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Abstract
This paper deals with the kernel-based approximation of a multivariate periodic func-
tion by interpolation at the points of an integration lattice—a setting that, as pointed
out by Zeng et al. (Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer,
New York, 2006) and Zeng et al. (Constr. Approx. 30: 529–555, 2009), allows fast
evaluation by fast Fourier transform, so avoiding the need for a linear solver. The
main contribution of the paper is the application to the approximation problem for
uncertainty quantification of elliptic partial differential equations, with the diffusion
coefficient given by a random field that is periodic in the stochastic variables, in the
model proposed recently by Kaarnioja et al. (SIAM J Numer Anal 58(2): 1068–1091,
2020). The paper gives a full error analysis, and full details of the construction of
lattices needed to ensure a good (but inevitably not optimal) rate of convergence and
an error bound independent of dimension. Numerical experiments support the theory.
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34 V. Kaarnioja et al.

1 Introduction

We consider a kernel-based approximation for a multivariate periodic function by
interpolation at a quasi-MonteCarlo lattice point set.Kernel-based interpolationmeth-
ods are by now well established (see, e.g., [26] and more discussion below). It is the
unique combination of a periodic kernel plus a lattice point set here that will deliver us
the significant advantage in computational efficiency. As already advocated by Hick-
ernell and colleagues in [28,29], the combination of a periodic reproducing kernel with
the group structure of lattice points means that the linear system for constructing the
kernel interpolant involves a circulant matrix, thus can be solved very efficiently using
the fast Fourier transform. So, our kernel method can be fast even if the dimensionality
is high.

As also advocated in [28,29], a kernel interpolant is inmany settings optimal among
all approximation algorithms that use the same function values (see also known results
on optimal recovery, e.g., [20,21]). We can therefore analyze the worst case approxi-
mation error of our kernel method by using, as upper bound, the worst case error of an
auxiliary algorithm based on a Fourier series truncated at a hyperbolic cross index set.
Using recent works [3,4], we here construct a lattice generating vector with a guaran-
teed good error bound for our kernel interpolant. Note, importantly, that neither the
construction of our lattice generating vector, nor the implementation of our kernel
method, requires explicit knowledge or evaluation of the auxiliary hyperbolic cross
index set. In short, we know how to find a good lattice point set so that our kernel
method has a small error in addition to being of low cost.

In this paper, themain contribution is to apply and analyze this periodic-kernel-plus-
lattice method to uncertainty quantification of elliptic partial differential equations
(PDEs), where the diffusion coefficient is given by a random field that is periodic
in the stochastic variables, as in the model proposed recently by Kaarnioja et al.
[12]. We tailor our lattice generating vector to the regularity of the PDE solution
with respect to the stochastic variables. Our numerical results beat the theoretical
predictions, indicating that the theory based on worst case analysis may not be sharp.

The kernel approximation developed here may have a role as a surrogate model
for complicated forward problems. One popular use for surrogate models is to allow
efficient sampling of the original system. If the solution of some particularly difficult
PDE problem with high accuracy takes a week for a given parameter choice y, then
having a kernel interpolant that can be evaluated in hours or minutes could be very
useful. A second possible use for the kernel interpolant is in the easy generation
of derivatives, needed for example in gradient-based optimization algorithms. The
surrogate might be even more useful for Bayesian inverse problems.

We now elaborate key points.

Periodic-kernel-plus-lattice method. Let f ( y) = f (y1, . . . , ys) be a real-valued
function on the s-dimensional unit cube [0, 1]s , with a somewhat smooth 1-periodic
extension to R

s . Our main interest is in problems where the dimension s is large.
Following [25], we assume that f has an absolutely convergent Fourier series, and
belongs to a weighted mixed Sobolev space H := Hs,α,γ which is characterized by a
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Fast approximation by periodic kernel-based lattice-point... 35

smoothness parameter α > 1 and a family of positive numbers γ = (γu)u⊂N called
weights; the details are given in Sect. 2.1.

Our ultimate application, to be analyzed in Sect. 4, concerns a class of elliptic PDEs
parameterized by a very high (or possibly countably infinite) number of stochastic
parameters, for which the solution, as a function of the parameters, is periodic and
belongs to the weighted space H for a suitable choice of α and γ .

The important feature of the space H is that it is a reproducing kernel Hilbert space
(RKHS), with a simple reproducing kernel K ( y, y′). This opens the way to the use of
kernel methods to approximate functions in H from given point values. In particular,
in this paper we focus on the kernel interpolation: given f ∈ H and a suitable set of
points t1, . . . , tn ∈ [0, 1]s , we seek for an approximation fn ∈ H of the form

fn( y) :=
n∑

k=1
ak K (tk, y), y ∈ [0, 1)s, (1)

which satisfies the interpolation condition fn(tk) = f (tk), k = 1, . . . , n. We refer to
fn as the kernel interpolant of f .
We will interpolate the function at a set of n lattice points specified by a generating

vector z ∈ Z
s . The points are then given by the formula tk = (k z mod n)/n, k =

1, . . . , n, with tn = t0 = 0. A lattice point set has an additive group structure, implying
that the difference of two lattice points is another lattice point (after taking into account
periodicity).

A key property of our reproducing kernel is that it depends only on the difference of
the two arguments, thus K ( y, y′) = K ( y − y′, 0), and K (·, 0) is a periodic function
with an easily computable expression when α is an even integer. Combining this with
the group structure of lattice points means that the matrix [K (tk − tk′ , 0)]k,k′=1,...,n
contains only n distinct values and indeed is a circulant matrix. Therefore the linear
system arising from collocating (1) at the points tk′ , k′ = 1, . . . , n, can be solved
using the fast Fourier transform with a cost of O(n log(n)).

Once we have the coefficients ak , we can use (1) to evaluate the interpolant fn at
L arbitrary points y�, � = 1, . . . , L , with a cost of O(Ln). Remarkably, with almost
the same cost we can evaluate fn at all the Ln points of the union of shifted lattices
y�+ tk′ , � = 1, . . . , L , k′ = 1, . . . , n. Indeed, since K (tk, y�+ tk′) = K (tk− tk′ , y�)

and the matrix [K (tk − tk′ , y�)]k,k′=1,...,n is circulant, we have

fn( y� + tk′) =
n∑

k=1
ak K (tk − tk′ , y�),

which can be evaluated for each y� for all tk′ together by fast Fourier transform with
a cost of O(n log(n)), leading to the total cost of O(Ln log(n)). Comprehensive cost
analysis taking into account also the evaluations of f and K is given in Sect. 5.

Brief survey on kernelmethods in high dimensions.Griebel and Rieger [10] consid-
ered a (non-interpolatory) kernel approximation based on a regularized reconstruction
technique from machine learning for a class of parameterized elliptic PDEs similar to
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36 V. Kaarnioja et al.

the one considered in this work, yet with non-periodic dependence on the parameters.
They used an anisotropic kernel, behaving differently in different variables, to address
the high dimensionality of the problem. However, their error estimate was in terms
of the mesh norm or fill distance of the point set, which is the Euclidean radius of
the largest Euclidean ball that contains no points in its interior. Since the fill distance
behaves at best like n−1/s , where n is the number of sampling points, their estimates
inevitably suffer the curse of dimensionality.

Kempf et al. [15] considered the same PDE problem and anisotropic kernel as [10].
However, they considered a penalized least-squares approach for kernel approximation
and an isotropic sparse grid as point set, which allowed them to obtain error estimates
with a mitigated (but still present) curse of dimensionality.

As noted above, lattice points have already been used in a kernel interpolation
method. Zeng et al. [28] seem to be the first to work in this direction, however the
question of dependence on dimension was not considered in their analysis. Zeng et al.
[29] established dimension independent error estimates in weighted spaces in the case
of product weights (i.e., weights that have the form γu =∏

j∈u γ j ).We note, however,
that the assumption of product weights is rather limiting. For instance, for integration
problems involving parameterized PDEs, the best convergence rates known up to now
are obtained by considering weighted space for the parameter-to-solution map with
(S)POD weights [9,12,17], whereas weighted spaces with product weights lead to
the best known rates only for special models [7,11,14]. In this paper we extend these
results to the case of kernel approximation (as opposed to integration) of the parameter-
to-solution map, and we are able to show dimension-independent convergence rates
using (S)PODweights in the general case. To the best of our knowledge, this is the first
paper to use non-product weights for approximation in parameterized PDE problems.

PDEs with periodic dependence on random variables. Our motivating application
is a class of parameterized elliptic PDEs with periodic dependence on the parame-
ters, for which we will establish dimension independent error estimate for the kernel
interpolant, by deriving suitable choices of smoothness parameter and weights for the
problem at hand. To the best of our knowledge, this is the first paper presenting dimen-
sion independent kernel approximation methods using lattice points for this class of
problems.

We consider uncertainty quantification for an elliptic PDE (see details in Sect. 4)
on a physical domain D ⊂ R

d , d = 1, 2 or 3, in a probability space (Ω,A ,P), with
an input random field of the form

a(x, ω) = a0(x)+
∑

j≥1
Θ j (ω)ψ j (x), x ∈ D, ω ∈ Ω,

where a0 and ψ j are uniformly bounded in D, and Θ j (ω) are i.i.d. random vari-
ables following a prescribed distribution. In the popular affine model, Θ j are i.i.d.
random variables uniformly distributed on [− 1

2 ,
1
2 ]. In the periodic model [12], Θ j

are i.i.d. random variables distributed according to the arcsine distribution and can be
parameterized as
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Fast approximation by periodic kernel-based lattice-point... 37

Θ j = 1√
6
sin(2π y j ), j ≥ 1,

with y j uniformly distributed on [− 1
2 ,

1
2 ]. The mean of the random field is a0, and the

scaling 1/
√
6 is chosen here so that the covariance of the random field is also exactly

the same as in the affine case. Higher moments are of course somewhat different, but
as argued in [12], there seems to be no clear reason for preferring one over the other.

Due to periodicity, it is equivalent to work with y j uniformly distributed in the
interval [0, 1] instead of [− 1

2 ,
1
2 ], thus from now on we consider the parameter space

y ∈ U := [0, 1]N.

In the earlier paper [12] the aimwas to develop and analyze amethod for computing
the expected value of a given quantity of interest, expressed as a linear functional of the
PDE solution, hence facing a high dimensional integration problem. Here, in contrast,
the aim is to develop and analyze a fast method for approximating the solution u(x, y),
or some quantity of interest Q( y) derived from u(x, y), as an explicit function of y.
To that end we will develop a kernel-based approximation, using the kernel of a
reproducing kernel Hilbert space of periodic functions, and interpolation at a lattice
point set.

Structure of the paper. In Sect. 2 we define the function space setting and the kernel
interpolant, and establish its principal properties, while giving a simple proof of a
known optimality result, namely that in the sense of worst case error the kernel inter-
polant is an optimal L p approximation among all approximations that use the same
information about the target function f ∈ H . Then in Sect. 3 we establish upper and
lower bounds on the error. For the upper bound we use the optimality result together
with the error analysis for a trigonometric polynomial method established by two of
the current authors together with Cools and Nuyens [3,4]. For the lower bound we
provide another proof of a recent result by Byrenheid et al. [1], namely that a method
that draws information only from function values at lattice points inevitably has a rate
of convergence that is at best only half of the best possible rate, thereby obtaining
matching upper and lower bounds up to logarithmic factors. In Sect. 4, we apply the
error analysis developed in Sect. 3 to a parameterized PDE problem, thereby obtaining
rigorous upper error bounds that are independent of dimension and have explicit rates
of convergence. Section 5 is concerned with the cost analysis of our proposed method.
In Sect. 6 we give the results of some numerical experiments.

2 The kernel interpolant

2.1 The function space setting

Let f ( y) = f (y1, . . . , ys) be a real-valued function on [0, 1]s with a somewhat
smooth 1-periodic extension to Rs with respect to each variable y j . Our main interest
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38 V. Kaarnioja et al.

is in problems where the dimension s is large. Following [25], we assume that f has
absolutely convergent Fourier series (and so is continuous),

f ( y) =
∑

h∈Zs

f̂ (h) e2π ih· y, with f̂ (h) :=
∫

[0,1]s
f ( y) e−2ßih· y d y;

and moreover belongs to a weighted mixed Sobolev space H := Hs,α,γ , a Hilbert
space with inner product and norm

〈 f , g〉H := 〈 f , g〉s,α,γ :=
∑

h∈Zs

r(h) f̂ (h) ĝ(h),

‖ f ‖H := ‖ f ‖s,α,γ :=
( ∑

h∈Zs

r(h) | f̂ (h)|2
)1/2

,

where

r(h) := rs,α,γ (h) := 1

γsupp(h)

∏

j∈supp(h)

|h j |α,

with supp(h) := {
j ∈ {1 : s} : h j 
= 0

}
and {1 : s} := {1, 2, . . . , s}, and with the

h = 0 term in the sum to be interpreted as γ−1∅ | f̂ (0)|2. The weighted space Hs,α,γ is
characterized by the smoothness parameter α > 1 and a family of positive numbers
γ = (γu)u⊂N calledweights, where a positive weight γu is associatedwith each subset
u ⊆ {1 : s}. We fix the scaling of the weights by setting γ∅ := 1, so that the norm of
a constant function in H matches its L2 norm.

