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Abstract
Traditional radar sensors used for surveillance rely on monostatic radar principles. 
However, recently the use of remote radio frequency telescopes as bistatic receiv-
ers represents an interesting way to reuse existing facilities while providing addi-
tional information to improve tracking accuracy. In this paper we study the benefits 
of using such a system for the task of manoeuvre detection in satellites in LEO and 
MEO. We investigate the conditions in which a multistatic radar is advantageous 
for this purpose, and show concrete results based on simulated data. Moreover, we 
propose novel manoeuvre detection methods, and compare their accuracy to meth-
ods found in the literature. A more general way of assessing the accuracy of these 
manoeuvre detection methods is also proposed, with the aim of taking into account 
that the parameters of the manoeuvre that actually takes place also have an effect on 
the accuracy. These can be split into optimal control based methods, and statistical 
methods. We found the addition of multistatic radar to allow considerable improve-
ment in the accuracy of the manoeuvre detection process, an improvement that is 
shown to be greater the greater the baseline, i.e., the distance of the receiver to the 
transmitter. Furthermore, the manoeuvre detection methods that accurately model 
the uncertainty in the measurements were found to be the most accurate.

Keywords  Multistatic radar · Bistatic radar · Satellite manoeuvre detection · Space 
surveillance

1  Introduction

Space Surveillance and Tracking (SST), a subset of Space Situational Awareness, 
“comprises technologies to detect, catalogue and predict the objects orbiting the 
Earth, and the derived applications” [1]. In this work we focus on a particular aspect 
of SST, namely manoeuvre detection for satellites in LEO and MEO. Since their 
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inception, ground based SST systems primarily have utilised radar sensors due to 
their ability to operate in very long ranges and under various atmospheric condi-
tions while also providing very accurate range measurements. Radar systems track 
objects by providing information about their range, i.e. distance between target and 
radar antenna, and, with lower accuracy, also on their azimuth and elevation angles. 
Range measurements considered in this work come with accuracy in the order of 
100 m, while the angle measurements come with errors in the order of a degree. 
Initially used for early missile warning, modern SST radars are designed to monitor 
targets in Low Earth Orbit (LEO) up to deep space. Having very high power trans-
missions, in order to improve their efficiency, radar can also operate in tandem with 
nearby radio telescopes, referred to as bistatic receivers, forming what is known as 
a multistatic configuration. In this configuration, the reflected signal is received not 
only by the primary emitter station, but also by distant radio-frequency (RF) tele-
scopes. Such a system measures the bistatic range, i.e. the sum of distances between 
the target and both receiver and transmitter, with similar level of accuracy.

A prime example of such a multistatic system is the Tracking and Imaging Radar 
(TIRA) located at Fraunhofer Institute for High Frequency Physics and Radar Tech-
niques (FHR), Germany and the Effelsberg radio telescope which when paired form 
a bistatic system with a baseline of about 20 km. This can improve the minimum 
detectable target size from 2 cm at 1000 km down to 1 cm due to the higher sensi-
tivity of Effelsberg. While being technically bistatic, the TIRA transmitter and the 
Effelsberg radio telescope act more as a quasi-monostatic radar due to the very high 
target altitudes relative to the baseline. The experienced bistatic angles, �BS , are gen-
erally small and the perceived radar cross section (RCS) of the target will be very 
similar to that of a monostatic radar. Recently, the use of long baseline bistatic radar 
systems for SST has been investigated within the NATO SET-293 RTG.1 The dif-
ference with existing bistatic systems is that the RF telescopes used as receivers are 
remotely located from the radar emitter allowing larger bistatic angles and essen-
tially viewing the target from different aspect angles. As examples, in this work we 
consider two long range bistatic pairs, in addition to the previously mentioned. One 
also has TIRA as the transmitter, but is paired with the radar telescope in Chibolton, 
England, with a baseline of around 600 km. The other is a trans-continental system 
where the transmitter is the Millstone Hill Steerable Antenna (MISA), located at the 
MIT Haystack Observatory, Massachusetts, USA, and the receiver is the Wester-
bork Synthesis Radio Telescope (WSRT) located in Westerbork, Netherlands. The 
resulting baseline is around 5600 km. If the baseline is too long, it becomes harder 
or even impossible to have a line of sight simultaneously from both transmitter and 
receiver, and for that reason the latter system is not suitable for LEO objects. One 
of the benefits is that the target might exhibit higher bistatic RCS for some angles 
thus improving detectability. In addition, the radar system could integrate multiple 
receiving signals, i.e from multiple transmitters or using multiple receivers, result-
ing in a higher signal to noise ratio (SNR) [2, 3].

1  https://​www.​sto.​nato.​int/​Lists/​test1/​activ​ityde​tails.​aspx?​ID=​16,824.

https://www.sto.nato.int/Lists/test1/activitydetails.aspx?ID=16,824
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While preliminary analysis on GEO satellites has shown that spaceborne targets 
can be detected in these bistatic configurations, the processing framework required 
to make the most use of the data collected by such systems is still being developed.

The use of tracking data from radar systems allows the reconstruction of the 
motion of space objects beyond the simple orbit determination. If the dynamics of 
an object being tracked are not fully known, e.g. there is an unknown acceleration, 
the latter can be reconstructed. If this unknown acceleration is caused by on-board 
manoeuvring thrusters, its reconstruction can be helpful in recognising patterns or 
intentions. This process is called behaviour analysis.

In this work we investigate some manoeuvre detection methods in the literature 
and apply them to our use-case of LEO/MEO spacecraft being observed by bistatic 
or multistatic radar. We then investigate to what extent the increased data quality 
coming from bistatic radar observations improves the accuracy of the results of the 
behaviour analysis process when compared to the monostatic case. We also propose 
novel methods, and adaptations to existing methods, that show how accurately tak-
ing into account the uncertainty in the measurements tends to improve the quality of 
the results. In general, the metrics studied provide a quantity that is higher the more 
likely it is that a manoeuvre was performed, and in some cases also a mathematical 
description of a manoeuvre that explains the observations.

