reactivity 

Fig. 2 shows the low dissolution reactivity of VA at ambient tem-
perature, 25 ◦C. As observed, only ~ 18 wt% of the material was dis-
solved after stirring at 8 M NaOH for 32 h, and no more dissolution was 

observed afterward, Fig. 2a. However, increasing temperatures esca-
lated both amount and rate of dissolution, i.e., the dissolved fraction in 
1 h at 65 ◦C is almost similar to that of dissolved for 256 h at 25 ◦C, 
Fig. 2b. The dissolved fraction increased further to ~ 35 wt% at 105 ◦C 
for 1 h. This is due to the higher kinetic energy of the system, which 
eases the breaking of solute molecules by the solvent [28,32]. 

Shear strength 

Fig. 3 presents the peak shear strength and the moisture content of 
untreated and treated clay specimens cured at different curing condi-
tions of DC, OC, and SC tested at 1 and 28 days. The increase in moisture 
content from 1 to 14 wt% and above reduced the shear strength of the 
clayey specimens significantly. This effect was observed in both treated 

Fig. 3. (a) Peak shear strength and moisture content of untreated and treated soil specimens using geopolymer and CEM1 with different binder content (0 to 15 wt 
%), curing condition (DC, OC, and SC conditions), and curing duration of 1 and 28 days; (b) and (c) stress-displacement curve of untreated and treated soil specimens 
using geopolymer and CEM1 with different binder contents and confinements, respectively. All cured at DC for 28 days. 
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and untreated soil specimens. 
To investigate the contribution of binder on shear strength of treated 

soil, the moisture content of the specimens was kept almost constant for 
each curing condition. As expected, the shear strength was increased in 
specimens with higher binder content as the binder increases the 
cohesion forces between soil particles. However, due to the low binder 
to soil ratio, aggregation of the small particle into larger-size clusters 
occurred, see Fig. 4 [33]. To this end, the external loads principally were 
sustained by the large particles, which were closely linked with the 
movement of fine particles to form the load-carrying capacity of the bulk 
material [34]. This mechanism was exhibited by an increase in brittle-
ness of the treated soils at higher binder content, see Fig. 3b. 

The shear strength increased over time for both binders, however, 
with different rates depending on curing conditions. At DC, both geo-
polymer and CEM1 showed comparable shear strength. This was unex-
pected, as similar geopolymer specimens showed higher compressive 
strength than CEM1 at higher temperatures [9]. This difference is due to 
the dominant effect of confinement on the shear performance of soil 
compared with the uniaxial compressive strength. Hence, higher shear 
strength and stiffness were registered for all specimens with higher 
vertical confinements. This is due to a higher required force to reorient 
the dense soil structure that intensified with the binder effects, see 
Fig. 3c. At OC, CEM1 specimens showed considerably improved strength 
after 28 days compared with their geopolymer compartments. Here, 
sufficient moisture helps to complete the hydration over time. While, as 
observed in Fig. 2, the reactivity of VA is low at 25 ◦C and does not 
increase considerably over time. At SC, the shear strength of treated soil 
is highly reduced for both binder types as the repelling force due to 
swelling of soil particles overcome the binding effects. 

Cohesion and friction angle 

The soil shear behavior can be evaluated in more detail through two 
components; cohesion or physicochemical bonds and interparticle fric-
tion. The overall cohesion is due to the combination of matric suction 
and effective cohesion. The former is promoting through the combina-
tion of negative pore water pressure and surface tension within the 
water film, while the latter results from interparticle bonds (physico-
chemical attractions), including cementation and adhesion due to the 
compaction and electrostatic attractions [35,36]. The internal friction 
mainly depends on the normal stress acting on the failure surface and the 
geometrical properties of the particles. The variation of cohesion and 
friction angle of the specimens subjected to different curing conditions 

at different ages are shown in Fig. 5. 
At DC, the paucity of water causes high capillary and suction forces 

as the dominant factors in controlling the cohesion within the untreated 
matrix [37]. Here, the internal friction is mainly induced by the 
breakdown of aggregates and particle rearrangement under normal 
stress. Increasing the moisture content from DC to OC increases the 
separation distance between the clay particles and, thus, decreases the 
electrostatic attractions (e.g., van der Walls forces) [35]. This was 
observed as a reduction in both cohesion and friction angle of untreated 
specimens. At higher moisture content, SC, the capillary suction was 
completely lost, and the cohesion decreased significantly [35,37]. 
Furthermore, forming a contractile layer between soil particles reduced 
the frictional forces [38,39]. 