It can easily be verified that if α is an even integer then the norm can be rewritten as
the norm in an “unanchored”weightedSobolev space of dominatingmixed smoothness
of order α/2,

‖ f ‖H =
√√√√

∑

u⊆{1:s}

1

(2π)α|u|γu

∫

[0,1]|u|

∣∣∣∣
∫

[0,1]s−|u|

(∏

j∈u

∂α/2

∂ yα/2
j

)
f ( y) d y−u

∣∣∣∣
2

d yu,

(2)

where yu denotes the components of y with indices that belong to the subset u, and
y−u denotes the components that do not belong to u, and |u| denotes the cardinality
of u.

The important feature of the space H is that it is an RKHS, with an explicitly known
and analytically simple reproducing kernel, namely

K ( y, y′) := Ks,α,γ ( y, y′) :=
∑

u⊆{1:s}
γu

∏

j∈u
ηα(y j , y

′
j ),
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Fast approximation by periodic kernel-based lattice-point... 39

where

ηα(y, y′) := ηα(y − y′) :=
∑

h 
=0

e2π ih(y−y′)

|h|α =
∑

h 
=0

cos 2πh(y − y′)
|h|α .

Note that the reproducing property

〈 f , K (·, y)〉H = f ( y) for all f ∈ H and all y ∈ [0, 1]s, (3)

is easily verified.
Of special interest are even integer values of α, because, when α is even, ηα can be

expressed in the especially simple closed form

ηα(y, y′) = (2π)α

(−1)α/2+1α! Bα({y − y′}), y, y′ ∈ [0, 1],

where the braces indicate that y − y′ is to be replaced by its fractional part in [0, 1),
and Bα(y) is the Bernoulli polynomial of degree α. For example, for α = 2 and α = 4
we have

B2(y) = y2 − y + 1

6
and B4(y) = y4 − 2y3 + y2 − 1

30
.

2.2 The kernel interpolant

We are interested in approximating a given function f ∈ H by an approximation of
the form

A∗n( f ) := fn( y) := fs,α,γ ,n,z( y) :=
n∑

k=1
ak K

({k z
n

}
, y

)
, y ∈ [0, 1)s, (4)

where z ∈ {1, . . . , n − 1}s , and the braces around the vector of length s indicate that
each component of the vector is to be replaced by its fractional part. The points

tk :=
{k z
n

}
for k = 1, . . . , n (5)

are the points of a lattice cubature rule of rank 1, see [24]. In what follows, we omit
these braces because functions we consider are, unless otherwise stated, periodic.

In particular, we define fn ∈ H to be the function of the form (4) that interpolates
f at the lattice points,

fn(tk) = f (tk) for all k = 1, . . . , n, (6)

and refer to fn as the kernel interpolant of f .
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40 V. Kaarnioja et al.

The coefficients ak in (4) are given by the linear system based on (6)

n∑

k=1
Kk,k′ ak = f (tk′) for all k′ = 1, . . . , n, (7)

where Kk′,k = Kk,k′ := K (tk, tk′), k, k′ = 1, . . . , n. Note that the matrix elements
can be expressed, using periodicity, as

Kk,k′ = K

(
(k − k′)z

n
, 0
)

,

where 0 is the s-vector of all zeroes. It follows that the n × n matrix K is a circulant
matrix, which contains only n distinct elements, and can be diagonalised in a time of
order n log n by fast Fourier transform. This is a major motivation for using lattice
points.

2.3 The kernel interpolant is theminimal norm interpolant

The following property is a well known result for interpolation in a reproducing kernel
Hilbert space; for completeness we give a proof.

Theorem 2.1 The kernel interpolant fn defined by (4), (5) and (6) is the minimal norm
interpolant in H.

Proof Denoting the linear span of the kernels with one leg at tk, k = 1, . . . , n by

Pn := span{K (tk, ·) : k = 1, . . . , n},

we observe the well known fact (see, e.g., [5,8]), that fn is the orthogonal projection
of f on Pn with respect to the inner product 〈·, ·〉H , since from the reproducing
property (3) and the interpolation property (6) we have

〈 f − fn, K (tk, ·)〉H = f (tk)− fn(tk) = 0 for all k = 1, . . . , n.

In turn, there follows the Pythagoras theorem,

‖ f ‖2H = ‖ f − fn‖2H + ‖ fn‖2H , (8)

and the minimal norm property of fn ,

fn = argmin
{‖g‖H : g ∈ H and g(tk) = f (tk) for all k = 1, . . . , n

}
,

since if g is any other interpolant of f at the lattice points then

〈g − fn, fn〉H =
n∑

k=1
ak 〈g − fn, K (tk, ·)〉H = 0,
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Fast approximation by periodic kernel-based lattice-point... 41

and hence ‖g‖2H = ‖g− fn‖2H +‖ fn‖2H , from which the uniqueness of the minimal
norm interpolant also follows. ��

2.4 The kernel interpolant is optimal for given function values

In this subsection we show that the kernel interpolant fn defined by (4), (5) and (6) is
optimal among all approximations that use only the same function values of f , in the
sense of giving the least possible worst case error measured in any given norm ‖ · ‖W
such that H ⊂ W for functions in H . This is a special case of a general result for
optimal recovery problems in Hilbert spaces (see for example [20, Example 1.1] and
[21, Section 3]), but for completeness we give a short proof here. Our proof follows
the exposition of [26, Proof of Theorem 13.5], but suitably adapted to our setting.

Let An : H → H be an algorithm (linear or non-linear) that uses as information
about the argument only its values at the points (5), i.e., it is a mapping of the form
An( f ) = In( f (t1), . . . , f (tn)) for a mapping In : Rn → H . The worst caseW -error
for this algorithm is defined by

ewor(An;W ) := sup
f ∈H , ‖ f ‖H≤1

‖ f − An( f )‖W .

Theorem 2.2 Let An : H → H be an algorithm (linear or non-linear) such that
An( f ) uses as information about f only its values f (t1), . . . , f (tn) at the points (5).
For f ∈ H, let A∗n( f ) := fn be the kernel interpolant defined by (4), (5) and (6).
Then, for any normed space W ⊃ H we have

ewor(A∗n;W ) ≤ ewor(An;W ).

Proof Define C := {g ∈ H : ‖g‖H ≤ 1 and g(tk) = 0 for all k = 1, . . . , n}. For
any g ∈ C we have

‖g‖W ≤ 1

2
(‖g − An(0)‖W + ‖g + An(0)‖W )

≤ max
(‖g − An(0)‖W , ‖g + An(0)‖W

)

= max
(‖g − An(g)‖W , ‖(−g)− An(−g)‖W

) ≤ ewor(An;W ), (9)

where in the penultimate step we used g(tk) = 0 for all k = 1, . . . , n, from which it
follows that An(0) = An(g) = An(−g). For any f ∈ H such that ‖ f ‖H ≤ 1, since
fn is interpolatory, the Pythagoras theorem (8) implies ‖ f − fn‖H ≤ 1, and hence
f − fn ∈ C. Thus it follows from (9) that
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‖ f − A∗n( f )‖W = ‖ f − fn‖W ≤ ewor(An;W ).

The theorem now follows. ��
In the above result, we may, for example, take W = L p for any 1 ≤ p ≤ ∞.

3 Lower and upper error bounds

3.1 Lower bound on the worst case Lp error (1 ≤ p ≤ ∞)

A recent paper [1] showed (with a different definition of the parameter α) that the
worst case L2 error for an approximation that uses the points of a rank-1 lattice cannot
have an order of convergence better than n−α/4 (with our definition of α). Bearing in
mind that H is a (Hilbert) space of functions of dominatingmixed smoothness of order
α/2, this is just half the rate n−α/2 of the best approximation. Since the function space
setting in that paper is rather different from ours (here we use a Fourier description
and a so-called unanchored space, and have introduced weights) we briefly reprove
the main result here, obtaining a sharp lower bound expressed in terms of the weights.
Furthermore, in our setting we make the result stronger by showing that the same
lower bound holds for the worse case L1 error.

Theorem 3.1 Let s ≥ 2. Assume that the weights for the subsets of {1 : s} containing
a single element satisfy γ{ j} > 0 for all j ∈ {1 : s}, and that z ∈ {0, . . . , n − 1}s is
given. Let An : H → L p be an algorithm (linear or non-linear) that uses information
only at the lattice points (5) and satisfies An(0) = 0. Then for 1 ≤ p ≤ ∞ the worst
case L p error for algorithm An satisfies

ewor(An; L p) ≥
√

2

1/γ{ j} + 1/γ{k}
n−α/4 for any j, k ∈ {1 : s} with j 
= k.

In particular, if γ{1} ≥ γ{2} ≥ · · · > 0 then

ewor(An; L p) ≥
√
2/
(
γ−1{1} + γ−1{2}

)
n−α/4.

Proof Without loss of generality we assume γ{1} ≥ γ{2} ≥ · · · > 0. The heart
of the matter is that there exists a non-zero integer vector h∗ of length s in the 2-
dimensional set

Dn :=
{
(h1, h2, 0, . . . , 0) : h j ∈ Z, 0 ≤ |h j | ≤ �√n�, j = 1, 2

}
,

such that

h∗ · z ≡ 0 (mod n). (10)
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Fast approximation by periodic kernel-based lattice-point... 43

(In the language of dual lattices, see [24], there exists a point of the dual lattice in
Dn \ {0}.) To prove this fact, we define D̃n , the positive quadrant of Dn , by

D̃n :=
{
(h1, h2, 0, . . . , 0) : h j ∈ Z, 0 ≤ h j ≤ �√n�, j = 1, 2

}
,

noting that if h, h′ ∈ D̃n then h − h′ ∈ Dn . Now define

En(z) := {(h · z mod n) ∈ {0, . . . , n − 1} : h ∈ D̃n}.

Since |En(z)| ≤ n and |D̃n| = (1 + �√n�)2 > n, it follows from the pigeonhole
principle that two distinct elements of D̃n , say h and h′, yield the same element of
En(z); from this it follows that h∗ := h − h′ satisfies (10). A “fooling function” is
then defined by

q( y) := e2π ih
∗
1e1· y − e−2π ih∗2e2· y = e−2π ih∗2e2· y

(
e2π ih

∗· y − 1
)
, y ∈ R

s,

where e1 and e2 are the unit vectors corresponding to variables 1 and2.Byconstruction,
q vanishes at all the lattice points (5). For this function, since the two terms in q are
orthogonal with respect to the inner products in H = Hs,α,γ , the squared H norm
satisfies

‖q‖2H = r(h∗1e1)+ r(−h∗2e2) =
|h∗1|α
γ{1}

+ | − h∗2|α
γ{2}

≤
(

1

γ{1}
+ 1

γ{2}

)
nα/2.

On the other hand, the L p norm is bounded from below by

‖q‖L p ≥ ‖q‖L1 =
∫

[0,1]2
|e2π i(h∗1 y1+h∗2 y2) − 1| dy1 dy2

= 2
∫

[0,1]2
| sin (π(h∗1y1 + h∗2y2))| dy1 dy2.

This integrand is even with respect to h∗1 and h∗2 separately, so both h∗1 and h∗2 can be
considered as non-negative. First assume that both h∗1 and h∗2 are positive, and partition
the square into boxes of size 1/h∗1 × 1/h∗2. It is easy to see that each box gives the
same contribution to the integral, and hence

2
∫

[0,1]2
| sin (π(h∗1y1 + h∗2y2))| dy1 dy2

= 2 h∗1h∗2
∫ 1/h∗1

0

∫ 1/h∗2

0
| sin (π(h∗1y1 + h∗2y2))| dy1 dy2

= 2
∫ 1

0

∫ 1

0
| sin(π(z1 + z2))| dz1 dz2 = 4

π
.