We then test these methods on realistic scenarios to assess their performance rela-
tive to each other. We consider in particular two possible scenarios: repositioning 
to modify its ground track, and an orbit re-positioning to shadow another satellite. 
For the latter, we consider the specific case of the Kosmos 2542 and 2543 satel-
lites, which, flying in formation, approached the American KH-11 satellite in Janu-
ary 2020.

Because the performance of a metric depends on the manoeuvre that actually 
took place, a further contribution of this paper is a quantity, here dubbed “quality 
of metric”, which aims to provide a more general description of the accuracy of 
a manoeuvre detection metric, taking into account how this varies with the actual 
manoeuvre performed and with the measurement noise.

There are a variety of manoeuvre detection methods in the literature. Some of 
them are based on Kalman filters. Classic filtering techniques for manoeuvre detec-
tion include the work of Castella [4]. This filter assumes frequent measurements 
occurring during manoeuvres, so frequent that the dynamics model is a straight line 
prediction, i.e., the effect of gravity is ignored in the time frame between measure-
ments. The manoeuvre detection, as is commonly the case, is achieved by analysing 
the measurement residuals. The method, however, does not explicitly estimate the 
accelerations, and the noise spectral density is increased based on a function with 
ad-hoc parameters.

Another well known filter based technique is dynamic model compensation, 
described in [5]. The acceleration is estimated online, assuming exponential corre-
lation between acceleration biases. Lubey and Scheeres [6, 7] develop an optimal 
control based strategy, combining the Pontryagin maximum principle for trajectory 
optimization with Kalman filters.

While these are very useful for scenarios where the target is observed continu-
ously throughout the manoeuvre, enabling an accurate full reconstruction and 
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tracking during manoeuvre, they have the disadvantage of not being suitable for 
scenarios where the observations are separated by long periods of time, with the 
manoeuvre occurring fully within that time. This is because they require the lineari-
sation of the dynamics, and the assumption of Gaussian distributed states. In this 
work, we consider those scenarios with long stretches of time between observations, 
which are characteristic of observations from a single multistatic radar setup of a 
target in LEO/MEO.

Other methods can be more robust to the non-linearity of the dynamics, making 
them more applicable to our use cases. The work of Serra et al. [8] is one example. 
It is based on finding the optimal control law linking two observations. Like Lubey 
and Scheeres [6, 7], the optimal control optimises the integral of the squared accel-
eration, but the dynamics do not need to be linearised. We therefore compare these 
methods’ accuracy for manoeuvre detection with that of optimising the exact delta-
v, modelled as a sequence of impulse manoeuvres, and modelled as a sequence of 
thrust and coast arcs [9].

We also test methods that are not based on finding optimal control laws. Just like 
the navigation filter based methods mentioned previously, the measurement residu-
als are used to estimate if a manoeuvre occurred, such as described in [10]. The 
residuals are quantified by the Mahalanobis distance (MD) between the expected 
state, following a no manoeuvre trajectory, and the actual observation. This met-
ric is based on the assumption of a Gaussian distribution over the state variables. 
When the state is propagated over a large period of time, however, the assumption 
of Gaussianity loses applicability, due to the nonlinearity of the dynamics, as previ-
ously mentioned. Therefore, we propose another approach, where the MD is mini-
mised while allowing the initial and final states to vary, under the constraint that 
they are linked by a no manoeuvre trajectory. This removes the need for propagating 
the uncertainty, and so, if the measurement noise is Gaussian, no approximation is 
being made on the distribution.

We start by describing manoeuvre detection methods found in the literature, 
along with novel methods proposed by us, in Sect. 2. The use of multistatic radar 
data is discussed in Sect. 3, focusing on investigating the conditions in which the 
addition of a bistatic receiver most improves the accuracy of manoeuvre detection. 
A method for assessing the accuracy of manoeuvre detection metrics, the aforemen-
tioned “quality of metric”, is then discussed in Sect. 4. Finally, test cases based on 
realistic scenarios, such as a satellite changing its ground track or shadowing another 
satellite, are described in Sect. 5. The results of applying the methodology in previ-
ous sections are then shown.

2 � Manoeuvre Detection

The process of manoeuvre detection consists in determining, based on observations 
of the state at multiple different times, if there was a manoeuvre in between. Knowl-
edge of the state at one instant in time along with the dynamics allows predicting 
the state for all time, apart from deviations that can be due to manoeuvres but also 
sensor error and imperfect knowledge of the dynamics (often modelled as process 
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noise). For this reason, a state observation never exactly corresponds to the expected 
value. To determine whether this mismatch is due to a manoeuvre or only the other 
two factors is the task of manoeuvre detection. All of the methods considered here 
produce a metric which is higher the more likely it is that a manoeuvre occurred. 
This is then used to obtain Receiver Operator Characteristic (ROC) curves in Sect. 5.

In this Section we describe two manoeuvre detection methods from the litera-
ture based on two different approaches, optimal control based and likelihood based. 
We then follow each with proposed variations or novel methods based on these 
approaches, intended to improve their accuracy in detecting manoeuvres.

To detect a manoeuvre, a minimum of two observations of the state are required, 
one before and one after the manoeuvre. This can be seen as a worst case scenario, 
as in which the least amount of information is available. If more observations are 
available they can be converted into such two observations by batch estimation or 
forwards/backwards filtering [11] separately for the observations before and after the 
suspected manoeuvre. A common example is using the theory of attributables [10], 
where tracks of observations are converted into single observations. In this work we 
consider, without loss of generality, only two observations y0 and yf  , of the states x0 
and xf  , where the subscripts 0 and f refer, respectively, to observations before and 
after the putative manoeuvre. Both y0 and yf  are random variables due to the pres-
ence of measurement noise. In the absence of noise, the observations would be given 
by the measurement function h as y = h(x) . The values of the state estimated from 
measurements y0 and yf  will be written as x̃0 and x̃f  , and are themselves random 
variables. An estimate of xf  obtained by propagating x̃0 will be termed x̂f = F(x̃0) , 
where F is the state transition function which propagates the state for a no manoeu-
vre trajectory.

