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Abstract. This paper investigates the acceleration resistance of a vessel in shallow waters 

using potential flow and CFD methods. Results indicated a pronounced resistance peak near 

the critical depth Froude number. The peak's location and magnitude were sensitive to 

acceleration intensity and water depth. Excellent agreement between potential flow and CFD 

methods was found in low and high depth Froude number ranges, suggesting their 

effectiveness and cost-efficiency. However, non-linear effects affected the resistance peak's 

magnitude and position, leading to slight disagreements between the methods. The solvers' 

variation was observed to be sensitive to the investigated parameters. 

1. Introduction

Ship resistance prediction has traditionally focused on steady conditions, determining a single

resistance value for each combination of speed and water depth. However, recent research has shed

light on the unsteady nature of ship resistance. Studies by Havelock [1], Lunde [2][3], and [4] have

explored transient wave resistance, considering the effects of acceleration and proposing mathematical

theories. Calisal [5] extended these theories to incorporate wave pattern development in unrestricted

water. Furthermore, Day et al. [6] investigated the influence of finite depth and width effects in a

towing tank.

The investigation of unsteady resistance has been motivated by the performance considerations of 

unconventional vessels, such as hovercraft [7][10]. In these studies, the vessels are often simplified as 

two-dimensional pressure distributions on the water surface [11][12]. Researchers have observed 

oscillations in the time-history signal of towed craft, presenting challenges in accurately measuring 

steady resistance values [13]. While various theories on unsteady wave drag have been proposed, there 

has been limited exploration of the scenario involving a ship accelerating past a critical depth Froude 

number. 

In the field of aerodynamics, exceeding the speed of sound results in the occurrence of a sonic 

boom. Similarly, phenomena analogous to a sonic boom have been observed when a vessel encounters 

variations in water depth [4]. A change in water depth can cause the wave speed to decrease below the 

vessel's speed, leading to the generation of significant amplitude waves [4]. As the vessel passes over 

this change, the depth Froude number undergoes a transition from a subcritical value (Fh <1) to a 

supercritical value (Fh >1). Unlike in aerodynamics, where trans-critical phenomena are primarily 

observed through changes in speed, hydrodynamics allows for manipulation of water depth and/or 

vessel speed to achieve similar effects. 
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2.  Methodology 

In this study, the potential flow solver MHydro [20] is employed, which utilizes a 3D boundary 

element method (BEM) based on a Rankine type Green function. This solver is specifically chosen to 

investigate unsteady free surface effects. MHydro has been successfully utilized in previous research 

on ship hydrodynamics in both deep and shallow water by Yuan et al. [21]. 

To obtain the solution, it is crucial to establish correlations between all results at each time step, 

allowing for the preservation of unsteady terms in the free-surface boundary conditions. This 

capability enables the simulation of unsteady effects on the free surface. The methodology employed 

in this study will be described in detail in the subsequent sections. 

2.1.  Description of the problem 

The problem is described using two right-handed coordinate systems, as illustrated in Figure 1. The 

first coordinate system, denoted as O-XYZ, is fixed to the Earth. The second coordinate system, 

denoted as o0-x0y0z0, is fixed to the ship hull and moves along with the ship. In both coordinate 

systems, the positive x-axis points towards the bow of the ship, the positive y-axis points towards the 

port side of the ship, and the positive z-axis points upward. The undisturbed calm free surface is 

situated at z=0. 

 

(a) 

 

(b) 

 
Figure 1. Sketch of the problem. In (a), L is the length of the ship and U(t) is the ship 

velocity which is changing with time. T represents the draft of the ship while the water 

depth is denoted as d. (b) shows a top view of the problem, where it can be seen that 

the distance between the front and rear boundaries of the computational domain and 

the midship point are both 3L. On the other hand, both the port and starboard 

boundaries are L away from the centreline of the ship. Finally, B in this figure 

represents the ship breadth.   