(For the last step it may be useful to note that the integrand in the inner integral is 1-
periodic, making the inner integral independent of z2.) If we have h∗1 > 0 and h∗2 = 0
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or vice versa, we again have ‖q‖L1 = 4/π . Since h∗ is non-zero, we obtain

‖q‖L p

‖q‖H ≥ 4/π√
1/γ{1} + 1/γ{2}

n−α/4. (11)

If we now define g := q/‖q‖H , then g belongs to the unit ball in H and vanishes
at all the points of the lattice (5), and ‖g‖L p is bounded below by the right-hand side
of (11). Since An(g) depends on g only through its values at the lattice points, and
g vanishes at all those points, it follows that An(g) = An(0) = 0, with the last step
following from the assumption on An . From the definition of worst case error we
conclude that ewor(An, L p) ≥ ‖g − An(g)‖L p = ‖g‖L p , which is bounded below by
the right-hand side of (11), completing the proof. ��

3.2 Upper bound on the worst case L2 error

In this section, we obtain explicit L2 error bounds for the kernel interpolant by using
Theorem 2.2 combined with error bounds given for an explicit trigonometric polyno-
mial approximation in [3,4] which extends the construction from [18,19] to general
weights. (An alternative approach to obtain an upper bound would be to use a “recon-
struction lattice”, see, e.g., [1,13,16].)

The lattice algorithm A†
n,M applied to a target function f ∈ H takes the form

(A†
n,M ( f ))( y) :=

∑

h∈As (M)

(
1

n

n∑

k=1
f

(
k z
n

)
e−2π ikh·z/n

)
e2π ih· y, (12)

which is obtained by applying a lattice integration rule to the Fourier coefficients in
the orthogonal projection onto a finite index set defined for some parameter M > 0
by

As(M) := {h ∈ Z
s : r(h) ≤ M}. (13)

The error for this algorithm consists of the error from truncation to the index setAs(M)

together with the quadrature error from approximating those Fourier coefficients with
indices h ∈ As(M), leading to a worst case L2 approximating error bound of the form

ewor(A†
n,M ; L2) ≤

(
1

M
+ M Ss(z)

)1/2

. (14)

The quantitySs(z) (see [3] for details) can be used as a search criterion in a component-
by-component (CBC) construction for finding suitable lattice generating vectors z, and
has the key advantage that it does not depend on the index set As(M). The analysis
in [3] together with the optimality of the kernel interpolant (see Theorem 2.2) leads
to the following theorem.
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Theorem 3.2 Given s ≥ 1, α > 1, weights (γu)u⊂N with γ∅ := 1, and prime n, the
worst case L2 approximation error of the kernel interpolant A∗n( f ) = fn defined by
(4), (5) and (6), using the generating vector z obtained from the CBC construction
with search criterion Ss(z) in [3,4], satisfies for all λ ∈ ( 1

α
, 1],

ewor(A∗n; L2) ≤
√
2
[Ss(z)

]1/4

≤ κ

n1/(4λ)

( ∑

u⊆{1:s}
max(|u|, 1) γ λ

u [2ζ(αλ)]|u|
)1/(2λ)

, (15)

with κ := √
2 [max(6, 2.5 + 22αλ+1)]1/(4λ) and ζ(x) := ∑∞

k=1 k−x denoting the
Riemann zeta function for x > 1. Hence

ewor(A∗n; L2) = O(n−α/4+δ) for every δ ∈ (0, α/4),

where the implied constant depends on δ but is independent of s provided that

∑

u⊂N|u|<∞

max(|u|, 1) γ
1

α−4δ
u [2ζ ( α

α−4δ
)]|u| < ∞.

Proof The optimality of the kernel interpolant established in Theorem 2.2 means that
ewor(A∗n; L2) ≤ ewor(A†

n,M ; L2) for all M , and therefore the upper bound in (14) also
serves as an upper bound for the kernel interpolant. It is easy to verify that the bound
in (14) can be minimized by setting M = √

1/Ss(z), leading to (15). The subsequent
bound follows from [3, Theorem 3.5]. The big-O bound is then obtained by taking
λ = 1/(α − 4δ). ��

From this result (which by Theorem 3.1 is almost best possible with respect to the
order of convergence) we immediately obtain an error bound for the kernel interpolant.

Theorem 3.3 Under the conditions of Theorem 3.2, and with lattice generating vector
z obtained by the CBC construction in [3,4], for any f ∈ H, we have for the kernel
interpolant fn defined by (4), (5) and (6),

‖ f − fn‖L2 ≤
κ

n1/(4λ)

( ∑

u⊆{1:s}
max(|u|, 1) γ λ

u [2ζ(αλ)]|u|
)1/(2λ)

‖ f ‖H .

We stress again that the CBC construction in [3,4] does not require the explicit
construction of the index set As(M) in order to determine an appropriate generating
vector z. However, the expression Ss(z) (see [3] for details) used as the search cri-
terion does depend in a complicated way on the weights γu, and therefore the target
dimension s needs to be fixed at the start of the CBC construction (except for the case
of product weights). For weights with no special structure, the computational cost will
be exponentially large in s. We consider some special forms of weights:
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• Product weights: γu = ∏
j∈u γ j , specified by one sequence (γ j ) j≥1.

• POD weights (product and order dependent): γu = Γ|u|
∏

j∈u γ j , specified by
two sequences (Γ�)�≥0 and (γ j ) j≥1.• SPOD weights (smoothness-driven product and order dependent) with degree
σ ≥ 1:

γu =
∑

νu∈{1:σ }|u|
Γ|νu|

∏

j∈u
γ j,ν j ,

specified by the sequences (Γ�)�≥0 and (γ j,ν) j≥1 for each ν = 1, . . . , σ , where
|νu| :=∑

j∈u ν j .

Fast CBC construction of lattice generating vector for L2 approximation has the cost
of

O(
s n log(n)

)
for product weights,

O(
s n log(n)+ s2 log(s)n

)
for POD weights,

O(
s n log(n)+ s3σ 2n

)
for SPOD weights with degree σ ≥ 2,

plus storage cost and pre-computation cost for POD and SPOD weights, see [4].

4 Application to PDEs with random coefficients

As an application, we apply our kernel interpolation scheme to a forward uncer-
tainty quantification problem, namely, a PDE problem with an uncertain, periodically
parameterized diffusion coefficient, fitting the theoretical framework considered in the
preceding sections. The kernel interpolant can be postprocessed with low computa-
tional cost to obtain statistics of the PDE solution itself or functionals of the solution
for uncertainty quantification.

Letting D ⊂ R
d , d ∈ {1, 2, 3}, be a bounded domain with Lipschitz boundary, we

consider the problem of finding u : D ×Ω → R that satisfies

−∇ · (a(x, ω)∇u(x, ω)) = q(x), x ∈ D, (16)

u(x, ω) = 0, x ∈ ∂D, (17)

for almost all events ω ∈ Ω in the probability space (Ω,A ,P) with

a(x, ω) = a0(x)+ 1√
6

∑

j≥1
sin(2πY j (ω))ψ j (x), x ∈ D, ω ∈ Ω, (18)

where a0 ∈ L∞(D), ψ j ∈ L∞(D) for all j ≥ 1 are such that
∑

j≥1 |ψ j (x)| < ∞ for

any x ∈ D, andY1, Y2, . . . are i.i.d. randomvariables uniformly distributed on [− 1
2 ,

1
2 ].

This type of randomfield is not new in the context of uncertainty quantification. Indeed,
the random variable sin(2πY j (ω)) induces the arcsine measure as its distribution: for

123



Fast approximation by periodic kernel-based lattice-point... 47

if Y (ω) is uniformly distributed on [− 1
2 ,

1
2 ], then Z(ω) := sin(2πY (ω)) has the

probability density 1
π

1√
1−z2

on [−1, 1]. Thus, a is identical, up to the law to the
random field

â(x, ω) = a0(x)+ 1√
6

∑

j≥1
Z j (ω)ψ j (x) (19)

with Z j i.i.d. random variables with arcsine distribution on [−1, 1]. Expression (19)
would be the starting point for deriving a polynomial chaos approximation [27] of
the solution in terms of Chebyshev polynomials of the first kind [22]. In this paper,
however, we want to exploit periodicity, hence we consider rather the formulation (18)
and a different approximation method based on kernel interpolation.

Since the expression (18) is periodic in the random variable Y j , we can shift those
random variables so that their range is [0, 1] instead of [− 1

2 ,
1
2 ], i.e., we consider

the equivalent parametric space U := [0, 1]N. Let B(U ) be the Borel σ -algebra
corresponding to the product topology onU = [0, 1]N, and equip (U ,B(U )) with the
product uniform measure; see, for example, [23] for details. The weak formulation
of (16)–(17) can then be stated parametrically as: for y ∈ U , find u(·, y) ∈ H1

0 (D)

such that
∫

D
a(x, y)∇u(x, y) · ∇φ(x) dx = 〈q, φ〉H−1(D),H1

0 (D), ∀φ ∈ H1
0 (D), (20)

where the datum q ∈ H−1(D) is fixed and the diffusion coefficient is given by

a(x, y) = a0(x)+ 1√
6

∑

j≥1
sin(2π y j ) ψ j (x), x ∈ D, y ∈ U . (21)

Here H1
0 (D) denotes the subspace of the L2-Sobolev space H1(D) with van-

ishing trace on ∂D, and H−1(D) denotes the topological dual of H1
0 (D), and

〈·, ·〉H−1(D),H1
0 (D) denotes the duality pairing between H

−1(D) and H1
0 (D).We endow

the Sobolev space H1
0 (D) with the norm ‖v‖H1

0 (D) := ‖∇v‖L2(D).
Since we now have two sets of variables x ∈ D and y ∈ U , from here on we will

make the domain D andU explicit in our notation.We state the following assumptions
and refer to them as they become needed:

(A1) a0 ∈ L∞(D), ψ j ∈ L∞(D) for all j ≥ 1, and
∑

j≥1 ‖ψ j‖L∞(D) < ∞;
(A2) there exist positive constants amin and amax such that 0 < amin ≤ a(x, y) ≤

amax < ∞ for all x ∈ D and y ∈ U ;
(A3)

∑
j≥1 ‖ψ j‖pL∞(D) < ∞ for some 0 < p < 1;

(A4) a0 ∈ W 1,∞(D) and
∑

j≥1 ‖ψ j‖W 1,∞(D) < ∞, where

‖v‖W 1,∞(D) := max{‖v‖L∞(D), ‖∇v‖L∞(D)};

(A5) ‖ψ1‖L∞(D) ≥ ‖ψ2‖L∞(D) ≥ · · · ;
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(A6) the physical domain D ⊂ R
d , d ∈ {1, 2, 3}, is a convex and bounded polyhedron

with plane faces.

Let assumptions (A1) and (A2) be in effect. Then the Lax–Milgram lemma [2]
implies unique solvability of the problem (20) for all y ∈ U , with the solution satis-
fying the a priori bound

‖u(·, y)‖H1
0 (D) ≤

‖q‖H−1(D)

amin
for all y ∈ U . (22)

Moreover, from the recent paper [12, Theorem 2.3] we know, after differentiating the
PDE (20), that the mixed derivatives of the PDE solution are 1-periodic and bounded
by

‖∂ν
yu(·, y)‖H1

0 (D) ≤
‖q‖H−1(D)

amin
(2π)|ν|

∑

m≤ν

|m|!
∏

j≥1
(b

m j
j S(ν j ,m j )) (23)

for all y ∈ U and all multi-indices ν ∈ N
∞
0 with finite order |ν| := ∑

j≥1 ν j < ∞,
and we define

b j := 1√
6

‖ψ j‖L∞(D)

amin
for all j ≥ 1. (24)

Furthermore, S(σ,m) denotes the Stirling number of the second kind for integers
σ ≥ m ≥ 0, with the convention that S(σ, 0) = δσ,0. In [12] we considered a function
space with respect to y with a supremum norm rather than an L2-based norm, so here
we need to write down the relevant L2-based norm bound instead. Moreover, we want
to approximate the solution u directly, rather than a bounded linear functional G(u)

of the PDE solution.
For our proposed approximation scheme, we require the target function to be point-

wisewell-definedwith respect to both the physical variable and the parametric variable.
In terms of our PDE application, this can be achieved either by assuming additional
regularity of both the diffusion coefficient a and the source term q or, alternatively,
by analyzing instead the construction of the kernel interpolant for the finite element
approximation of u (which is naturally pointwise well-defined everywhere). Here we
focus on the latter case, in which the kernel interpolant is crafted for the finite element
approximation of u. This is also the setting that arises in practical computations, where
one only ever has access to a numerical approximation of the solution to (20), with
the diffusion coefficient (21) truncated to a finite number of terms. To this end, we
split our analysis into three parts: dimension truncation error, finite element error, and
kernel interpolation error.
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4.1 Dimension truncation error

In anticipation of the forthcoming discussion we define the dimensionally truncated
solution of (20) as

us(·, y) := us(·, (y1, . . . , ys)) := u(·, (y1, . . . , ys, 0, 0, . . .)), y ∈ U .