2.1 � Optimal Control Based

One can safely assume that any trajectory performed by a spacecraft will be mini-
mizing fuel consumption, as that is a critical resource for any mission. Therefore, 
a sensible approach is to solve the optimal control problem linking the observed 
states, and use as metric G,

where u(t) is the control law represented as an acceleration over time, the set U, in 
the most general case, is the set of functions ℝ → ℝ

3 , x is the state as the Cartesian 
position and velocity, and J is the total delta-v required for control law u,

The following subsections contain some examples of such methods.

(1)

G(�̃0, �̃f ) = min
�∈U

J(�)

s.t. �(t0) = �̃

�(tf ) = �̃f ,

(2)J(�) = ∫
tf

t0

‖�(t)‖dt.
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2.2 � Smooth Cost Function

In the work by Serra et al. [8], instead of minimizing G, they minimise G2 given as

The benefit is that this cost function can be easily minimised using the Pontryagin 
maximum principle. A disadvantage is that the resulting control law u∗

2
 will not be 

optimal with respect to the actual manoeuvre cost, which is measured by J(u) . Even 
though G2 does not correspond to a delta-v value, the Cauchy-Schwarz inequality 
provides an upper bound to the value of J(u∗

2
) , given as

Since u∗
2
 does not optimize J, we can write G ≤ J(u∗

2
) , which, combined with the 

inequality in Eq. (4), means that there is an upper bound on G obtained using G2,

The solution of Eq. (3) will produce a continuous control law, as opposed to a 
sequence of impulse manoeuvres as defined in Sect.  2.3, which are typically the 
optimal solution to transfer problems without constraints on the acceleration. Thus, 
while this method is useful for manoeuvre detection and quantification, it is not as 
useful for manoeuvre reconstruction. In the next sections we will look at other meth-
ods that do not have these disadvantages.

Since in [8], the authors consider a case where only angle measurements are avail-
able, they replace the constraint on the final position in Eq. (3) by

where Ω is an admissible region, defined as the set of states that could produce the 
measurements observed. Because in our work we do have both range and angle 
measurements, affected by error, we define the Ω as confidence sets around the 
measurements y , where the expected observation vector for a given state x is given 
by the observation function h(x) . Therefore, Ω is defined using the Mahalanobis 
distance:

where R is the covariance matrix of the observations, F(−1)

�2
k

 is the inverse of the 
cumulative distribution function (CDF) of the chi-squared �2

k
 distribution, k is the 

number of individual observations in y , and l, the p-value, is the minimum 

(3)

G2(x̃0, x̃f ) = min
u∈U ∫

tf

t0

‖u(t)‖2dt
s.t. x(t0) = x̃0

x(tf ) = x̃f .

(4)J(u∗
2
) ≤ √

(tf − t0)G2.

(5)G ≤ J(u∗
2
) ≤ √

(tf − t0)G2.

(6)x(tf ) ∈ Ω,

(7)Ω(y) =
{
x ∶ (y − h(x))TR−1(y − h(x)) < F

(−1)

𝜒2
k

(l)
}
,
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observation likelihood, i.e. the minimum value of p(y|x) (the probability of obtain-
ing measurement y given the target’s state x ) for x to be in Ω(y) . The value of l was 
chosen to be 90% in this work. In this work, we define both the initial state and final 
state as being in a set Ω , as opposed to Serra et al. [8] who only uses an admissible 
region in the final state. We then obtain

The metric G2 allows one to explicitly account for the uncertainty in the measure-
ments, which will be shown in Sect. 5 to improve the manoeuvre detection accuracy.

2.3 � Sequence of Impulses

For high thrust, the optimal control law will tend to be composed of relatively short 
bursts of thrust separated by relatively long periods of coasting. Therefore, a com-
mon simplification is to describe the manoeuvre as a sequence of impulses Δv(i) , 
optimizing the sum of their magnitudes JΔv =

∑
i ‖Δv(i)‖ , with the same constraints 

as in Eq. (1), resulting in metric GΔv,

We optimise this using Matlab’s® function fmincon, with its implementation of the 
interior point algorithm [12], having as control parameters the Cartesian compo-
nents of each Δv(i) as well as the time between consecutive manoeuvres Δti , with 
i = 1,… ,N , where N is the number of impulses considered. The optimization space 
UΔ can therefore be written as ℝ3N ×ℝ

N
+

 . In this work, we used N = 5 , however, the 
optimiser will often make some of these manoeuvres of zero magnitude, meaning a 
smaller number of manoeuvres is actually found.

The process of majorization-minimization [13] is also used to deal with the unde-
fined gradient when Δv(i) = 0 . This consists in iteratively optimizing a function 
Q(u, û(k)) , called the majoriser:

If the majoriser satisfies Q(u, û(k)) ≥ J(u) and Q(û(k), û(k)) = J(û(k)) for any û(k) , u , 
then it can be shown that û(k) will tend to a local optimum as k → ∞ . The same can 
be said for any function Qa that can be obtained by adding or multiplying a constant 
to a function Q satisfying the above [13].

(8)

G2(y0, yf ) = min
u∈U ∫

tf

t0

‖u(t)‖2dt
s.t. x(t0) ∈ Ω(y0)

x(tf ) ∈ Ω(yf ).

(9)

GΔv = min
{Δv(1), Δt(1), …}∈UΔ

�
i

‖Δv(i)‖

s.t. x(t0) = ỹ0

x(tf ) = ỹf .

(10)û
(k+1) = argmin

u∈UΔ

Q(u, û(k))
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Our cost function has a similar formulation to the “total variation” in [13], so we 
obtain our Q following the same process, resulting in

which is equivalent to optimising

The iterative process in Eq. (10) is repeated 10 times, as it was found through testing 
that the improvement to the delta-v was not significant when using more iterations. 
An additional implementation detail is that the optimization variable passed to the 
objective function used by the optimisation algorithm has the delta-vs scaled, i.e., 
Δv(i)∕

√‖‖‖
(
Δv(i)

)(k)‖‖‖ instead of Δv(i) . This keeps all parameters in similar scales, 
which typically improves convergence, and helps with finite difference estimations, 
thresholds on the first order of optimality, conditioning of hessian matrices, etc.