 

2.2.  Boundary value problem 
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There are only two boundary conditions in this problem: the body-surface condition and the free-

surface condition. The body-surface condition is that the surface is impenetrable and the normal 

velocity of all cells on the body is equal to the speed U of the ship:  
𝜕𝜑

𝜕𝒏
= 𝑈𝑛1 (1) 

where n = (n1, n2, n3) is the unit normal vector on body-surface. 

The free-surface condition in this method can be separated into two components: the dynamic free-

surface condition and the kinematic free-surface condition. Since the method utilized in this study is 

based on potential flow, the fluid is assumed to be ideal, which implies that it is inviscid, irrotational, 

and incompressible. As a result, the free-surface conditions can be expressed using the velocity 

potential φ(x, y, z, t) and the wave elevation ζ(x, y, t) as follows: 

𝜑𝑡 − 𝑈𝜑𝑥 + 𝑔𝜁 +
1

2
(𝜑𝑥

2 + 𝜑𝑦
2 + 𝜑𝑧

2) +
𝑃

𝜌
= 0, 𝑜𝑛 𝑧 = 𝜁 (2) 

    𝜁𝑡 − 𝑈𝜁𝑥 + 𝜑𝑥𝜁𝑥 + 𝜑𝑦𝜁𝑦 − 𝜑𝑧 = 0, 𝑜𝑛 𝑧 = 𝜁 (3) 

where g is the gravitational acceleration, ρ is the fluid density and P is the pressure on free surface, 

and 𝜑𝑡and  𝜁𝑡 are the respective time derivatives. Similarly, 𝜑𝑥, 𝜑𝑦 and 𝜑𝑧 are directional derivatives. 

To simplify the solution process, the nonlinear terms are disregarded while retaining the unsteady 

terms, as discussed earlier. Consequently, the simplified linear unsteady free-surface condition can be 

expressed as follows: 

𝜑𝑡 − 𝑈𝜑𝑥 + 𝑔𝜁 +
1

2
(𝜑𝑥

2 + 𝜑𝑦
2 + 𝜑𝑧

2) = 0, 𝑜𝑛 𝑧 = 𝜁 (4) 

𝜁𝑡 − 𝑈𝜁𝑥 − 𝜑𝑧 = 0, 𝑜𝑛 𝑧 = 𝜁 (5) 

With the boundary conditions established, the subsequent step involves solving the resulting 

equations. To accomplish this, a three-level scheme is employed to discretize the free surface 

conditions: 

(𝜑𝑡)𝑖,𝑗
𝑚+1 =

1

∆𝑡
(

3

2
𝜑𝑖,𝑗

𝑚+1 − 2𝜑𝑖,𝑗
𝑚 +

1

2
𝜑𝑖,𝑗

𝑚−1) (6) 

(𝜁𝑡)𝑖,𝑗
𝑚+1 =

1

∆𝑡
(

3

2
𝜁𝑖,𝑗

𝑚+1 − 2𝜁𝑖,𝑗
𝑚 +

1

2
𝜁𝑖,𝑗

𝑚−1) (7) 

where m represents the mth time step, i and j indicate location of the cell on the free surface. 

Substituting the Eq. (6) and Eq. (7) into the kinetic free-surface condition, allows one to obtain the 

value of  (𝜁)𝑖,𝑗
𝑚+1: 

1

∆𝑡
(

3

2
𝜁𝑖,𝑗

𝑚+1 − 2𝜁𝑖,𝑗
𝑚 +

1

2
𝜁𝑖,𝑗

𝑚−1) − 𝑈
1

∆𝑥
(

3

2
𝜁𝑖,𝑗

𝑚+1 − 2𝜁𝑖,𝑗+1
𝑚+1 +

1

2
𝜁𝑖,𝑗+2

𝑚+1) −
𝜕𝜑𝑖,𝑗

𝑚+1

𝜕𝑧
= 0 (8𝑎) 