Moreover, let us introduce the shorthand notations Us := U≤s := [0, 1]s , U>s :=
{(y j ) j≥s+1 : y j ∈ [0, 1]}, and y>s := (ys+1, ys+2, . . .).

For an R-valued function on U that is Lebesgue integrable with respect to the
uniform measure on B(U ), we use the notation

∫
U F( y) d y for the integral of F over

U . Similarly, for an integrable function F̃ on U>s , we denote the integral over U>s

with respect to the uniform measure by
∫
U>s

F̃( y>s) d y>s .
Arguing as in [17, Theorem 5.1], it is not difficult to see that

sup
y∈U

‖u(·, y)− us(·, y)‖H1
0 (D) = O(s−1/p+1)

holds under assumptions (A1)–(A3) and (A5). Inwhat follows, we consider the dimen-
sion truncation error in the L2-norm in the stochastic parameter, and establish the rate
O(s−1/p+1/2), which is one half order better. This case does not appear to have been
considered in the existing literature. Notably, this rate is only half that of the rate
proved in [12] for integration problem with respect to y:

∣∣∣∣
∫

U
G(u(·, y)− us(·, y)) d y

∣∣∣∣ = O(s−2/p+1), G ∈ H−1(D).

We will establish a dimension truncation error for a general class of parametrized
random fields that includes (21), without the periodicity assumption. Our proof adapts
the argument by Gantner [6] to the L2(U ; H1

0 (D))-norm estimate.

Theorem 4.1 Suppose that (A1), (A3) and (A5) hold. Let ξ : [0, 1] → R be an
L∞([0, 1])-function such that

∫ 1

0
ξ(y) dy = 0. (25)

Suppose further that the function

a(x, y) = a0(x)+
∑

j≥1
ξ(y j ) ψ j (x), x ∈ D, y ∈ U , (26)

satisfies (A2). Then for any s ∈ N, there exists a constant C > 0 such that

√∫

U

∫

D
(u(x, y)− us(x, y))2 dx d y ≤ cD

√∫

U

∫

D
|∇(u − us)|2 dx d y

≤ C ‖q‖H−1(D) s
−( 1

p− 1
2 )

,
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where u ∈ H1
0 (D) denotes the solution of the equation (20) but with a(x, y) given

by (26), us ∈ H1
0 (D) denotes the corresponding dimensionally truncated solution,

cD > 0 is the Poincaré constant of the embedding H1
0 (D) ↪→ L2(D), and the constant

C > 0 is independent of s and q.

Proof We begin by introducing some helpful notations. For y ∈ U , let us define the
operators B, Bs : H1

0 (D) → H−1(D) by

B := B( y) := B0 +
∞∑

k=1
ξ(yk)Bk and Bs := Bs( y) := B0 +

s∑

k=1
ξ(yk)Bk,

where the operators Bk : H1
0 (D) → H−1(D) are defined by

〈B0v,w〉H−1(D),H1
0 (D) := 〈a0∇v,∇w〉L2(D)

and 〈Bkv,w〉H−1(D),H1
0 (D) := 〈ψk∇v,∇w〉L2(D) for v,w ∈ H1

0 (D) and k ≥ 1. This
allows the equation (20) with the coefficient a given by (26) to be written as Bu = q.
It is easy to see that the assumptions (A1) and (A2) ensure that both B( y) and Bs( y)
are boundedly invertible linear maps for all y ∈ U , with the norms of B and Bs both
bounded by amax, and the norms of both B−1 and (Bs)−1 bounded by a−1min. Thus we
can write u := u( y) := B−1q and us := us( y) := (Bs)−1q for all y ∈ U .

Only in this proof,we redefine (24) by b j := ‖ξ‖∞‖ψ j‖L∞(D)/amin, with ‖ξ‖∞ :=
‖ξ‖L∞([0,1]). Notice that with ξ = 1√

6
sin(2π ·) we recover (24). Let s′ ∈ Z+ be such

that

∞∑

j=s′+1
b j <

1

2
. (27)

Without loss of generality, we can assume that s ≥ s′ since the assertion in the theorem
can subsequently be extended to all values of s by making a simple adjustment of the
constant C > 0 (see the end of the proof). Then for all j ≥ s′ + 1 and all s ≥ s′ we
have

b j <
1

2
, (28)

sup
y∈U

‖(Bs)−1(B − Bs)‖H1
0 (D)→H1

0 (D) ≤
∞∑

j=s+1
b j <

1

2
< 1. (29)

The bound (29) permits the use of a Neumann series expansion

u − us = B−1q − us = [I + (Bs)−1(B − Bs)]−1(Bs)−1q − us

=
∞∑

k=0
(−(Bs)−1(B − Bs))k(Bs)−1q − us
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=
∞∑

k=1
(−(Bs)−1(B − Bs))kus =

∞∑

k=1
(−1)k

( ∞∑

i=s+1
ξ(yi )(B

s)−1Bi
)k

us, (30)

where it is assumed that the product symbol respects the non-commutative nature of
the operators (Bs)−1Bj , j ≥ 1.

Our strategy is to estimate first

S :=
∫

U

∫

D
as(x, y)|∇(u − us)|2 dx d y

and then deduce by the Poincaré inequality ‖u‖L2(D) ≤ cD‖u‖H1
0 (D), with cD > 0

depending only on the domain D, together with uniform coercivity, that

∫

U

∫

D
(u − us)

2 dx d y ≤ c2D

∫

U

∫

D
|∇(u − us)|2 dx d y ≤ c2D

amin
S.

Let Bs : H1
0 (D) → H1

0 (D) be defined by

Bs( y) :=
∞∑

i=s+1
ξ(yi )(B

s( y))−1Bi ,

and observe that Bs is self-adjoint with respect to the inner product

〈v,w〉y≤s :=
∫

D
a
(
x, ( y≤s, 0, . . .)

)∇v(x) · ∇w(x) dx = 〈Bs( y)v,w〉H−1(D),H1
0 (D).

Indeed, for any v,w ∈ H1
0 (D) we have

〈Bs( y)v,w〉 y≤s =
∞∑

i=s+1
ξ(yi )〈Bs( y)(Bs( y))−1Biv,w〉H−1,H1

0

=
∞∑

i=s+1
ξ(yi )

∫

D
ψi∇v · ∇w dx =

∞∑

i=s+1
ξ(yi )〈Biw, v〉H−1,H1

0
= 〈Bs( y)w, v〉 y≤s .

Hence, from (30) we have

〈u − us, u − us〉 y≤s =
∞∑

k=1

∞∑

�=1
(−1)k+�〈Bk

s us,B
�
s us〉 y≤s

=
∞∑

k=1

∞∑

�=1
(−1)k+�〈Bk+�

s us, us〉 y≤s

=
∞∑

m=2
(−1)m(m − 1)〈Bm

s us, us〉 y≤s
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=
∞∑

m=2
(−1)m(m − 1)

×
∑

η∈{s+1:∞}m

( m∏

j=1

ξ(yη j )

‖ξ‖∞
)〈 m∏

j=1
‖ξ‖∞(Bs( y)−1Bη j )us, us

〉

y≤s
,

(31)

where we used the notation
∑

η∈{s+1:∞}m := lims̃→∞
∑

η∈{s+1:s̃}m , and the latter
product is assumed to respect the non-commutative nature of the operators. Introduc-
ing

ν(η) := (νi (η))i≥1 := (#{ j = 1, . . . ,m : η j = i})i≥1

for each η ∈ {s + 1, s + 2, . . .}m , we have νi (η) = 0, i = 1, . . . , s, |ν(η)| :=∑∞
i=1 νi (η) = m, and

m∏

j=1

ξ(yη j )

‖ξ‖∞ =
∞∏

i=s+1

(
ξ(yi )

‖ξ‖∞
)νi (η)

.

Define

cν :=
∣∣∣∣
∫

U>s

∏

i∈supp(ν)

(
ξ(yi )

‖ξ‖∞
)νi

d y>s

∣∣∣∣ ≤ 1,

and note from (25) that cν = 0 if for some i ∈ supp(ν) we have νi = 1. Then we
have, using (31),

∫

U

∫

D
|∇(u − us)|2 dx d y ≤ 1

amin

∫

U
〈u − us, u − us〉 y≤s d y

= 1

amin

∞∑

m=2
(−1)m(m − 1)

∑

η∈{s+1:∞}m

∫

U>s

( ∞∏

i=s+1

(
ξ(yi )

‖ξ‖∞
)νi (η))

d y>s

×
∫

U≤s

〈 m∏

j=1
‖ξ‖∞((Bs)−1Bη j )us, us

〉

y≤s
d y≤s

≤ 1

amin

∞∑

m=2
(m − 1)

∑

η∈{s+1:∞}m
cν(η)

×
∣∣∣∣
∫

U≤s

〈 m∏

j=1
‖ξ‖∞((Bs)−1Bη j )us, us

〉

y≤s
d y≤s

∣∣∣∣,
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which can be further bounded by

1

amin

∞∑

m=2
(m − 1)

∑

η∈{s+1:∞}m
cν(η)amax

∥∥∥∥
m∏

j=1
‖ξ‖∞((Bs)−1Bη j )us

∥∥∥∥
H1
0

‖us‖H1
0

≤ 1

amin

∞∑

m=2
(m − 1)

∑

η∈{s+1:∞}m
cν(η)amax

( m∏

j=1
bη j

)
‖us‖2H1

0

≤
(‖q‖H−1

amin

)2 amax

amin

∞∑

m=2
(m − 1)

∑

η∈{s+1:∞}m
cν(η)

( m∏

j=1
bη j

)
,

where the sum of η simplifies to

∑

|ν|=m
νi=0, i≤s

(
m

ν

)
cν

( ∞∏

i=s+1
bνi
i

)
≤

∑

|ν|=m
νi=0, i≤s
νi 
=1, i>s

(
m

ν

)( ∞∏

i=s+1
bνi
i

)
.

The dimension truncation error is estimated by splitting the upper bound into two
parts. Let m∗ ≥ 3 be an as yet undetermined index. Then

∫

U

∫

D
|∇(u − us)|2 dx d y

≤
(‖q‖H−1

amin

)2 amax

amin

m∗−1∑

m=2
(m − 1)

∑

|ν|=m
νi=0, i<s
νi 
=1, i>s

(
m

ν

)( ∞∑

i=s+1
bνi
i

)

+
(‖q‖H−1

amin

)2 amax

amin

∞∑

m=m∗
(m − 1)

( ∞∑

i=s+1
bi

)m

. (32)

We can estimate the sum in the first term of (32) by

m∗−1∑

m=2
(m − 1)

∑

|ν|=m
νi=0, i<s
νi 
=1, i>s

(
m

ν

)( ∞∑

i=s+1
bνi
i

)
≤ (m∗ − 2)(m∗ − 1)!