2.4 � Continuous Thrust

Alternatively, a manoeuvre can be approximated as being composed of thrust arcs 
with constant thrust pointing in a constant direction in the radial-transverse-normal 
frame, which is more suitable for low thrust engines. The tool FABLE [9] efficiently 
produces propellant cost estimations for these types of trajectories. The references 
[9, 14, 15] fully describe the transcription and the algorithm used. A difference in 
our case is that we do not consider a departure from an hyperbolic orbit around the 
Earth, so the parameters describing the hyperbolic excess velocity are not used. The 
cost function GFABLE(x0, xf ) is the propellant mass consumption given by FABLE.

2.5 � Likelihood Based

Our current problem of manoeuvre detection can be viewed as one of null hypoth-
esis testing. The null hypothesis H0 is that no manoeuvre took place, i.e. xf = F(x0) , 
and the deviation in the measurement is due to the uncertainty in the state estimation 
only. Therefore, a suitable metric is the negative log likelihood of the observations 
assuming the null hypothesis,

which, making the common assumption of Gaussian noise and linearising the 
dynamics, results that the log likelihood grows monotonically with the Mahalanobis 
distance

(11)Q(u, û(k)) =
‖‖‖
(
Δv(i)

)(k)‖‖‖
N∑
i=1

‖‖Δv(i)‖‖2 − ‖‖‖
(
Δv(i)

)(k)‖‖‖
2

2
‖‖‖
(
Δv(i)

)(k)‖‖‖
,

(12)Qa(u, û
(k)) =

N∑
i=1

‖‖Δv(i)‖‖2
‖‖‖
(
Δv(i)

)(k)‖‖‖
.

(13)−log
(
p
(
yf |H0, y0

))
,
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where Δx̃ = x̂f − x̃f  is the estimate of Δx , and P̂ is the covariance matrix of this Δx̃ , 
given by

where P0 and Pf  are the covariance matrices of x̃0 and x̃f  , respectively, and � is the 
state transition matrix [16]. This procedure is described in [10], where it is referred 
to as “reachability analysis”. Reachability analysis refers to any set of metrics that 
are based on a distance between the observed final states and the predicted states in 
the absence of a manoeuvre, and in fact includes the optimal control methods, where 
the control cost is the aforementioned distance.

2.6 � Minimal Mahalanobis Distance

The calculation of GMD requires propagating the uncertainty to obtain P̂ . This is 
done by linearising the dynamics, and assuming a Gaussian distribution for x̂f  . One 
way to avoid such assumptions, as well as the need for propagating uncertainty alto-
gether, is to use the minimum log likelihood under H0,

where X is the set of states. In our case, X = ℝ
6 , as the states x are written in Car-

tesian coordinates. The optimizing value of x0 and its propagation F(x0) correspond 
to the maximum likelihood estimate for those states if a manoeuvre is believed to 
not have occurred (null hypothesis H0 ). This is also a batch estimation method. The 
optimal negative log likelihood value can be used as a manoeuvre estimation metric. 
This also avoids estimating P0 and Pf  , which requires linearising the measurement 
function h.

We can now formulate the metric GMD by only assuming Gaussian measurement 
noise with covariance matrix R , which makes Eq. (16) equivalent to

Like G2 , the metric GMD explicitly considers the uncertainty in the measurements, 
and does not require assuming the states have a Gaussian distribution, but it does not 
require any parameters, whereas G2 required the parameter l. This can be an advan-
tage for GMD if no information is available that suggests a good choice for l, which 
requires some consideration. If l is too large, the Ω sets in Eq. (8) may be empty, 
whereas if l is too small G2 may be zero when manoeuvres have actually occurred. 
On the other hand, having a parameter that can be tuned can also be advantageous. 
The parameter l allows the user to adjust how conservative this metric is.

(14)GMD = Δx̃T P̂
−1
Δx̃,

(15)P̂ ≈ �P0�
T + Pf .

(16)min
x0∈X

−log
(
p
(
x0|H0, y0, yf

))
,

(17)

GMD(y0, yf ) = min
x0∈X

(y0 − h(x0))TR−1(y0 − h(x0))

+ (yf − h(xf ))TR−1(yf − h(xf ))
s.t. xf = F(x0).
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3 � Manoeuvre Detection with Multistatic Radar

In monostatic radar, an electromagnetic wave or signal is emitted in a certain direction. 
If the signal intercepts a target, its reflection is received in the same location where it 
was transmitted from. We denote the range, azimuth and elevation as observed from the 
transmitter station as �1 , �1 , �1 , and their respective rates as 𝜌̇1 , 𝛼̇1 , 𝛽̇1 . Furthermore, �1 is 
the position vector from the transmitter to the target.

With bistatic radar, the receiver is located far away from the transmitter, at a dis-
tance L, the baseline. In this case, the bistatic range and its rate are observed, defined as 
�BS ≜ �1 + �2 − L , with �1 and �2 being the distance from the transmitter to the target; 
and the distance from the target to the receiver, respectively. We also have the observa-
tion angles and their rates as observed from the receiver station, �2 , �2 , 𝛼̇2 and 𝛽̇2.

One disadvantage of bistatic radar is that both stations must observe the target simul-
taneously. This means that the transmitter and receiver antenna beams must overlap in 
order to generate a composite antenna beam in which the target is visible by the bistatic 
system. This constraint reduces the number of observation opportunities. This can be 
ameliorated by the addition of multiple receivers, in a multistatic configuration. Such 
a configuration would also provide higher quality data when the target is in the line of 
sight of multiple receivers.