In the presence of binders, the effective cohesion of treated soil is 
escalated by the adhesion of the binders and soil particles [1]. This extra 
cohesion is less affected by moisture content but binder chemical re-
actions at different curing conditions. Therefore, for both binders, the 
cohesion of the treated soils improved by increasing the binder to soil 
ratio over time. However, as a comparison, a higher cohesion was 
observed in CEM1 incorporated specimens, especially where the water 
content was lower. Interestingly, both binders showed almost similar 
behavior on friction angle. For instance, at DC, the friction angle of the 
treated specimens was remained constant at 34-41◦, independent of the 
binder content and type. This may be due to the high binder content 
used in this study compared with the minimum amount of binder needed 
to form aggregation, change the bulk material structure, and increase 
the friction angle. A similar increase in friction angle was observed by 
other researchers through increasing the particle size of the bulk soil 
[40]. Noteworthy, the small size shear box used in this study resulted in 
higher values of friction angle and cohesion [41]. 

Fig. 6a shows that an increase in activator content accelerates the 
strength development at all curing conditions as a higher number of 
particles were exposed to the activation environment [42]. Noteworthy, 
increasing the activator content above a specific value had an adverse 
effect on the mechanical strength of the bulk soil due to poor compaction 
[43,44]. Furthermore, Fig. 6b shows that a higher concentration of 
activation solution improves the long-term shear strength of the speci-
mens, which is associated with the higher dissolution of VA. Similar 
results were reported by others [43,45]. 

Fig. 4. Optical images of aggregation of (a), (b) untreated, (c), (d) 15 wt% geopolymer, (e), (f) 15 wt% CEM1 treated clay specimens on 28th day of curing at DC 
curing condition. 
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General discussion on shear behavior of CEM1 and geopolymer 
stabilized clayey soil 

An increase in moisture content reduces capillary force and effective 
normal stress on the potential failure surface of the soil bulk, and 
therefore, degrades the shear strength. This phenomenon is more sig-
nificant in clayey soils due to their interlayer ionic charges, which 
provide the basis of water adsorption in the form of hydrosphere sur-
round the particles to swell [46]. The thickness of the adsorbed water 
layer is ~ 1 to 2.2 nm and formed at a water content range of ~ 15 to 25 
wt%. These values depend on several factors, including layer charge, 
interlayer cations, properties of adsorbed liquid and particle size, and 
environmental temperature [47,48]. In the presence of water, the 
repulsion between the swelled clay particles removes the frictional 
contacts observed in dry states. This can be observed in Fig. 5b, where 
the friction angle of the untreated clay significantly reduced at a high 
moisture content of OC. Increasing the water content beyond the plastic 

limit does not influence much on the shear strength and friction angle of 
the soil, Fig. 3a and 5b [49,50]. 

According to Mohr’s criterion, a material yields when its stress circle 
tangent to the failure envelope. Shear is the main state of stress-causing 
failure in cohesive-frictional solids, such as clayey soils. This usually 
takes place on the planes of maximum shear or as a combination with 
compressive or tensile stresses, Fig. 7a. To this end, higher shear 
strength is observed at higher confinement, see Fig. 3c. When the 
confinement is low, the soil structure is porous, and particles are free to 
move, while increasing the confinement results in a compact structure 
with high frictional interaction that limits particles’ dislocation. 
Therefore, the shear surface forms only if the mineral friction and me-
chanical interlock between adjacent soil particles are overcome, or the 
particles are broken [51]. When a binder is used, the shear strength is 
increased since higher energy is required to break the interparticle 
bonds and the shear surface is extended. This was shown by the increase 
in the cohesion of treated specimens, see Fig. 5a. In addition to the 
interparticle bonds, the binder changes the structure of the clayey mass 
through the aggregation of clay particles that increase the friction in the 
bulk mass. Interestingly, this was less dependent on the range of binder 
content used in this study. A summary of the effect of confinement on 
shear strength is seen in Fig. 7b. 

The performance of stabilized soil subjected to shear is not neces-
sarily similar to that of compression at different curing conditions. The 
uniaxial compressive strength of treated soil predominantly depends on 
the binder strength. Therefore, high compressive strength is observed 
for geopolymer specimens cured at hot and dry condition while in a wet 
environment for CEM1 [9]. However, the strength of the soil is highly 
influenced by vertical confinement, and therefore, the trend observed 
for uniaxial compression was not the same for shear. A similar trend of 
shear strength, friction angle, and cohesion was observed for both 
geopolymer and CEM1 at DC. Besides, since the binder content is not 
enough to cover all the clay particles, repulsion force, due to the for-
mation of the adsorbed layer, controlled the behavior of the treated soils 
at high moisture contents. However, CEM1 specimens showed an 
improved behavior at OC, which provides enough bonds to overcome 
the swelling force of clays at such moisture contents, Fig. 7c. This 
strength is expected to develop over time for the VA-based geopolymer 
due to the slow rate of reaction at low temperatures. 