∑

0 
=|ν|∞≤m∗−1
νi=0, i<s
νi 
=1, i≥1

bν,

where bν :=∏
i∈supp(ν) b

νi
i . Furthermore, we obtain

∑

0 
=|ν|∞≤m∗−1
νi=0, i<s
νi 
=1, i≥1

bν =
∞∏

j=s+1

(
1+

m∗−1∑

�=2
b�
j

)
− 1 =

∞∏

j=s+1

(
1+ b2j

1− bm
∗−2

j

1− b j

)
− 1
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≤
∞∏

j=s+1
(1+ 2b2j )− 1 ≤ exp

(
2

∞∑

j=s+1
b2j

)
− 1 ≤ 2(e− 1)

∞∑

j=s+1
b2j , (33)

where we used (28), (29), and the inequality ex ≤ 1+ (e− 1)x for all x ∈ [0, 1].
Recalling (27), we find the following upper bound for the sum in the second term

of (32):

∞∑

m=m∗
(m − 1)

( ∞∑

j=s+1
b j

)m

≤
∞∑

m=m∗

(
2

∞∑

j=s+1
b j

)m

≤ (2
∑∞

j=s+1 b j )
m∗

1− (2
∑∞

j=s+1 b j )
, (34)

where we used the estimates m − 1 ≤ 2m and 2
∑∞

j=s+1 b j < 1.
Observing that by [17, Theorem 5.1] it holds

∞∑

j=s+1
b j ≤

( ∞∑

j=1
bp
j

)1/p

s−
1
p+1

and (with b j replaced by b2j and p replaced by p/2)

∞∑

j=s+1
b2j ≤

( ∞∑

j=1
bp
j

)2/p

s−
2
p+1,

so we see that the terms (33)–(34) can be balanced by choosing m∗ = � 2−p
1−p �. One

arrives at the dimension truncation bound

√∫

U

∫

D
(u − us)2 dx d y

≤ cD

√∫

U

∫

D
|∇(u − us)|2 dx d y ≤C ‖q‖H−1(D) s

− 1
p+ 1

2 for all s ≥ s′,

where the constant C > 0 is independent of s and q. This proves the theorem for
s ≥ s′. The result can be extended to all s ≥ 1 by noting that

√∫

U

∫

D
|∇(u − us)|2 dx d y ≤

2 ‖q‖H−1(D)

amin
≤ 2 ‖q‖H−1(D)

amin · (s′)−1/p+1/2 s−
1
p+ 1

2

for all 1 ≤ s < s′, where we used the a priori bound identical to (22). ��
Remark 4.2 Theorem 4.1 can be generalised further to include a more complex model

ã(x, y) = a0(x)+
∑

j≥1
ξ j (y j ) ψ j (x), x ∈ D, y ∈ U ,
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where the function ξ in (26) is now replaced by an L∞([0, 1]) function ξ j depend-

ing on j . Then, assuming that we have
∫ 1
0 ξ j (y) dy = 0, j ≥ 1, and that b̃ j :=

‖ξ j‖∞‖ψ j‖L∞(D)/amin is non-increasing in j , and moreover that ã satisfies (A2), the
same argument as above establishes the same estimate as in Theorem 4.1.

4.2 Finite element error

Let assumption (A6) be in effect. Let {Vh}h be a family of conforming finite element
subspaces Vh ⊂ H1

0 (D), parameterized by the one-dimensional mesh size h > 0,
which are spanned by continuous, piecewise linear finite element basis functions. It
is assumed that the triangulation corresponding to each Vh is obtained from an initial,
regular triangulation of D by recursive, uniform partition of simplices.

For each y ∈ U , we denote by uh(·, y) ∈ Vh the finite element solution to the
system

∫

D
a(x, y)∇uh(x, y) · ∇vh(x) dx = 〈q, vh〉H−1(D),H1

0 (D), ∀ vh ∈ Vh, (35)

where q ∈ H−1(D) and a is defined by (21). Under assumptions (A1)–(A2), this
system is uniquely solvable and the finite element solution uh satisfies both the a
priori bound (22) as well as the partial derivative bounds (23). In analogy to the
previous subsection, we also define the dimensionally truncated finite element solution
by setting

us,h(·, y) := us,h(·, (y1, . . . , ys)) := uh(·, (y1, . . . , ys, 0, 0, . . .)), y ∈ U , (36)

where uh(·, y) ∈ Vh is the solution of (35) for y ∈ U .

Theorem 4.3 Under the assumptions (A1), (A2), (A4) and (A6), for every y ∈ U and
q ∈ H−1+t (D) with t ∈ [0, 1], there holds the asymptotic convergence estimate

‖u(·, y)− uh(·, y)‖L2(D) ≤ C h1+t ‖q‖H−1+t (D) as h → 0,

where the constant C > 0 is independent of h and y.

Proof Let y ∈ U . From [17, Theorem 7.2], under the assumptions (A1), (A2), (A4),
and (A6),we have for every g ∈ L2(D) the following asymptotic convergence estimate
as h → 0

|〈g, u(·, y)− uh(·, y)〉L2(D)| ≤ C h1+t ‖q‖H−1+t (D) ‖g‖L2(D), (37)

where the constant C > 0 is independent of h and y. Therefore

‖u(·, y)− uh(·, y)‖L2(D) = sup
g∈L2(D), ‖g‖L2(D)=1

〈g, u(·, y)− uh(·, y)〉L2(D)

≤ C h1+t ‖q‖H−1+t (D),

and this concludes the proof. ��
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4.3 Kernel interpolation error

We focus on approximating the finite element solution of the problem (20) in the fol-
lowing discussion, since it is essential for our approximation scheme that the function
being approximated is pointwise well-defined in the physical domain D.

Let H(Us) = H denote the RKHS of functions with respect to the stochastic
parameter y ∈ Us , defined in Sect. 2.1. For every x ∈ D, let

us,h,n(x, ·) := A∗n(us,h(x, ·)) ∈ H(Us)

be the kernel interpolant of the dimensionally truncated finite element solution (36)
at x as a function of y. We measure the L2 approximation error ‖us,h(x, ·) −
us,h,n(x, ·)‖L2(Us ) in y and then take the L2 norm over x, to arrive at the error criterion

√∫

D
‖us,h(x, ·)− us,h,n(x, ·)‖2L2(Us )

dx

=
√∫

Us

∫

D

(
us,h(x, y)− us,h,n(x, y)

)2 dx d y,

where, observing that us,h − us,h,n is jointly measurable, we interchanged the order
of integration by appeal to the Fubini’s theorem.

Theorem 4.4 Under the assumptions (A1), (A2) and (A6), let us,h(·, y) ∈ H1
0 (D)

denote the dimensionally truncated finite element solution of (35) for y ∈ Us and
let q ∈ H−1(D) be the corresponding source term. Moreover, for every x ∈ D let
us,h,n(x, ·) := A∗n(us,h(x, ·)) be the kernel interpolant at x based on a lattice rule
satisfying the assumptions of Theorem 3.2. Suppose that α ∈ 2N and σ := α

2 . Then
we have for all λ ∈ ( 1

α
, 1] that

√∫

Us

∫

D

(
us,h(x, y)− us,h,n(x, y)

)2 dx d y ≤ κ

n1/(4λ)

cD ‖q‖H−1
amin

Cs(λ),

where cD > 0 is the Poincaré constant of the embedding H1
0 (D) ↪→ L2(D), κ > 0 is

the constant defined in Theorem 3.2, and

[Cs(λ)]2λ :=
( ∑

u⊆{1:s}
max(|u|, 1)γ λ

u [2ζ(αλ)]|u|
)

×
( ∑

u⊆{1:s}

1

γu

( ∑

mu∈{1:σ }|u|
|mu|!

∏

j∈u

(
b
m j
j S(σ,m j )

))2)λ

.

(38)
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Proof We can express the squared L2 error as

∫

Us

∫

D

(
us,h(x, y)− us,h,n(x, y)

)2 dx d y

=
∫

D
‖us,h(x, ·)− us,h,n(x, ·)‖2L2(Us )

dx

≤
∫

D

(
ewor(A∗n; L2(Us)) ‖us,h(x, ·)‖H(Us )

)2
dx

= [ewor(A∗n; L2(Us))]2
∫

D
‖us,h(x, ·)‖2H(Us )

dx.

Thefirst factor is the squaredworst case L2 approximation error,which can be bounded
using Theorem 3.2. The second factor can be estimated using (2) by

∫

D
‖us,h(x, ·)‖2H(Us )

dx

=
∫

D

∑

u⊆{1:s}

1

(2π)α|u| γu

∫

[0,1]|u|

(∫

[0,1]s−|u|

(∏

j∈u

∂σ

∂ yσ
j

)
us,h(x, y)d y−u

)2

d yudx

≤
∫

D

∑

u⊆{1:s}

1

(2π)α|u| γu

∫

[0,1]|u|

∫

[0,1]s−|u|

[(∏

j∈u

∂σ

∂ yσ
j

)
us,h(x, y)

]2
d y−u d yu dx

=
∑

u⊆{1:s}

1

(2π)α|u| γu

∫

[0,1]s

∥∥∥∥

(∏

j∈u

∂σ

∂ yσ
j

)
us,h(·, y)

∥∥∥∥
2

L2(D)

d y

≤ c2D
∑

u⊆{1:s}

1

(2π)α|u| γu

∫

[0,1]s

∥∥∥∥

(∏

j∈u

∂σ

∂ yσ
j

)
us,h(·, y)

∥∥∥∥
2

H1
0 (D)

d y

≤ c2D
‖q‖2

H−1(D)

a2min

∑

u⊆{1:s}

1

γu

( ∑

mu∈{1:σ }|u|
|mu|!

∏

j∈u

(
b
m j
j S(σ,m j )

))2

,

where we used the Cauchy–Schwarz inequality, Fubini’s theorem, the Poincaré con-
stant cD > 0 for the embedding H1

0 (D) ↪→ L2(D), together with the PDE derivative
bound (23) applied with ν = (σ, . . . , σ ) = (α

2 , . . . , α
2 ). The theorem is proved by

combining the above expressions with Theorem 3.2. ��
Next, we proceed to choose the weights γu and the parameters λ and α to ensure

that the constantCs(λ) can be bounded independently of s, with λ as small as possible
to yield the best possible convergence rate.

4.3.1 Choosing SPODweights

One way to choose the weights is to equate the terms inside the two sums over u in the
formula (38) forCs(λ). (The value ofCs(λ) so obtainedminimizes (38) with respect to
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γu for u ⊆ {1 : s}.) It will be shown that this yields the convergence rateO(n−( 1
2p− 1

4 )
)

with an implied constant independent of the dimension s. The rate is precisely the
rate of convergence that we expect to get. However, this choice of weights is too
complicated to allow for efficient CBC construction of the lattice generating vector.
So in the theorem below we propose a choice of SPODweights that achieves the same
error bound.

Theorem 4.5 Assume that (A1)–(A3) and (A6) hold, and that p is as in (A3). Take
α := 2� 1p + 1

2�, σ := α
2 , λ := p

2−p , and define the weights to be

γu :=
(

1

max(|u|, 1) [2ζ(αλ)]|u|
( ∑

mu∈{1:σ }|u|
|mu|!

∏

j∈u

(
b
m j
j S(σ,m j )

))2)
1

1+λ

(39)

for ∅ 
= u ⊂ N, |u| < ∞, or SPOD weights

γu :=
∑

mu∈{1:σ }|u|
(|mu|!) 2

1+λ

∏

j∈u

( b
m j
j S(σ,m j )

√
2e1/eζ(αλ)

) 2
1+λ

(40)

for ∅ 
= u ⊂ N, |u| < ∞, with γ∅ := 1. Then the kernel interpolant of the finite
element solution in Theorem 4.4 satisfies

√∫

Us

∫

D

(
us,h(x, y)− us,h,n(x, y)

)2 dx d y ≤ C ‖q‖H−1(D) n
−( 1

2p− 1
4 )

,

where the constant C > 0 is independent of the dimension s.

Proof Wewill proceed to justify the two choices ofweights (39) and (40), and show that
in both cases the term Cs(λ) appearing in Theorem 4.4 can be bounded independently
of s, by specifying λ and α as in the theorem.

The first choice of weights (39) is obtained by equating the terms inside the two
sums over u in the formula (38). Substituting (39) into (38) yields

[Cs(λ)] 2λ
1+λ

=
∑

u⊆{1:s}

(
max(|u|, 1) [2ζ(αλ)]|u|

) 1
1+λ

( ∑

mu∈{1:σ }|u|
|mu|!

∏

j∈u

(
b
m j
j S(σ,m j )

)) 2λ
1+λ

≤
∑

u⊆{1:s}

( ∑

mu∈{1:σ }|u|
|mu|!

∏

j∈u

(
b
m j
j S(σ,m j )

[
2e1/eζ(αλ)

] 1
2λ
)) 2λ

1+λ

≤
∑

u⊆{1:s}

∑

mu∈{1:σ }|u|

(
|mu|!

∏

j∈u
β
m j
j

) 2λ
1+λ =

∑

m∈{0:σ }s

(
|m|!

s∏

j=1
β
m j
j

) 2λ
1+λ

, (41)
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where we used max(|u|, 1) ≤ [e1/e]|u| = (1.4446 · · · )|u|, and defined Smax(σ ) :=
max1≤m≤σ S(σ,m), and β j := Smax(σ ) [2e1/eζ(αλ)] 1

2λ b j for all j ≥ 1, while apply-
ing Jensen’s inequality1 with 0 < 2λ

1+λ
≤ 1.