The accuracy of the manoeuvre detection process depends not only on the metric 
being used, but also on the quality of the measurements, and in particular for this dis-
cussion, on the geometry of the radar transmitter, receiver, and target configuration.

Suppose we have a vector of observations h(x) that allows determining the state per-
fectly. The covariance matrix of the state observed in this way can be approximated as

where R is the covariance matrix of our observations, which we consider to be a 
diagonal matrix with the variance of each measurement, and H is the Jacobian of the 
observation function h(x) . A criterion for a measurement being good at detecting a 
manoeuvre is having a small variance along the direction Δx , which is the deviation 
in the observed state caused by the manoeuvre. This occurs when Δx is aligned with 
the eigenvectors with the smallest eigenvalues (variances). These will be close to the 
direction of the measurement with the lowest variance, coincident if H is orthogonal 
as is the case for monostatic observations. In our scenarios, the measurements with 
the lowest variance will be the range and range rate for the position and velocity 
respectively.

The position and velocity vectors of the target in an inertial reference frame are r 
and v respectively. The gradient of �BS with respect to r is

while the gradient ∇v𝜌̇ is defined similarly.
This provides an intuition for determining when will bistatic radar provide the great-

est advantage to the results. We illustrate this with a scenario, described here, and with 
results in Sect. 5.1. Consider a case where the transmitter is at latitude 30° N and the 

(18)P = (HTR−1H)−1,

(19)∇r�BS =
�1

�1
+

�2

�2
.
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receiver, in the same meridian, is initially in the same position. Suppose a target in an 
equatorial orbit then performs an in-plane manoeuvre, and is observed along its orbit, 
such that the Δr and Δv caused by this manoeuvre are in the orbital plane, i.e. the equa-
torial plane. As the receiver station is brought closer to the equator, the gradient ∇� 
will have a larger projection onto the orbital plane, and thus the manoeuvre will have 
a larger effect on the measured range. This is illustrated for ∇x𝜌 = ∇v𝜌̇ in Fig. 1. In 
the latter scenario, ∇x�BS can have a larger in-plane component than ∇x�1 does, which 
implies a lower variance for an in-plane direction. So we should expect that in these 
conditions, the bistatic radar measurements on their own will lead to better manoeuvre 
detection capabilities than monostatic, and indeed in Sect. 5.1 this is shown to be the 
case.

On the other hand, if the baseline is small, the gradient of the bistatic range meas-
urement ∇�BS will have similar direction to the gradient of the monostatic range ∇�1 , 
and as such, will contribute mostly to lowering the variance in the direction of ∇�1 . 
When the baseline is higher, ∇�BS becomes further from ∇�1 , leading to lower vari-
ances along directions perpendicular to ∇�1 . Therefore, we can expect an increase in 
baseline to improve manoeuvre detection results, in the general case where Δx does not 
align too closely with ∇�1.

As an illustration, if � is the angle between ∇�1 and ∇�BS , and these observations 
have standard deviations of � and 2� (because �BS is a sum of ranges) respectively, then 
the eigenvalues of P as defined in Eq. (18), for the position vector in the plane contain-
ing the stations and target, will be

Clearly, when � = 0 , i.e. when the transmitter and second receiver are in the same 
location, one of the eigenvectors goes to infinity, as we have no information along 
that direction. From there, as cos(�) increases, the largest eigenvalue decreases 
significantly. It can be shown that if �1 ≈ �2 ≈ � , cos(�) ≈

√
1 − L2∕(4�2) , which 

shows how an increase in baseline L leads to a decrease of the largest eigenvalue, 
which again represents the variance along a particular direction in the estimated 
state.

(20)
[
�2∕(1 − cos(�))

�2∕(1 + cos(�))

]
,

Fig. 1   Configuration of receiver 
and transmitter, showing the 
gradients of the range measure-
ments and the direction of the 
state deviation
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4 � Quality of a Metric

Since a manoeuvre detection metric is essentially a binary classifier, a natural tool to 
assess their accuracy is a receiver operator characteristic (ROC) curve. To quantify the 
quality of a metric with a single value, the area under the ROC curve (AUC) can be 
used. Let Gm be a random variable representing the value of a metric when a manoeu-
vre occurs, and G0 when it does not. The AUC equals P(Gm > G0) [17].

To approximate the AUC for analytical purposes, we assume that the metric in con-
sideration can be approximated as a quadratic form:

where A is the Hessian matrix of G, and �x0 and �xf  are the deviation between the 
observed state and a pair of reference states consistent with a no manoeuvre sce-
nario. We will now write the vector of observed states as

Further, we assume that �x0 and �xf  are observed with noise that follows a Gaussian 
distribution with zero mean and, as before, covariance matrices P0 and Pf  respec-
tively. From these assumptions, both G0 and Gm follow generalised chi-squared dis-
tributions, with known mean and variance [18].

To make the analysis easier, consider the following change of coordinates:

where Δx = �xf − F(�x0) represents the deviation in the final state that is due to the 
manoeuvre,

and � is the state transition matrix [16]. The measured Δx will have a covariance 
matrix given by P̂ in Eq. (15).

The Hessian matrix can now be transformed into these coordinates

By taking the bottom six rows and rightmost six columns of matrix Â , we get ÂΔ , 
the component of the Hessian that depends only on Δx , leading to the following 
approximation of G:

(21)G(�x0, �xf ) ≈
1

2

[
�x0
�xf

]T
A

[
�x0
�xf

]
,

(22)�x =

[
�x0
�xf

]
.

(23)fΔ(�x) =

[
�x0

�xf − F(�x0)

]
≈ ��x,

(24)� =

[
I 0

−� I

]
,

(25)Â = �
TA�.