Life Cycle Assessment (LCA) 

Goal and scope definition 

A comparative estimation of environmental impacts of the binders, 
CEM1 and VA-based geopolymer, has been performed using LCA. It is 
worth mentioning that the life cycle assessment (LCA) framework was 
chosen to assess the environmental impacts of the products according to 
the standard [52]. The scope of LCA in this study is limited to the pro-
duction of the required CEM1 and VA-based geopolymer for stabiliza-
tion of 1 m3 functional unit of clayey soil with similar shear strength. 
Since this LCA study deals with production systems, the cradle-to-gate 
theory was followed. System boundary included energy required for 
CEM1 production (i.e., quarrying limestone, transportation to cement 
production plant, crushing, and cement production process), VA 
extraction/quarrying, transportation to the plant, and grinding, as well 
as NaOH production and its transportation, as illustrated by solid lines in 
Fig. 8. While the required energy for transporting the materials to a 
construction site, site preparation, mixing the binders with soil, soil 
compaction, and service phase was not considered, as shown by dotted 
lines in Fig. 8. The transportation of quarried materials to the plants was 
assumed 100 km for all the raw materials. Fig. 8 shows the system 
boundary considered for this LCA methodology. 

Fig. 5. (a) Cohesion and (b) friction angle of untreated and treated soil spec-
imens using geopolymer and CEM1 with different binder content (0 to 15 wt%), 
curing condition (DC, OC, and SC conditions), and curing duration of 1 and 
28 days. 
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Life Cycle Inventory (LCI) data 

At this stage of the LCA, it is necessary to collect all inputs and 
outputs of the productive system [53]. All the Life Cycle Inventory (LCI) 
data for VA were collected from the local mining and the VA production 
company. In the Taftan mine, diesel is used for mining machinery, and a 
grinding process is used on the raw VA rocks. For electricity production 
in Iran, data were obtained from [54]. Also, secondary data, like the 
Ecoinvent v.3 database, were used for missing and non-accessible data. 
The SimaPro input data were used for CEM1 and NaOH. Moreover, it is 
worth mentioning that the soil’s maximum dry density was 1740 kg/m3 

in accordance with ASTM D 698 [27], Fig. 1c. Considering that most of 
the studied area (Iran country) located in arid zones and based on the 
experimental results of this study, it was observed that at DC curing 
condition, two blends of the soil stabilized with 5% CEM1 and treated 
with 10% VA-based geopolymer provided the almost similar 28-day 
shear strength values at all vertical confinements. Therefore, the 
CEM1 and water needed to stabilize 1 m3 clayey soil were 87 kg and 
243.6 kg, respectively. Comparatively, 174 kg VA, 59.2 kg NaOH, and 
184.4 kg water were required for VA-based geopolymer. 

Life cycle impact assessment and interpretation of the results 

The life cycle impact assessment is useful for estimating the resources 
used and evaluating the potential environmental impacts in the modeled 
system. The life cycle impact assessment was conducted using the 
SimaPro software. The reported life cycle impact assessment of the two 
products shows their environmental impacts in terms of 11 impact cat-
egories, which are obtained using the problem-oriented (mid-points) 
methodology (ReCiPe midpoint (H) method version 1.12). 

Table 4 provides the ReCiPe midpoint (H) method results for CEM1 
and VA-based geopolymer production in different categories. Subse-
quently, Fig. 9 shows the percentage contributions by different life cycle 
inventory of both products. The contribution to climate change is almost 
similar for CEM1 and VA in this study. The CEM1 production is making 
up 51% of the total emitted CO2, which is mainly due to the decompo-
sition of CaCO3 during the production of cement clinker, which releases 
up to 60% of the total CO2 [55]. Furthermore, this is an energy-intensive 
process [56]. On the other side, the main contributor to the environ-
mental impacts of VA-based geopolymer, CO2-eq, SO2-eq, PM10-eq, and 

CFC-11-eq emissions is the activation solution. This result is in agreement 
with previous studies [57,58]. There are, however, two points that need 
to be considered: I) the amount of geopolymer binder used in this study 
was twice compared with the CEM1 with almost the same shear strength 
in the timeframe of 28 days. However, it is known that VA has a slow 
reaction rate in low temperatures, see Fig. 2b, and different results will 
be obtained in the long term. II) The calculation in this study is unique to 
the stabilization for similar shear strength, and different values are ex-
pected for other comparative indices, e.g., in the previous study, a 
similar VA-based geopolymer outperformed CEM1 in uniaxial 
compressive strength (28-day compressive strength of the soil stabilized 
with 5% VA-based geopolymer was more than 2.5 times than that of the 
soil treated with 5% CEM1 at DC curing condition) [9]. This means a 
comparative LCA is a nontrivial task as it not only depends on compo-
sitions but also the application and condition. However, it is obvious 
that using activation solutions processed with less environmental im-
pacts, such as NaOH made from solar salt [57] and waste-derived 
waterglass [60,61], or using more reactive aluminosilicate sources, 
such as fly ash and slag, are the way of future for the development of 
environmentally friendly geopolymer binders for soil stabilization 
[57,59]. 