(
1

∆𝑡
−

3

2

𝑈

∆𝑥
) 𝜁𝑖,𝑗

𝑚+1 + 2
𝑈

∆𝑥
𝜁𝑖,𝑗+1

𝑚+1 −
1

2

𝑈

∆𝑥
𝜁𝑖,𝑗+2

𝑚+1 =
2

∆𝑡
𝜁𝑖,𝑗

𝑚 −
1

2

1

∆𝑡
𝜁𝑖,𝑗

𝑚−1 +
𝜕𝜑𝑖,𝑗

𝑚+1

𝜕𝑧
(8𝑏) 

Then, all variables in the dynamic free-surface condition can be updated with the results obtained: 

1

∆𝑡
(

3

2
𝜑𝑖,𝑗

𝑚+1 − 2𝜑𝑖,𝑗
𝑚 +

1

2
𝜑𝑖,𝑗

𝑚−1) − 𝑈
𝜕𝜑𝑖,𝑗

𝑚+1

𝜕𝑥
+ 𝑔𝜁𝑖,𝑗

𝑚+1 = 0 (9𝑎) 

3

2

1

∆𝑡
𝜑𝑖,𝑗

𝑚+1 − 𝑈
𝜕𝜑𝑖,𝑗

𝑚+1

𝜕𝑥
=

2

∆𝑡
𝜑𝑖,𝑗

𝑚 −
1

2

1

∆𝑡
𝜑𝑖,𝑗

𝑚−1 − 𝑔𝜁𝑖,𝑗
𝑚+1 (9𝑏) 

In the above process, as the number of iterations k increases, all variables will be continuously 

updated until both  |𝜑𝑖,𝑗
𝑚+1,𝑘 − 𝜑𝑖,𝑗

𝑚+1,𝑘−1| < 𝜀 and |𝜁𝑖,𝑗
𝑚+1,𝑘 − 𝜁𝑖,𝑗

𝑚+1,𝑘−1| < 𝜀 are satisfied. 

In order to solve the above-mentioned boundary value problem, we developed a programme, 

namely MHydro, based on the Rankine source panel method. Once the potential is obtained, it is 

possible to calculate the pressure distribution and the forces/moments acting on the hull using 

Bernoulli's equation, which can be expressed as follows: 

𝑃 = −𝜌 [𝜑𝑡 − 𝑈𝜑𝑥 +
1

2
(𝜑𝑥

2 + 𝜑𝑦
2 + 𝜑𝑧

2)] (10) 
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𝐹𝑖 = ∬ 𝑃𝑛𝑖𝑑𝑠, 𝑖 = 1, 2, … , 6

𝑆

(11) 

where i represents the degree of freedom, and: 

𝑛𝑖 = {
𝒏,           𝑖 = 1, 2, 3

𝒙 × 𝒏, 𝑖 = 4, 5, 6
(12) 

3.  Case study selection 

For the case studies in this research, the Wigley hull has been selected, and its specifications are 

provided in Table 1. Although there are several experimental results available for the Wigley hull, 

there is currently no data specifically replicating the trans-critical behaviour of an accelerating ship. 

By choosing the Wigley hull, we aim to maximize the potential for other researchers to utilize the 

results presented here in their future studies. This is due to the hull's ease of mathematical modelling 

and its common usage in potential flow-based investigations [13], [22]-[24]. 

 

Table 1. Wigley hull principal dimensions. 

Parameter Symbol Value Units 

Length 𝐿 3 m 

Draft 𝑇 0.1875 m 

Beam 𝐵 0.3 m 

 

The depth Froude number serves as the basis for varying the parameters in the test matrix, namely 

the ship speed U and the water depth d. Following the approach of Day et al. [6] and Li et al. [13], 

multiples of the gravitational acceleration g are utilized to modify the ship speed. Previous studies 

focused on rapidly accelerating the hull to a target speed and maintaining that speed, using values 

ranging from 0.08g to 0.02g. However, the objective of the current study is to observe transient 

phenomena during acceleration. Therefore, the maximum acceleration intensity chosen for this study 

is 0.02g, which corresponds to the lowest acceleration intensity used by Day et al. [6] and Li et al. [13]. 