(26)G(Δx) ≈
1

2
ΔxTÂΔΔx.
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By making a Gaussian approximation to Gm − G0 , results that the AUC grows 
monotonically with the Mahalanobis distance between the real value of G(Δx) and 
the Gaussian approximation to the distribution of Gm − G0 , given by:

The value of q{G} can then be used as a relative measure of the sensitivity of a met-
ric to a particular manoeuvre. Its formula in Eq. (27) shows that the quality of a met-
ric depends on the particular manoeuvre being applied (through Δx ), on when it is 
observed (through �x ), on the observation uncertainty (through P̂ ), and on the met-
ric itself (through ÂΔ ). The dependency on P̂ in particular contains in it the depend-
ency on the radar system, as described in Sect. 3. The addition of a bistatic receiver 
will reduce the eigenvalues of P0 and Pf  , thus increasing the value of q{G} . For 
small Δx , the following approximation is valid,

This takes a particularly simple expression for GMD , where it becomes

where d is the number of dimensions in the state variable, 6 in our case, and ǦMD is 
the value of GMD calculated using the exact values of the state vectors. Note that it 
depends on Δx.

As previously stated, and evidenced by Eq. (27), which metric is best may 
depend on factors such as which manoeuvre actually takes place, represented by 
Δx . For example, the quantity q̃ can be used to find the manoeuvres for which 
G2 is better than GMD , by finding the values of �xf  for which q̃{GMD} − q̃{G2} 
is negative. These are the linear combinations of the eigenvectors associated 
with the negative eigenvalues of Aq{GMD} − Aq{G2} . In Sect.  5.3, a scenario 
is set up with synthetic data. For an inclination change manoeuvre, the met-
ric GMD performs better, but nonetheless a manoeuvre can be found such that 
q̃{GMD} − q̃{G2} is negative. Simulating this manoeuvre and sampling GMD and 
G2 results in an ROC curve where G2 is cleary producing better results than GMD . 
This illustrates the purpose of introducing this quantity q. It provides a slightly 
more general description of the quality of a metric at determining whether a 
manoeuvre occurred or not, by clarifying the dependency of its accuracy on the 
actual manoeuvre Δx.

(27)
q{G} = ΔxT

ÂΔ

2

√
tr
(
ÂΔP̂ÂΔP̂

)
+ 𝛿xTÂΔP̂ÂΔ𝛿x

Δx.

(28)
q{G} ≈ q̃{G} =

ΔxTÂΔΔx

2

√
tr
(
AP̂AP̂

) =
1

2
ΔxTAq{G}Δx.

(29)q{GMD} = ΔxT
P̂
−1

2

�
d + ǦMD

Δx ≈ q̃{GMD} = ΔxT
P̂
−1

2
√
d
Δx,
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5 � Results

For these tests, we assume that the observations are affected by Gaussian noise. The 
standard deviations for the angle measurements are given, similarly to [8], by assum-
ing the values of � , � and � are observed with n = 3 independent observations, sepa-
rated by an interval of time of Δt = 20s . We assume these observations are affected 
by independent Gaussian noise with standard deviations 𝜎̂𝛼 = 𝜎̂𝛽 = 1 arcminute and 
𝜎̂𝜌 = 100 m . This information is turned into a tracklet 

(
𝛼, 𝛽, 𝜌, 𝛼̇, 𝛽̇, 𝜌̇

)
 by performing 

a least squares fit to the data. From this process the standard deviations on the rates are 
also obtained. For the bistatic range, we have ��BS = 2�� and 𝜎𝜌̇BS = 2𝜎𝜌̇ . Note that with 
these values, when the range is above approximately 344 km, the variance in the state 
estimation along the range direction will be lower than in the orthogonal directions.

An orbit without and with a manoeuvre is simulated, and observations y0 and 
yf  are sampled with N = 100 samples for each case. These observations are simu-
lated as having independent Gaussian noise with the standard deviations mentioned 
before. From these noisy observations, the states x0 and xf  are calculated, using 
maximum likelihood estimates when this problem is over-determined.

5.1 � Comparison of Monostatic with Bistatic Radar: Test Case 1

Following the discussion in Sect. 3, we present here the results where a spacecraft 
in equatorial orbit is observed as it crosses a meridian where two ground stations lie, 
the transmitter at 30° N, and the receiver on the equator. In this case, for simplicity, 
we assume that the initial state is known perfectly, and there is only uncertainty in 
the measurement of xf  . Figure 2 shows the Receiver Operator Characteristic (ROC) 
curves for the G2 metric, for monostatic, bistatic only, and the combination of the 
two. These curves show that using bistatic radar, in this configuration, leads to a 
significant improvement compared to monostatic, since the geometry of the bistatic 
radar in this case is such that it allows better discrimination along the direction 

Fig. 2   ROC curve for different observation conditions
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in which the state is varying due to the manoeuvre, as explained in Sect.  3. For 
instance, at a 10% false positive rate (FPR), monostatic radar measurements only 
allow a 60% true positive rate (TPR), while with bistatic radar, a TPR of 85% is 
achieved at the same FPR, increasing to 95% with multistatic.

5.2 � Manoeuvre Detection Methods Comparison: Test Case 2

We now present a more realistic test case. The orbit is a circular orbit with 5000 km 
altitude and 80 degrees inclination. The transmitter is the Millstone Hill Steerable 
Antenna (MISA), located at the MIT Haystack Observatory, Massachusetts, USA, 
and the receiver is the Westerbork Synthesis Radio Telescope (WSRT) located in 
Westerbork, Netherlands. The measurements are separated by approximately 7  h, 
taking place approximately two orbits apart. The manoeuvre in question is an incli-
nation change of 1°. This scenario is illustrated in Fig. 3.

The ROC curves are shown for the monostatic observations in Fig. 4 and for com-
bined bistatic and monostatic observations in Fig. 5. As expected, Gsymb is unsuitable 
for this test case, since this manoeuvre is not an in-plane one. Figure 4 also shows 
that GΔv , being closer to measuring the actual cost of a manoeuvre, leads to better 
accuracy than using G2 , although this advantage is less noticeable in Fig. 5. Even 
though G2 and GFABLE are both simulating continuous trajectories, they are optimiz-
ing different quantities, so it is interesting that their results are quite close. But in 
both cases, the best method for higher values of the true positive rate was G2 , which 
can be understood as a consequence of it taking into account the uncertainty as well 
as applying a control distance metric. The addition of uncertainty in x0 could explain 
why the GMD metric is no longer as good for these test cases, since the propagation 
of the state is a nonlinear process which makes the distribution of state deviation no 

Fig. 3   Ground track for the test case 2, showing the locations of the transmitter, receiver, and measure-
ments
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longer Gaussian. In the definition of G2 it is only assumed that the observations have 
Gaussian error, which is still valid in this case.