Conclusions 

This study investigated the potential of using VA-based geopolymer 
as an alternative green binder to the conventional cement for soil sta-
bilization by assessing shear strength parameters. The effects of binder 
content (0 to 15 wt%), curing conditions (at dry, optimum water con-
tent, and soaked conditions), vertical confinement (50 to 150 kPa), and 
curing duration were examined for two types of binders, VA-based 
geopolymer and CEM1. The results showed that independent of the 
binder type, the shear strength of treated specimens was improved at 
higher binder content, longer curing duration, and lower moisture 
content. The increase in shear strength was explained based on the 
changes in cohesion and friction of the bulk soil. It was demonstrated 
that the overall cohesion force of the treated soil particles was mainly 
affected by the binder parameters, including curing condition, binder 
content, alkali activator content, and concentration. Furthermore, 
incorporation of the binder caused aggregation of the clay particles into 
larger-size clusters, which changed the bulk material’s structure. This 

Fig. 6. (a) Effect of activator content, and (b) concentration of sodium hydroxide on shear strength of untreated and treated soil specimens using geopolymer at DC, 
OC, and SC curing conditions, and curing duration of 28 and 90 days. The vertical confinement was 150 kPa for all the samples. 
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aggregation increased the interparticle friction and was less dependent 
on the binder type and content at the limits of this study. However, in the 
presence of water, the repulsion forces between clay particles overcame 
the chemical bonds and reduced both cohesion and friction of the soil. 
The LCA results estimated similar climate change impacts for CEM1 and 
VA-based geopolymer used in this study for stabilization of 1 m3 func-
tional unit of clayey soil with similar shear strength. This LCA, however, 
was unique to the boundary conditions of this study. Regardless of the 
boundary conditions, the main contributor to the environmental im-
pacts in the geopolymer matrix was the activation solution which needs 
to be investigated further in the development of environmentally 

friendly geopolymer binders for soil stabilization. 
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Fig. 7. Schematic diagram of (a) stress distribution at failure surfaces of geotechnical profiles, (b) confinement effect on shear surface development in untreated and 
treated soil, (c) performance of binders at different curing conditions. 

Fig. 8. The system boundary considered for this LCA.  
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Fig. 9. Percentage contributions of each impact category for CEM1 and VA-based geopolymer based on the data in Table 4.  

Table 4 
ReCiPe midpoint (H) method results for CEM1 and VA-based geopolymer for stabilization of 1 m3 functional unit of clayey soil with similar shear strength.  

Impact categories CEM1 VA-based geopolymer 

Total Transport of 
limestone (100 
km) 

Cement 
production (87 
kg) 

Total Transport of 
volcanic 
materials (100 
km) 

VA production 
(174 kg) 

Transport of 
NaOH raw 
materials (100 
km) 

NaOH 
production 
(59.2 kg) 

Climate change (kg 
CO2 eq)  

78.222 0.806  77.415  75.105 1.613  7.978 0.549 64.965 

Ozone layer depletion 
(kg CFC-11 eq)  

2.586 × 10-6 3.047 × 10-11  2.585 × 10-6  8.392 × 10-6 6.095 × 10-11  1.248 × 10-7 2.074 × 10-11 8.267 × 10-6 

Terrestrial 
acidification (kg 
SO2 eq)  

0.14341 0.00407  0.13934  0.59618 0.00814  0.04959 0.00277 0.53566 

Marine eutrophication 
(kg N eq)  

0.00687 0.00021  0.00665  0.00716 0.00043  0.00077 0.00015 0.00580 

Human toxicity (kg 
1,4-DB eq)  

7.591 0.412  7.179  15.258 0.825  2.395 0.28077 11.756 

Photochemical 
oxidant formation 
(kg NMVOC)  

0.14654 0.00603  0.14050  0.22678 0.01206  0.02404 0.00411 0.18656 

Particulate matter 
formation (kg PM10 
eq)  

0.06026 0.00147  0.05878  0.14785 0.00295  0.01298 0.00101 0.13090 

Terrestrial ecotoxicity 
(kg 1,4-DB eq)  

0.00221 9.462 × 10-7  0.00220  0.00095 1.893 × 10-6  0.00009 6.439 × 10-7 0.00085 

Freshwater 
ecotoxicity (kg 1,4- 
DB eq)  

0.17783 0.00342  0.17441  0.13448 0.00684  0.02452 0.00233 0.10077 

Marine ecotoxicity (kg 
1,4-DB eq)  

0.17468 0.00336  0.17131  0.13052 0.00673  0.02419 0.00229 0.09730 

Metal depletion (kg Fe 
eq)  

0.66035 0  0.66035  0.02559 0  0.02559 0 0  
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