Additionally, acceleration intensities of 0.01g, 0.005g, and 0.002g are also employed. 

To assess the impact of water depth, the test matrix in Table 2 combines acceleration intensities 

with d/T ratios of 1.2 and 1.5. The cases progress up to a maximum water depth Froude number of 2. 

In the CFD simulations, steady and constant velocity cases are used to estimate the deviation in 

resistance between fixed speed and accelerating conditions. Table 3 provides the water depth Froude 

numbers corresponding to different water depths for constant velocities. 

 

Table 2. Case studies modelling the 

acceleration resistance of the Wigley 

hull. 

Case number Acceleration d⁄T 

1 0.02g 

1.2 2 0.01g 
3 0.005g 
4 0.002g 
5 0.02g 

1.5 6 0.01g 
7 0.005g 
8 0.002g 
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Table 3. Constant velocity cases modelled 

using CFD. 

Case number Depth Froude number d⁄T 

9 0.60 

1.2 

10 0.80 
11 0.89 
12 0.95 
13 1.00 
14 1.05 
15 1.20 
16 1.40 

17 1.70 
18 

19 

20 

21 

22 

23 

24 

25 

26 

0.60 

0.80 

0.89 

0.95 

1.00 

1.05 

1.20 

1.40 

1.70 

1.5 

 

 

4.  Results and discussion 

The potential flow theory provides results for wave-making resistance, whereas the CFD solution 

yields three sets of resistance results: total resistance (RT), frictional resistance (RF), and pressure 

resistance (RP). The pressure resistance is further divided into normal and tangential components, with 

RF encompassing the effects of surface curvature. On the other hand, RP represents a combination of 

viscous pressure resistance and wave resistance [25]. However, the viscous pressure resistance 

typically constitutes a small portion of the total resistance across all speeds [26]. Since wave resistance 

predominates over pressure resistance, it is possible to compare the results without the need to separate 

the pressure resistance into its individual components. 

4.1.  Pressure and wave resistance 

This section compares the wave and pressure resistance values obtained as the ship accelerates for the 

two modeled depth-to-draft ratios. Figure 2 illustrates the comparison between the CFD method and 

MHydro for all cases listed in the test matrix (Table 2), including the constant velocity cases modeled 

using CFD (Table 3). All forces are made dimensionless using the ship mass force Fm, as described in 

[6]. A pronounced peak can be observed in all cases near Fh =1. In the steady problem (i.e., constant 

speed with no acceleration), such a peak is generated by the mutual interference of the fore and aft 

wave systems produced by the ship. The resistance curves in Figure 2 indicate that this type of 

interference reaches its maximum between Fh =1.05 and Fh =1.2, depending on the value of the 

dimensionless acceleration (a/g). 

It should be noted that the peak values shown in Figure 2 for the constant speed case are based on a 

limited number of selected points, and they may not precisely indicate the exact peak value. The curve 

only provides an approximate range within which the peak value is expected to appear. However, it is 

evident that the increase in resistance is significantly influenced by the water depth, as demonstrated 

by the higher Fx values when d/T =1.2 compared to d/T =1.5. This phenomenon undergoes changes 
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when acceleration is introduced. In other words, the presence of acceleration generates an unsteady 

wave that has a notable impact on the resistance. 

(a) 

 

 (e) 

 
(b) 

 

 (f) 

 
(c) 

 

 (g) 

 
(d) 

 

 (h) 

 
Figure 2. Changes of resistance during ship acceleration. The tiles on the left show d/T 

=1.2 while the tiles on the right show d/T =1.5. Fx is the wave resistance obtained by 

MHydro and pressure resistance obtained through the URANS method described 

previously. It also should be noted that the results of CFD here are pressure resistance while 

MHydro results are only wave making resistance. 
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In terms of the discrepancy in the position of the two peaks, both solvers provide remarkably similar 

results for high accelerations. Interestingly, the difference between the predictions increases 

monotonically from 0.75% and 0.68% to 10.13% and 5.54% for d/T =1.2 and d/T =1.5, respectively. 