The second choice of weights (40) is inspired by the weights (39) but takes the
SPOD form

γu := 1

τ |u|
∑

mu∈{1:σ }|u|
[V (mu)] 2

1+λ , V (mu) := |mu|!
∏

j∈u

(
b
m j
j S(σ,m j )

)
, (42)

with τ > 0 to be specified below. (The τ |u| factor can bemerged into the product overu,
thus giving SPOD weights.) Estimating max(|u|, 1) ≤ [e1/e]|u| in (38), plugging in
the weights (42), applying the Cauchy–Schwarz inequality with 1

1+λ
+ λ

1+λ
= 1, and

applying Jensen’s inequality with 0 < λ ≤ 1, we obtain from (38)

[Cs(λ)]2λ

≤
( ∑

u⊆{1:s}
γ λ
u [2e1/eζ(αλ)]|u|

)( ∑

u⊆{1:s}

1

γu

( ∑

mu∈{1:σ }|u|
[V (mu)] 1

1+λ
+ λ

1+λ

)2)λ

≤
( ∑

u⊆{1:s}

(
2e1/eζ(αλ)

τλ

)|u|( ∑

mu∈{1:σ }|u|
[V (mu)] 2

1+λ

)λ)

×
( ∑

u⊆{1:s}

τ |u|
∑

mu∈{1:σ }|u| [V (mu)] 2
1+λ

( ∑

mu∈{1:σ }|u|
[V (mu)] 2

1+λ

)

×
( ∑

mu∈{1:σ }|u|
[V (mu)] 2λ

1+λ

))λ

,

and further

[Cs(λ)]2λ ≤
( ∑

u⊆{1:s}

(
2e1/eζ(αλ)

τλ

)|u| ∑

mu∈{1:σ }|u|
[V (mu)] 2λ

1+λ

)

×
( ∑

u⊆{1:s}
τ |u|

∑

mu∈{1:σ }|u|
[V (mu)] 2λ

1+λ

)λ

=
( ∑

u⊆{1:s}
τ |u|

∑

mu∈{1:σ }|u|
[V (mu)] 2λ

1+λ

)1+λ

,

where equality holds provided that we now choose τ := [2e1/eζ(αλ)] 1
1+λ . This leads

to the same upper bound (41) as for the first choice of weights.

1 Jensen’s inequality states that
∑

i ai ≤ (
∑

i a
t
i )
1/t for all ai ≥ 0 and t ∈ (0, 1].
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It remains to show that the upper bound (41) can be bounded independently of
s. We define the sequence d j := β� j/σ� for j ≥ 1, so that d1 = · · · = dσ = β1,
dσ+1 = · · · = d2σ = β2, and so on. Then for m ∈ {0 : σ }s we can write

s∏

j=1
β
m j
j = β1 · · ·β1︸ ︷︷ ︸

m1 factors

· · ·βs · · ·βs︸ ︷︷ ︸
ms factors

=
∏

j∈v
d j ,

where v := {1, 2, . . . ,m1, σ + 1, σ + 2, . . . , σ + m2, . . . , (s − 1)σ + 1, . . . , (s −
1)σ + ms}. Clearly, the set v is of cardinality |v| = m1 + · · · + ms = |m|. It follows
that

∑

m∈{0:σ }s

(
|m|!

s∏

j=1
β
m j
j

) 2λ
1+λ ≤

∑

v⊂N|v|<∞

(
|v|!

∏

j∈v
d j

) 2λ
1+λ

=
∑

�≥0
(�!) 2λ

1+λ

∑

v⊂N|v|=�

∏

j∈v
d

2λ
1+λ

j ≤
∑

�≥0
(�!) 2λ

1+λ
1

�!
(∑

j≥1
d

2λ
1+λ

j

︸ ︷︷ ︸
=: T

)�

. (43)

The final inequality holds because (
∑

j≥1 d
2λ
1+λ

j )� includes all the products of the form
∏

j∈v d
2λ
1+λ

j with |v| = �, and moreover includes each such term �! times.

Recall from (24) and the assumption (A3) that
∑

j≥1 b
p
j < ∞. We now choose

2λ

1+ λ
= p ⇐⇒ 1

2λ
= 1

p
− 1

2
⇐⇒ λ = p

2− p
.

For the inner sum in (43) we now have

T =
∑

j≥1
d p
j = σ

∑

j≥1
β
p
j = σ max

(
1, Smax(σ ) [2ζ(αλ)] 1

2λ

)p ∑

j≥1
bp
j < ∞,

provided that αλ > 1, which is equivalent to α > 2
p−1. This latter condition as well as

the requirement thatα be even can be satisfied by takingα such that α
2 = �( 1p− 1

2 )+1�,
so we take α := 2� 1p + 1

2�. Finally, the ratio test implies convergence of the outer
sum in (43), and consequentlyCs(λ) is bounded independently of s. Theorem 4.4 now

ensures an error bound independent of s, and the convergence rate is O(n−( 1
2p− 1

4 )
).

This completes the proof. ��

4.3.2 Choosing PODweights

In the next theorem we prove that if the assumption (A3) holds for some p ∈⋃∞
k=1

( 2
2k+1 ,

1
k

)
, then it is possible to use PODweights to obtain the same rate of con-
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vergence as in Theorem 4.5. For this and the next subsections we need the sequence
of Bell polynomials (more precisely, Touchard polynomials), which we denote by

Bellσ (x) :=
σ∑

m=0
S(σ,m) xm, σ ∈ N0,

where S(σ,m) denotes the Stirling number of the second kind as before.

Theorem 4.6 Assume that (A1)–(A3), (A5) and (A6) hold, and further assume that
p ∈⋃∞

k=1
( 2
2k+1 ,

1
k

)
in (A3). We take α := 2� 1p �, σ := α

2 , λ := p
2−p , and define POD

weights

γu :=
( [(σ |u|)!]2
max(|u|, 1) [2ζ(αλ)]|u|

∏

j∈u
Bellσ (b j )

2
) 1

1+λ

for ∅ 
= u ⊆ {1 : s}, (44)

with γ∅ := 1. Then the kernel interpolant of the PDE solution in Theorem 4.4 satisfies

√∫

Us

∫

D

(
us,h(x, y)− us,h,n(x, y)

)2 dx d y ≤ C ‖q‖H−1(D) n
−( 1

2p− 1
4 )

,

where the constant C > 0 is independent of the truncation dimension s.

Proof In (38) we can apply the crude upper bound

∑

mu∈{1:σ }|u|
|mu|!

∏

j∈u

(
b
m j
j S(σ,m j )

) ≤ (σ |u|)!
∏

j∈u

( σ∑

m=1
bmj S(σ,m)

)

= (σ |u|)!
∏

j∈u
Bellσ (b j ),

which leads to

[Cs(λ)]2λ

≤
( ∑

u⊆{1:s}
max(|u|, 1)γ λ

u [2ζ(αλ)]|u|
)( ∑

u⊆{1:s}

[
(σ |u|)!∏ j∈u Bellσ (b j )

]2

γu

)λ

.

(45)

We equate the terms in the two sums in (45) to obtain the weights (44). Let us again
define Smax(σ ) := max1≤m≤σ S(σ,m), so that Bellσ (b j ) ≤ Smax(σ )

∑σ
m=1 bmj . Plug-

ging the weights back into (45) then yields

[Cs(λ)] 2λ
1+λ ≤

∑

u⊆{1:s}

(
max(|u|, 1) [2ζ(αλ)]|u|

) 1
1+λ

(
(σ |u|)!

∏

j∈u
Bellσ (b j )

) 2λ
1+λ
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≤
∞∑

�=0

(
max(�, 1) [2ζ(αλ)]�

) 1
1+λ

(
(σ�)! [Smax(σ )]�

) 2λ
1+λ

×
∑

u⊆{1:s}
|u|=�

∏

j∈u

( σ∑

m=1
bmj

) 2λ
1+λ

︸ ︷︷ ︸
=: V�

.

To estimate V�, we have

V� ≤ 1

�!
( ∞∑

j=1

( σ∑

m=1
bmj

) 2λ
1+λ

)�

= 1

�!
( ∞∑

j=1

( σ∑

m=1
(1+ b1)

m
(

b j

1+ b1

)m) 2λ
1+λ

)�

≤ 1

�!
(

(1+ b1)
2σλ
1+λ

∞∑

j=1

(
b j

1+ b1 − b j

) 2λ
1+λ

)�

≤ 1

�!
(

(1+ b1)
2σλ
1+λ

∞∑

j=1
b

2λ
1+λ

j

︸ ︷︷ ︸
=: T

)�

,

where we estimated the sum over m by the geometric series formula and used 1 +
b1 − b j ≥ 1 as a consequence of the assumption (A5).

In consequence, we have [Cs(λ)] 2λ
1+λ ≤∑∞

�=0 a�, with

a� := [max(�, 1)] 1
1+λ [2ζ(αλ)] �

1+λ [(σ�)!] 2λ
1+λ [Smax(σ )] 2λ�

1+λ
1

�! T
� > 0.

We can use the ratio test to determine sufficient conditions for the convergence of the
infinite sum over �. Letting � > 0, we find that

a�+1
a�

=
(�+ 1

�

) 1
1+λ [2ζ(αλ)] 1

1+λ [(σ�+ σ) · · · (σ�+ 1)] 2λ
1+λ [Smax(σ )] 2λ

1+λ
T

�+ 1

≤
(�+ 1

�

) 1
1+λ [2ζ(αλ)] 1

1+λ (σ�+ σ)
2σλ
1+λ [Smax(σ )] 2λ

1+λ
T

�+ 1
�→∞−−−→ 0,

provided that 2σλ
1+λ

= αλ
1+λ

< 1 and αλ > 1. In conclusion, by choosing 2λ
1+λ

= p⇐⇒
λ = p

2−p , it follows from Theorem 4.4 that the convergence is independent of s with

rate O(n−( 1
2p− 1

4 )
), provided that

1

α
< λ <

1

α − 1
⇐⇒ α − 1 <

2

p
− 1 < α.

Unfortunately this condition cannot be fulfilled for all values of p, since α = 2σ needs
to be an even integer. Indeed, the condition is equivalent to
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2

2σ + 1
< p <

1

σ
⇐⇒ 1

p
− 1

2
< σ <

1

p
.

Hence this condition is met if p ∈⋃∞
k=1

( 2
2k+1 ,

1
k

)
by choosing α = 2� 1p �. ��

The Lebesgue measure of the set of admissible values for p is precisely
μ
(⋃∞

k=1( 2
2k+1 ,

1
k )
) = 2 − log(4) ≈ 0.61. Nevertheless, even if p /∈ ⋃∞

k=1
( 2
2k+1 ,

1
k

)

we can always choose p̃ > p such that p̃ ∈ ⋃∞
k=1

( 2
2k+1 ,

1
k

)
and a correspondingly

larger value of λ. The theorem then holds but with some loss in the rate of convergence.

4.3.3 Choosing product weights

In the next theorem we increase our error bounds to obtain product weights, which
have the benefit of a lower computational cost (see Sect. 5), but with the disadvantage
of a compromised theoretical convergence rate.

Theorem 4.7 Assume that (A1)–(A3), (A5) and (A6) hold, and further assume that
p < 1

2 in (A3). If p ∈ ⋃∞
k=1[ 2

4k+3 ,
2

4k+1 ] we take α := 2� 1
2p − 1

4�, σ := α
2 , and

λ := 1
2σ−4δ for arbitrary δ ∈ (0, σ

2 − 1
4 ). If p ∈ ( 25 ,

1
2 ) ∪

⋃∞
k=1( 2

4k+5 ,
2

4k+3 ) we take
α := 2� 1

2p − 1
4�, σ := α

2 , and λ := 1
2/p−1−2σ−4δ for arbitrary δ ∈ (0, 1

2p − 1
2 − σ

2 ).
We define product weights

γu :=
∏

j∈u

([
( jσ)σBellσ (b j )

]2

2e1/eζ(αλ)

) 1
1+λ

for ∅ 
= u ⊆ {1 : s}, (46)

with γ∅ := 1. Then the kernel interpolant of the PDE solution in Theorem 4.4 satisfies

√∫

Us

∫

D

(
us,h(x, y)− us,h,n(x, y)

)2 dx d y

≤
{
C ‖q‖H−1(D) n

−( 12 � 1
2p− 1

4 �−δ) for p ∈ ⋃∞
k=1[ 2

4k+3 ,
2

4k+1 ],
C ‖q‖H−1(D) n

−( 1
2p− 1

4− 1
2 � 1

2p− 1
4 �−δ) for p ∈ ( 25 ,

1
2 ) ∪

⋃∞
k=1( 2

4k+5 ,
2

4k+3 ),

where the constant C > 0 is independent of the truncation dimension s.