Figures 6 and 7 show histograms with the predicted delta-v cost of the manoeuvre in 
question, compared to its real value. The presence of noise in the measurements tends 
to lead to over-estimation of the delta-v. For the no-manoeuvre case, in blue in both 

Fig. 4   ROC curves for some manoeuvre detection methods, for monostatic observation data, test case 2

Fig. 5   ROC curves for some manoeuvre detection methods, for bistatic+monostatic observation data, 
test case 2. The curves are all very close to representing a perfect classifier
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figures, the correct value would be 0 m/s, while for the manoeuvre case in orange, the 
delta-v was just above 100 m/s. The results in these figures show that the addition of 
bistatic radar leads to much closer results not just in manoeuvre detection, but also in its 
reconstruction. Numerically, the root mean squared error for the case with manoeuvre 
goes from 73.8 to 24.7 m/s by the addition of bistatic observations, which shows the 
benefit of the additional accuracy provided by bistatic observations.

5.3 � Quality of a Metric Results

We apply the theory in Sect. 4 to obtain, for test case 2 where typical manoeuvres 
produce a better result with GMD , a manoeuvre for which G2 is the better, thus dem-
onstrating the accuracy of that theory.

Fig. 6   Histograms of delta-v control cost as estimated using GΔv , for the monostatic case

Fig. 7   Histograms of delta-v control cost as estimated using GΔv , for the monostatic+bistatic case
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For this demonstration, we use the same conditions as in test case 2, except there 
is only uncertainty in the second observation so as to align with the assumptions 
made in Sect. 4, and the value of the standard deviations for the measurement errors 
were reduced by 20, so that the small �xf  approximation can be valid. The eigenval-
ues of Aq{GMD} − Aq{G2} are

The only negative eigenvalue is orders of magnitude smaller than the larger positive 
ones. This too supports the idea that GMD is the more robust metric of the two. How-
ever, by choosing a �xf  aligned with the eigenvector corresponding to that negative 
eigenvalue, chosen such that 

√
(tf − t0)G2 is 13.9 m/s, it is possible to find a 

manoeuvre for which G2 is better, resulting in test case 2a, as shown in Fig. 8. That 
figure also includes the manoeuvre from test case 2, scaled in the same way, labeled 
test case 2b.

5.4 � Cosmos 2542 Satellite Shadowing: Test Case 3

As a realistic test case, we consider the Russian satellites Cosmos 2542 and Cos-
mos 2543, which in January 2020 manoeuvred so as to shadow the American satel-
lite KH-11, also known as USA 245 [19]. By consulting the website “in-the-sky”,2 

(30)

⎡⎢⎢⎢⎢⎢⎢⎣

4.98 × 109

1.36 × 108

8.43 × 106

1.12 × 107

1.80 × 103

−6.16 × 103

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Fig. 8   ROC curves for test cases 2a and 2b

2  https://​in-​the-​sky.​org//​space​craft.​php?​id=​44,797.

https://in-the-sky.org//spacecraft.php?id=44,797


1 3

The Journal of the Astronautical Sciences           (2023) 70:36 	 Page 19 of 25     36 

while the historical ephemerids are not available, it is possible to see graphs of the 
mean altitude, eccentricity, and inclination. The values around 19th January suggest 
an inclination change manoeuvre from around 97.9 to 97.6°, and a decrease in the 
apoapsis of about 58 km, costing respectively around 33 and 15.7m/s of delta-v if 
they were performed separately and by a high thrust engine.

Using this information, we model this spacecraft performing these two manoeu-
vres, and being observed before and after the manoeuvres, by the TIRA system 
located at Fraunhofer Institute.

The results are in Fig. 9 for monostatic observations. Clearly, the statistical based 
methods GMD , GMD and G2 are far superior, showing perfect results. To better com-
pare these methods, and get a better overview of the effect of having additional sta-
tions, we repeat the experiments considering two receivers, the Effelsberg 100-m 
Radio Telescope and the Chilbolton Observatory, see Fig. 10. The baselines of the 
resulting bistatic pairs are of 20 and 600 km respectively. The noise on the angular 
measurements is also increased from one arcminute to 0.5°. Figures 11 and 12 show 
the results for GMD and GMD for different combinations of receivers. The metric G2 
is not included due to the very long convergence times when the noise level is this 
high.

Two conclusions can be reached from these results. First is that GMD is superior. 
We note that the MC estimate of the covariance matrix used to estimate GMD was 
obtained with 1000 sample points, which was a higher number of state propaga-
tion functions that the optimization in GMD ever required for this case. Secondly, the 
longer baseline system improves the results significantly more than the shorter one, 
as expected from the discussion in Sect. 3.

In addition, for this test case, the eigenvalues of q{GMD} were found to always 
be greater than q{G2} , indicating that there is no maneouvre, in this observation 

Fig. 9   ROC curves for test case 3
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conditions, for which G2 is better at detecting manoeuvres than GMD . Further-
more, the hessian of GMD was found to be identical to that of GMD with rela-
tive difference in the order of 10−8 , suggesting that they have the same Hessian, 

Fig. 10   Ground track and locations of transmitters and receivers for test case 3

Fig. 11   ROC curves for test case 3 with angular observation noise with standard deviation of 0.5°, for 
metric G

MD
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although a theoretical proof of this is outside the scope of this work. The fact that 
despite this, the metrics have very different performances, shows the limitations 
of this method of estimating the quality of a metric, limitations which we specu-
late are related to the small Δx approximations taken when obtaining it.