Further investigations are necessary to understand why the two sets of predictions performed better for 

the lowest acceleration when the water depth is slightly larger. This effect could potentially be 

attributed to the presence of nonlinear effects, which are known to become more significant with 

decreasing water depth. However, drawing definitive conclusions would require more detailed 

investigations, preferably incorporating experimental data to eliminate any bias in numerical or 

potential solutions. 

When comparing the results obtained from MHydro and CFD, it can be observed that regardless of 

whether d/T =1.2 or d/T =1.5, the peak in the MHydro results occurs earlier than the peak predicted by 

CFD, and the resistance value obtained from MHydro is consistently higher. This difference becomes 

particularly pronounced when the acceleration is small. One possible explanation for this disparity is 

the inclusion of viscous and nonlinear terms in CFD. MHydro, on the other hand, provides a linear and 

unsteady result by neglecting nonlinear terms. 

As the acceleration increases, the relative importance of the unsteady effect grows, overshadowing 

the nonlinear effects. Consequently, the unsteady effect becomes dominant when the acceleration is 

sufficiently large, which explains why there is less agreement between the results obtained from 

MHydro and CFD when the acceleration is small. Conversely, the difference between the results 

obtained from the two prediction methods is smallest when the acceleration is large. This discussion 

aligns with observations made in other studies concerning linear potential flow solutions near the 

critical depth Froude number [18], 0, [28]. 

4.2.  Acceleration effects 

As mentioned earlier, two key factors influencing the problem under investigation are the magnitude 

of acceleration and the water depth. This paper will discuss each of these factors in detail. Upon 

introducing acceleration, Figure 3 demonstrates that both the peak resistance value and its 

corresponding position undergo changes. Considering the satisfactory agreement between CFD and 

MHydro, additional case studies are explored in Figure 3 using only the potential flow solver. This 

choice is made due to its faster turnaround time and lower computational requirements. 

Figure 3 illustrates that as the acceleration increases, the resistance peak becomes smaller and shifts 

towards higher values of the examined depth Froude number. This indicates that the unsteady effect 

generated by the acceleration significantly influences the results. The shifting position of the resistance 

peak can be attributed to the shock wave formed at the bow due to the acceleration. During the initial 

stages when the ship speed is low, a shock wave is emitted forward, resulting in additional 

wave/pressure resistance. As the ship speed matches the speed of the wave, the wave-making 

resistance reaches its maximum, which is depicted as the peak in Figure 2. 

In simpler terms, as the acceleration increases, the velocity of the shock wave generated by the ship 

also increases. This means that the ship needs to reach a higher speed to catch up with the shock wave. 

Consequently, the position of the resistance peak is delayed at higher accelerations. As the ship 

continues to accelerate, it eventually overtakes the shock wave, resulting in a sharp drop in resistance 

for a narrow range of Fh values, followed by a linear increase. 
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(a) 

 
(b) 

 
(c) 

 
Figure 3. (a) Changes of fully unsteady resistance with 

varying acceleration; (b) Resistance peak value for 

different accelerations; (c) Peak location at different 

acceleration; Cases depicted correspond to d/T =1.2. 
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Another notable observation from the presented results is that irrespective of the acceleration, the 

time-history of resistance converges to a single point near Fh =1. Beyond this point, the resistance 

exhibits approximately linear growth until it reaches the resistance peak. Figure 4 (a) and Figure 4 (b) 

illustrate these findings for d/T =1.2 and d/T =1.5, respectively. 

 

(a) 

 

 (c) 

 
(b) 

 

 (d) 

 
Figure 4. Resistance time-history for all acceleration intensities while solid lines show the results 

obtained using CFD and dashed lines show the results obtained using MHydro. (a) Resistance time-

history at d/T =1.2 for CFD; (b) Resistance time-history at d/T =1.5 for CFD; (c) Resistance time-

history at d/T =1.2 for MHydro; (d) Resistance time-history at d/T =1.5 for MHydro. 
 