Proof Starting again from the equation (45), we apply further crude upper bounds
max(|u|, 1) ≤ [e1/e]|u| and

(σ |u|)! =
|u|∏

j=1

σ−1∏

k=0
( jσ − k) ≤

|u|∏

j=1
( jσ)σ ≤

∏

j∈u
( jσ)σ ,

to arrive at
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[Cs(λ)]2λ ≤
( ∑

u⊆{1:s}
γ λ
u [2e1/eζ(αλ)]|u|

)( ∑

u⊆{1:s}

∏
j∈u

[
( jσ)σBellσ (b j )

]2

γu

)λ

.

(47)

Weequate the terms in the two sums in (47) to obtain the productweights (46). Plugging
the weights back into (47) and following the argument in the proof of Theorem 4.6,
we obtain

[Cs(λ)] 2λ
1+λ ≤

∑

u⊆{1:s}

∏

j∈u

(
[2e1/eζ(αλ)] 1

1+λ [( jσ)σBellσ (b j )] 2λ
1+λ

)

≤
∞∑

�=0
[2e1/eζ(αλ)] �

1+λ
[
σσ Smax(σ )

] 2λ
1+λ

�
∑

u⊆{1:s}
|u|=�

∏

j∈u

(
jσ

σ∑

m=1
bmj

) 2λ
1+λ

︸ ︷︷ ︸
=: V�

,

with

V� ≤ 1

�!
(

(1+ b1)
2σλ
1+λ

∞∑

j=1
( jσb j )

2λ
1+λ

)�

,

Now one can easily check using the ratio test that the term Cs(λ) can be bounded

independently of s as long as the series
∑∞

j=1( jσb j )
2λ
1+λ is convergent.

From the monotonicity of (b j ) j≥1 in the assumption (A5) it follows that b j ≤
j−1/p(

∑∞
k=1 b

p
k )1/p for all j ≥ 1, implying

∞∑

j=1
( jσb j )

2λ
1+λ ≤

( ∞∑

k=1
bp
k

) 2λp
1+λ

∞∑

j=1
j−( 1

p−σ) 2λ
1+λ ,

which is finite provided that

(
1

p
− σ

)
2λ

1+ λ
> 1 ⇐⇒ λ >

1
2
p − 1− 2σ

.

Taking into account also the requirement that 1
α

< λ ≤ 1 and that α = 2σ be an even
integer, we have the constraint

max

(
1

2σ
,

1
2
p − 1− 2σ

)
< λ ≤ 1. (48)

We consider two scenarios below depending on the value of the maximum.
Scenario A. If 2σ ≤ 2

p − 1 − 2σ then p ≤ 2
4σ+1 and σ ≤ 1

2p − 1
4 , while the

condition (48) simplifies to 1
2σ < λ ≤ 1. Since σ must be an integer and at least 1,
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this scenario applies only when p ∈ (0, 2
5 ]. In this case the best convergence rate is

obtained by taking λ as close to 1
2σ as possible and σ as large as possible. Hence we

take σ := � 1
2p − 1

4� and λ := 1
2σ−4δ for arbitrary δ ∈ (0, σ

2 − 1
4 ). By Theorem 4.4 this

yields the convergence rateO(n−( 12 � 1
2p− 1

4 �−δ)
) with the implied constant independent

of the dimension s, but approaching∞ as δ → 0.
Scenario B. On the other hand, if 2σ > 2

p−1−2σ then p > 2
4σ+1 and σ > 1

2p− 1
4 ,

while the condition (48) becomes 1
2/p−1−2σ < λ ≤ 1. Additionally, for the latter

condition on λ to hold we require that 2
p − 1 − 2σ > 1, which means p < 1

σ+1 and

σ < 1
p − 1. Combining all constraints we have

1
2
p − 1− 2σ

< λ ≤ 1 and
2

4σ + 1
< p <

1

σ + 1
and

1

2p
− 1

4
< σ <

1

p
− 1.

Since σ must be an integer and at least 1, this scenario applies only when p ∈⋃∞
k=1( 2

4k+1 ,
1

k+1 ) = (0, 1
3 )∪ ( 25 ,

1
2 ). In this case the best convergence rate is obtained

by taking λ as close to 1
2/p−1−2σ as possible but nowwith σ as small as possible. Hence

we take σ := � 1
2p − 1

4� and λ := 1
2/p−1−2σ−4δ for arbitrary δ ∈ (0, 1

2p − 1
2 − σ

2 ).

This yields the convergence rateO(n−( 1
2p− 1

4− 1
2 � 1

2p− 1
4 �−δ)

), with the implied constant
independent of the dimension s.

If p ∈ ( 25 ,
1
2 ) then only Scenario B applies.

If p ∈ [ 13 , 2
5 ] then only Scenario A applies.

If p ∈ (0, 1
3 ) then both scenarios apply, and it remains

to resolve which scenario to use in order to obtain the better convergence rate. For
convenience we abbreviate x := 1

2p − 1
4 and m := � 1

2p − 1
4�, noting that m ≥ 1

since p < 1
3 . Scenario B has a better convergence rate than Scenario A if and only if

1
2�x� < x − 1

2�x�. The latter condition is not satisfied if x ∈ Z, while for x /∈ Z the
condition is equivalent to �x� + 1

2 < x < �x�. Hence the condition is equivalent to

m + 1

2
<

1

2p
− 1

4
< m + 1 ⇐⇒ 2

4m + 5
< p <

2

4m + 3
.

We conclude that for the case p < 1
3 we should use Scenario B when p ∈

⋃∞
k=1

(
2

4k+5 ,
2

4k+3
)
and use Scenario A when p ∈ [ 27 , 1

3 ) ∪
⋃∞

k=2[ 2
4k+3 ,

2
4k+1 ].

Combining the above analysis, we should apply Scenario B when p ∈ ( 25 ,
1
2 ) ∪⋃∞

k=1( 2
4k+5 ,

2
4k+3 ) and apply Scenario A when p ∈ [ 27 , 2

5 ] ∪
⋃∞

k=2 [ 2
4k+3 ,

2
4k+1 ] =⋃∞

k=1[ 2
4k+3 ,

2
4k+1 ]. ��
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4.4 Combined approximation error

The combined approximation error of the PDE problem (20) can be decomposed as

√∫

U

∫

D
(u(x, y)− us,h,n(x, y))2 dx d y

≤
√∫

U

∫

D
(u(x, y)− us(x, y))2 dx d y

+
√∫

U

∫

D
(us(x, y)− us,h(x, y))2 dx d y

+
√∫

U

∫

D
(us,h(x, y)− us,h,n(x, y))2 dx d y,

where the first term is the dimension truncation error, the second term is the finite
element error, and the final term is the kernel interpolation error. Combining the results
developed in Sects. 4.1–4.3, we arrive at the following result.

Theorem 4.8 Assume that (A1)–(A6) hold. For any y ∈ U, let u(·, y) ∈ H1
0 (D)

denote the solution to (20)with the source termq ∈ H−1+t (D) for some 0 ≤ t ≤ 1. Let
us,h(·, y) ∈ Vh be the corresponding dimensionally truncated finite element solution
and let us,h,n(x, ·) = A∗n(us,h(x, ·)) be its kernel interpolant constructed using the
weights described in Theorems 4.5, 4.6, or 4.7. Then we have the combined error
estimate

√∫

U

∫

D
(u(x, y)− us,h,n(x, y))2 dx d y

≤ C
((
s−( 1

p− 1
2 ) + n−r

)‖q‖H−1(D) + h1+t‖q‖H−1+t (D)

)
,

where 0 ≤ t ≤ 1, h denotes the mesh size of the piecewise linear finite element mesh,
C > 0 is a constant independent of s, h, n, q, and

r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2p − 1

4 with weights (39) or SPOD weights (40),
1
2p − 1

4 with POD weights (44) for p ∈ ⋃∞
k=1( 2

2k+1 ,
1
k ),

1
2� 1

2p − 1
4� − δ with product weights (46) for

p ∈ ⋃∞
k=1[ 2

4k+3 ,
2

4k+1 ],
1
2p − 1

4 − 1
2� 1

2p − 1
4� − δ with product weights (46) for

p ∈ ( 25 ,
1
2 ) ∪

⋃∞
k=1( 2

4k+5 ,
2

4k+3 ),

and δ > 0 is sufficiently small in each case.
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5 Cost analysis

5.1 What is the point set at which values are wanted?

In this section we consider the cost of evaluating the kernel interpolant

fn( y) =
n∑

k=1
ak K (tk, y),

as an approximation to the periodic function f , with lattice points tk = { k zn }, k =
1, . . . , n, and tn = t0 = 0. Recall that all our functions including the kernel are
1-periodic with respect to y. For the linear system (7), as observed already, the matrix
K = [K (tk − tk′ , 0)]k,k′=1,...,n is circulant, thus we need to compute only its first
column (see the cost for evaluating the kernel in the next subsection) and then solve
for the coefficients ak with a cost of O(n log(n)).

First, however, it turns out to be useful to ask: what is the set of points, say
{ y1, y2, . . .}, at which the values of the interpolant are desired? If L such points
y�, � = 1, . . . , L , are chosen arbitrarily then the cost, naturally, is L times the cost of
a single evaluation. On the other hand, for a set of Ln points formed by the union of
shifted lattices y� + tk′ , � = 1, . . . , L , k′ = 1, . . . n, it turns out that the cost for Ln
evaluations is little more than the cost of the L evaluations at arbitrary points.

The reason for the low cost lies in the shift invariance of the kernel and the group
nature of the lattice. For a single given y the principal costs for evaluating the kernel
interpolant come from evaluating K (tk, 0) and f (tk) at the n lattice points; then
solving the circulant linear system (7) for the n values of ak ; from evaluating K (tk, y)
at the n lattice points; and finally from assembling fn( y) with a cost of O(n). (The
precise cost breakdown is given inTable 1 belowafterwe discuss the cost for evaluating
the kernel in the next subsection.)

But for evaluation of K (tk, y+ tk′) for all n values k′ = 1, . . . , n we observe that
K (tk, y + tk′) = K (tk − tk′ , y), and hence

fn( y + tk′) =
n∑

k=1
ak K (tk − tk′ , y). (49)

Since the right-hand side has the form of a circulant n×n matrix multiplying a vector
of length n, the n values fn( y + tk′) for k′ = 1, . . . , n can be assembled with a cost
ofO(n log(n)), compared with theO(n) cost of assembling fn at a single value of y.

5.2 Cost for evaluating the kernel for a single y

Now consider the cost of computing K (t, y) for a single arbitrary value of y and
arbitrary t ,
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K (t, y) =
∑

u⊆{1:s}
γu

∏

j∈u
ηα(t j , y j ) for k = 1, . . . , n.

In the following, we assume that evaluating ηα can be treated as having constant cost.
For example, when α is even we have an analytic formula for ηα in terms of the
Bernoulli polynomial.

If the weights have no special structure then the cost to evaluate K (t, y) would
be exponential in s because of the sum over subsets of {1 : s}, but the cost is much
reduced in special cases:

• With product weights we have K (t, y) =∏s
j=1(1+ γ jηα(t j , y j )), which can be

evaluated for a pair (t, y) at the cost of O(s).
• With POD weights we have

K (t, y) =
∑

u⊆{1:s}
Γ|u|

∏

j∈u

(
γ j ηα(t j , y j )

)
=

s∑

�=0
Γ�

∑

u⊆{1:s}
|u|=�

∏

j∈u

(
γ j ηα(t j , y j )

)

︸ ︷︷ ︸
=: Ps,�

,

where Ps,� is defined for � = 0, . . . , s, and can be computed recursively using

Ps,� = Ps−1,� + γs ηα(ts, ys) Ps−1,�−1,

together with Ps,0 := 1 for all s and Ps,� := 0 for all � > s. The cost to evaluate
this for a pair (t, y) is O(s2).

• With SPOD weights we have

K (t, y) =
∑

u⊆{1:s}

∑

νu∈{1:σ }|u|
Γ|νu|

∏

j∈u

(
γ j,ν j ηα(t j , y j )

)

=
∑

ν∈{0:σ }s
Γ|ν|

∏

j : ν j>0

(
γ j,ν j ηα(t j , y j )

)

=
sσ∑

�=0
Γ�

∑

ν∈{0:σ }s
|ν|=�

∏

j : ν j>0

(
γ j,ν j ηα(t j , y j )

)

︸ ︷︷ ︸
=: Ps,�

,

where Ps,� is now defined for � = 0, . . . , sσ , and can be computed recursively
using

Ps,� = Ps−1,� + ηα(ts, ys)
min(σ,�)∑

ν=1
γs,ν Ps−1,�−ν,

together with Ps,0 := 1 for all s and Ps,� := 0 for all � > sσ . The cost to evaluate
this for a pair (t, y) is now O(s2 σ 2).
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Table 1 Cost breakdown for the kernel interpolant fn based on n lattice points tk in s dimensions, evaluated
at L arbitrary points y�. Here X is the cost for one evaluation of f .