5.5 � QoM Sensitivity Analysis

The QoM presented in Sect. 4 was developed by making several assumptions. In this 
section we test the validity of the Gaussianity approximations. There are two such 
approximations in use. Firstly, the likelihood functions of the measured x̃f  and pre-
dicted x̂f  final states are assumed to follow a Gaussian distribution. After the metric 
function is approximated as a quadratic form (Eq.  21), statistical analysis reveals 
that its distribution is a generalized chi-squared distribution [18]. Its mean and vari-
ance are then obtained following this theory, and the MD between the real value of 
the metric when the manoeuvre occurs and the Gaussian distribution with this mean 
and variance corresponds to q{G} . Therefore, the accuracy of this Gaussian distribu-
tion at estimating the AUC is directly related to the accuracy of q{G}.

Therefore, in this section we compare estimates of the AUC obtained by three 
methods:

•	 Numerically—the random variables G0 and Gm are sampled with 1000 sample 
points each, and the fraction of pairs for which Gm > G0 is the estimate of the 
AUC;

Fig. 12   ROC curves for test case 3 with angular observation noise with standard deviation of 0.5°, for 
metric G

MD
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•	 As a generalised chi-squared distribution—using the methods developed in [20], 
for which code was made available on the Matlab file exchange,3 the parameters 
of the distribution of Gm − G0 are computed, and using the same library the AUC 
is computed as well;

•	 As a Gaussian distribution with the same mean and variance as the chi-squared 
estimate.

Another assumption made in developing q was the second order Taylor approxima-
tion of G as a function of Δx , in Eq. (21). This section is not concerned with evalu-
ating the validity of that approximation, so the tests are all conducted on the metric 
GMD , which can be written exactly in this form.

Another detail is that instead of obtaining P̂ as in Eq. (15), the unscented trans-
form [21] is used to propagate the uncertainty. This removes the need to compute � 
and reduces linearisation errors, but does not completely remove them. Finally, note 
that for GMD , ÂΔ = 2P̂

−1
.

For test case 3, outlined in Sect. 5.4, let Δxref  be the change in final state caused 
by the manoeuvre described therein. Let also �ref  be the measurement noise stand-
ard deviation defined for the same test case. Results have been obtained with the 
methods outlined above for a scenario with noise only on the final measurement, and 
another with noise on both measurements. For all cases, the AUC is estimated for 
various values of Δx and � which are scalar multiples of Δxref  and �ref .

The results in Fig. 13 were obtained with noise only in the measurement of xf  . 
The only source of non-linearity is in the measurement function, as there is no noise 
being propagated. The chi-squared and Gaussian approximations have similar pre-
dictions. Therefore, the final Gaussian approximation used to define q is not the 
main source of error.

The shaded area indicates the 2 sigma (95%) confidence interval on the likeli-
hood of the numerical estimates under the assumption that Gm − G0 follows the chi-
squared distribution. For low noise values, it is found that the chi-squared and the 
numerical results are in agreement, but as the noise increases this stops being the 
case, visually indicated by the numerical estimates being outside this shaded area. 
As the noise increases, so does the mismatch between numerical and analytical 
estimates of the AUC, because the non-linearity effects become more pronounced. 
There are two factors contributing to this. When the manoeuvres are too small 
(large), the AUC is close to 0.5 (1), and large changes to Δx result in small changes 
to the AUC. The numerical estimates are too coarse to reveal these variations, so 
the only useful data for validating these methods corresponds to the region where 
the AUC is in between 0.5 and 1. The values of Δx within this region increase as � 
increases. This means both the noise in the measurements and the magnitude of the 
manoeuvre, two factors that increase the effect of non-linearities, increase as � for 
the area of the AUC plots that allows comparing the various methods.

Adding noise in the initial state measurement means the non-linear propagation 
has the effect of making the state distribution depart even more from a Gaussian. 

3  https://​uk.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​85028-​gener​alized-​chi-​square-​distr​ibuti​on.

https://uk.mathworks.com/matlabcentral/fileexchange/85028-generalized-chi-square-distribution
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Results obtained as before are in Fig.  14. The estimates of the AUC depart from 
numerical estimates for even lower amounts of noise.

Fig. 13   Comparison of estimates of the AUC for test case 2 with measurement noise only on xf

Fig. 14   Comparison of estimates of the AUC for test case 2 with measurement noise on x
0
 and xf
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6 � Conclusions and Future Work

The theoretical derivation and the simulated results in this paper show the extent 
to which the use of bistatic radar receivers improves the accuracy of manoeuvre 
detection with radar measurements. The relationship between this accuracy and the 
geometry of the observations, in particular its improvement with increases in base-
line (i.e., the distance between the transmitter and receiver(s)), and on the manoeu-
vre being detected, was also shown with theoretical arguments and synthetic data.

This was complemented with an investigation of some manoeuvre detection 
methods from the literature, in addition to methods we developed. These were then 
compared using simulated data. The results found that in general, an accurate mod-
elling of the uncertainty is key to obtaining good results.

We also introduced a method for analytically assessing the quality of a metric for 
the purposes of manoeuvre detection, which depends on the response of the metric to 
deviations in the state, on the manoeuvre being performed, and on the measurement 
uncertainty. This quantity allows quickly evaluating how accurate a metric would be 
for all possible manoeuvres, avoiding the possibility that results obtained for a specific 
scenario are only valid for the specific manoeuvre that was tested. There are limitations. 
The first is that it requires that the metric is a function of class C2 of the measurements. 
It also needs to be approximated by a quadratic form, which makes its applicability 
limited to small manoeuvres. A more conceptual limitation is that it does not provide a 
simple quantification of the effect of the conditions the observation takes place in, i.e., 
the time and location of the satellite when it is observed, which in turn depends on its 
orbit, etc. Overcoming these limitations is a consideration for future work.

Future work will also include the application of state-of-the-art uncertainty quan-
tification methods to manoeuvre detection. In particular, we intend to consider filter 
based techniques that do not require the assumption of Gaussian distributions, such 
as Gaussian mixture model filters.
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