Operation \Weights Product POD SPOD

Fast CBC construction for z s n log(n) s n log(n)+ s2 log(s) n s n log(n)+ s3σ 2 n

Compute K (tk , 0) for all k s n s2 n s2 σ 2 n

Evaluate f (tk ) for all k X n X n X n

Linear solve for all coefficients ak n log(n) n log(n) n log(n)

Compute K (tk , y�) for all k, � s n L s2 n L s2 σ 2 n L

Assemble fn( y�) for all � n L n L n L

OR Assemble fn( y� + tk ) for all �, k n log(n) L n log(n) L n log(n) L

Table 2 Cost breakdown for the kernel interpolant us,h,n based on n lattice points tk in s dimensions,
evaluated at M finite element nodes xi and L arbitrary points y�. Here Ma for some positive a is the cost
for one finite element solve with M nodes.

Operation \Weights Product POD SPOD

Fast CBC construction for z s n log(n) s n log(n)+ s2 log(s) n s n log(n)+ s3σ 2 n

Compute K (tk , 0) for all k s n s2 n s2 σ 2 n

Evaluate us,h(xi , tk ) for all i, k Ma n Ma n Ma n

Linear solve for all coeff. ak (xi ) M n log(n) M n log(n) M n log(n)

Compute K (tk , y�) for all k, � s n L s2 n L s2 σ 2 n L

Assemble us,h,n(xi , y�) for all i, � M n L M n L M n L

OR Assemble us,h,n(xi , y� + tk ) M n log(n) L M n log(n) L M n log(n) L

for all i, �, k

5.3 Cost for the kernel interpolant

We now summarize the cost for the kernel interpolant and different weights using the
results of the preceding two subsections. Let X denote the cost for one evaluation
of f . The cost breakdown is shown in Table 1. The first four rows are considered to be
pre-computation cost while the last three rows are the running cost for sampling. The
cost for the fast CBC construction based on the criterion Ss(z) with different weight
parameters is analyzed in [4].

For the PDE application, our kernel method is

us,h(xi , y) ≈ us,h,n(xi , y) =
n∑

k=1
ak(xi ) K (tk, y),
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where {xi : i = 1, . . . , M} ⊂ D is the set of finite element nodes in the physical
domain, and ak(xi ) for k = 1, . . . n is the solution for fixed xi of the linear system

n∑

k=1
Kk,k′ ak(xi ) = us,h(xi , tk′), k′ = 1, . . . , n.

Let Ma for some a ≥ 1 denote the cost of the finite element solve to obtain all xi
for one y. The cost breakdown for obtaining the kernel interpolant at all M nodes for
all L samples is shown in Table 2. Note in this case that the coefficients ak(xi ) need
to be computed for every finite element node xi , hence the scaling of the cost in line
4 of Table 2 by M . If the quantity of interest is a linear functional of the PDE finite
element solution (no need for the solution at every node), then the cost is reduced to
be as in Table 1 with X = Ma .

6 Numerical experiments

We consider the parametric PDE problem (16)–(17) in the physical domain D =
(0, 1)2 with the source term q(x) = x2 and the diffusion coefficient periodic in the
parameters y given by (21), with a0(x) = 1 for x ∈ D.

For each fixed y ∈ Us (i.e. with the sum in (21) truncated to s terms), we solve
the PDE using a piecewise linear finite element method with h = 2−5 as the finite
element mesh size. As the stochastic fluctuations, we consider the functions

ψ j (x) := c j−θ sin( jπx1) sin( jπx2), x = (x1, x2) ∈ D, j ≥ 1,

where c > 0 is a constant, θ > 1 is the decay rate of the stochastic fluctuations, and
s ∈ N is the truncation dimension. Following (24), the sequence (b j ) j≥1 is taken to
be

b j := c j−θ

√
6 amin

, with amin := 1− c√
6

ζ(θ) as well as amax := 1+ c√
6

ζ(θ),

and c <
√
6

ζ(θ)
, ensuring that the assumption (A2) is satisfied.

We approximate the dimensionally truncated finite element solution us,h of the
PDE (16)–(17) by constructing a kernel interpolant us,h,n(x, y) := A∗n(us,h(x, y)),
x ∈ D and y ∈ Us using SPOD weights, POD weights, and product weights chosen
according to Theorems 4.5, 4.6, and 4.7, respectively. The same weights appear in the
formula for the kernel as well as the search criterion for finding good lattice generating
vectors. The kernel interpolant is constructed over a lattice point set tk := {k z/n},
k ∈ {1, . . . , n}, where the generating vector z ∈ {1, . . . , n − 1}s has been obtained
separately for each weight type using the fast CBC algorithm detailed in [4].We assess
the kernel interpolation error by computing
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Fig. 1 The kernel interpolation errors of the PDE problem (16)–(17) with θ = 1.2, p = 1/1.1, c ∈
{0.2, 0.4}, and s ∈ {10, 100}. Results are displayed for kernel interpolants constructed using POD and
SPOD weights. (Product weights (46) are not well-defined in this case)

error =
√∫

Us

∫

D

(
us,h(x, y)− us,h,n(x, y)

)2 dx d y

≈
√√√√ 1

Ln

L∑

�=1

n∑

k=1

∫

D

(
us,h

(
x, y� + tk

)− us,h,n(x, y� + tk)
)2 dx ,

where y� for � = 1, . . . , L is a sequence of Sobol′ nodes in [0, 1]s , with L = 100, and
we recall that all our functions including us,h(x, y) andus,h,n(x, y) are 1-periodicwith
respect to y. The kernel interpolant in the formula above can be evaluated efficiently
over the union of shifted lattices y� + tk , � = 1, . . . , L , k = 1, . . . , n, by making
use of formula (49) in conjunction with the fast Fourier transform, requiring only the
evaluation of the values K (tk, y�).

We compute the approximation error when θ ∈ {1.2, 2.4, 3.6}, choosing p ∈
{ 1
1.1 ,

1
2.2 ,

1
3.3 }, respectively, which are all p values ensuring that (A3) is satisfied. We

also use several values of the parameter c ∈ {0.2, 0.4, 1.5} to control the difficulty of
the problem. We set δ = 0.1 in the product weights (46). The numerical experiments
have been carried out by using both s = 10 and s = 100 as the truncation dimensions.
Selected results are displayed in Figures 1, 2, 3, where the corresponding values of
amin and amax are listed to give insights to the difficulty of the problem in each case,
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Fig. 2 The kernel interpolation errors of the PDE problem (16)–(17) with θ = 2.4, p = 1/2.2, c ∈
{0.2, 1.5}, and s ∈ {10, 100}. Results are displayed for kernel interpolants constructed using product
(PROD), POD, and SPOD weights

as well as the parameter σ which shows the “order” of the lattice rule. Note that as s
increases the problem does not change, but the computation becomes harder because
the diffusion coefficient takes a wider range of values, with small values of a(x, y)
being especially challenging.

The empirically obtained convergence rates appear to exceed the theoretically
expected rates once the kernel interpolant enters the asymptotic regime of conver-
gence. The convergence behavior of the kernel interpolant with SPOD weights is
good across all experiments, except for the most difficult PDE problem of the lot
corresponding to parameters θ = 1.2 and c = 0.4, illustrated in the bottom row of
Fig. 1. On the other hand, the PODweights and, to a lesser extent, the product weights
appear to be somewhat sensitive to the effective dimension of the PDE problem, either
leading to a longer pre-asymptotic regime compared to SPOD weights (see “PROD”
in the bottom row of Fig. 2) or no apparent convergence (see “POD” in the bottom
rows of Figs. 2 and 3).

In the top graph of Fig. 4 we compare the results in Figs. 1, 2, 3 from SPOD
weights with truncation dimension s = 100 for the same damping parameter c = 0.2
and different θ ∈ {1.2, 2.4, 3.6}, listing the estimated convergence rate in each case.
In the middle graph of Fig. 4 we show the results of an additional experiment, namely,
that for s = 100 where we fix the decay rate θ = 3.6 of the stochastic fluctuations
and solve the parametric PDE problem using different σ ∈ {1, 2, 3} in the formula for
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Fig. 3 The kernel interpolation errors of the PDE problem (16)–(17) with θ = 3.6, p = 1/3.3, c ∈
{0.2, 1.5}, and s ∈ {10, 100}. Results are displayed for kernel interpolants constructed using product
(PROD), POD, and SPOD weights

SPOD weights, which correspond to p ∈ { 1
1.1 ,

1
2.2 ,

1
3.3 }, see Theorem 4.5. Finally, in

the bottom graph of Fig. 4, we return to the experimental setup illustrated in Fig. 1
except this time we carry out the experiment using the truncation dimensions s ∈
{10, 20, 40, 80, 160}.

In all cases displayed in Fig. 4, the observed error decays faster than the rate implied
by Theorem 4.5.We also see that increasing σ improves the error and mildly improves
the rate of convergence. Moreover, we observe from the graph in the middle that the
parameter θ that governs the decay of ‖ψ j‖L∞(D) is more important in determining
the rate than the choice of σ . This observation suggests that the kernel interpolation
with the rank-1 lattice points are robust in σ . Notice that σ appears in the definition
(40) of the SPOD weights; and that the weights are an input of the CBC construction,
and are used to define the kernel K (·, ·). These observed error decay rates and the
robustness are encouraging, but also suggest that the worst-case error estimates may
be pessimistic in practical situations. The bottom graph in Fig. 4 illustrates the effect
that the truncation dimension has on the obtained convergence rates: we see that the
observed convergence rate remains reasonable even when s = 160.

Finally, we present numerical experiments that assess the dimension truncation
error rate given in Theorem 4.1.We consider the same PDE and stochastic fluctuations
(ψ j ) j≥1 which were stated at the beginning of this section. We choose the parameters
c = 0.4 with θ ∈ {1.2, 2.4, 3.6} and c = 1.5 with θ ∈ {2.4, 3.6}. The PDE is
discretized using piecewise linear finite element method with mesh size h = 2−6
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Fig. 4 The kernel interpolation errors of the PDE problem (16)–(17) for kernel interpolants constructed
using SPOD weights and varying parameters. Top: fixed s = 100 and c = 0.2 and different values of
θ . Middle: fixed s = 100 and θ = 3.6, different values of p, and corresponding σ = σ(p). Theoretical
error-decay rate is − 1

2p + 1
4 = −0.3,−0.85,−1.4 for p = 1

1.1 , 1
2.2 , 1

3.3 . Bottom: fixed θ = 1.2, c = 0.2,
p = 1/1.1, and σ = 1 with different values of s ∈ {10, 20, 40, 80, 160}
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Fig. 5 The dimension truncation errors of the PDEproblem (16)–(17). Left: c = 0.4 and θ ∈ {1.2, 2.4, 3.6}.
Right: c = 1.5 and θ ∈ {2.4, 3.6}
and the integral over the computational domain D is computed exactly for the finite
element solutions. As the reference solution, we use the finite element solution with
truncation dimension s′ = 211. The dimension truncation error is then estimated by
computing

√∫

Us′

∫

D
(us′,h(x, y)− us,h(x, y))2 dx d y

for s = 2k , k = 2, . . . , 10, where the value of the parametric integral is computed
approximately by means of a rank-1 lattice rule based on the off-the-shelf generating
vector lattice-39101-1024-1048576.3600 downloaded from https://web.
maths.unsw.edu.au/~fkuo/lattice/ with n = 217 nodes. The results are displayed in
Fig. 5. The theoretically expected rate, which is essentially O(s−θ+1/2), is clearly
observed in all cases.

7 Conclusions

In this paper we have developed an approximation scheme for periodic multivariate
functions based on kernel approximation at lattice points, in the setting of weighted
Hilbert spaces of dominatingmixed smoothness.Wehave developed L2 error estimates
that are independent of dimension, for three classes of weights: product weights, POD
(product and order dependent) weights and SPOD (smoothness driven product and
order dependent) weights. Numerical experiments for 10 and 100 dimensions give
results that (with the possible exception of POD weights) are generally satisfactory,
and that exhibit better than predicted rates of convergence.

Nevertheless, there is room for future improvement. First, the error analysis is based
on the principle that the L2 error is bounded above by theworst case L2 errormultiplied
by the norm of the function being approximated; yet it is known (see Sect. 3.1) that
the worst-case error has a poor rate of convergence. It may be possible to obtain
improved error rates by making better use of the special properties of the minimum
norm interpolant in conjunction with the analytic parameter dependence of the PDE
solution of (16)–(17).
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