For the water depth corresponding to d/T =1.5, the CFD results indicate that the resistance time-

histories coincide at approximately Fh =0.906, whereas the potential flow results predict this point at 

approximately Fh =0.935. Similarly, for d/T =1.2, CFD predicts a shift in this point to approximately 

Fh =0.92, while MHydro places it at approximately Fh =0.947. Before and after the point of 

intersection in the resistance time-histories, the resistance follows distinct paths. To the best of the 

authors' knowledge, such phenomena have not been documented in the existing literature. 

To investigate the cause of this phenomenon, Figure 5 presents wave fields at different 

accelerations near the intersection point. As Fh or the acceleration varies, wave elevations at the bow 

and stern also change correspondingly. The wave at the bow is primarily influenced by the ship's 

velocity, which is relatively straightforward to comprehend. However, the situation is different for 

waves at the stern. 
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(a) 

 

 (c) 

 
(b) 

 

 (d) 

 
Figure 5. Wave elevations on the port side of ship with different accelerations (y/L=0.0167). These 

results were computed using MHydro for d/T =1.2. 
 

Figure 6 (a) illustrates that the wave elevation at the ship stern is inversely proportional to the 

acceleration. A higher acceleration leads to more pronounced unsteady effects, which, when combined 

with the original wave field at the ship stern, result in smaller wave peaks and troughs. Additionally, it 

should be noted that waves at the ship stern exhibit peaks before the critical speed and troughs after it. 

This indicates that when Fh <1, a smaller acceleration brings the wave elevation at the bow and stern 

closer together, resulting in lower wave resistance. However, after this point, as the acceleration 

decreases, the wave trough at the stern significantly increases. According to Bernoulli's equation, this 

leads to a decrease in the pressure field at the stern of the ship, resulting in greater wave resistance. 

This explains the observed intersection of wave resistance in Figure 4 and why the peak resistance 

value decreases with an increase in acceleration. 
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(a) 

 

 (b) 

 
(c) 

 
Figure 6. Wave elevations around the ship stern and bow with different accelerations. (a) Stern wave 

(WS); (b) Bow wave (WB); (c) Wave difference between ship bow and stern. These results were 

computed using MHydro for d/T =1.2. 
 

4.3.  Finite depth effects 

The agreement between the constant speed and accelerating results depicted in Figure 2 (d) 

demonstrates that the effect of acceleration at a =0.002g and d/T =1.2 is minimal. However, there is a 

significant disparity between the corresponding values at d/T=1.5. This observation, combined with 

the shifting of the resistance peak along the Fh range due to varying acceleration, suggests that the 

water depth Froude number may not be the most suitable parameter to represent the time-varying 

velocity accurately. 

Figure 7 shows a series of example cases computed with MHydro, with a fixed acceleration of a/g 

=0.02 for different depth-to-draft ratios (d/T =1.2-4). Within this framework, larger depth-to-draft 

ratios shift the resistance peak towards higher Fh values and diminish its magnitude. This effect is 

particularly noticeable between d/T =2 and d/T =4. The resistance penalty resulting from the shallow 

water effect at higher Fh values diminishes rapidly with increasing water depth. If the water depth 

were to exceed d/T =4, the distinctive resistance peak observed in shallow waters would disappear. 

Another observation from Figure 7 is that shallow water conditions may provide an advantage in 

terms of reduced resistance when accelerating a vessel. Specifically, the values illustrated for Fh =1 in 

Figure 7 (d) indicate that higher water depths correspond to higher resistance. For the given 

acceleration, the increase in resistance between very shallow water (d/T =1.2) and moderately shallow 

Shallow waters resistance of an accelerating ship

11



 

 

 

 

 

 

water (d/T =4) exceeds 100%. This increase is a result of the delay in the occurrence of the resistance 

peak to higher depth Froude numbers, as shown in Figure 7 (c). 

 

(a) 

 

 (c) 

 
(b) 

 

 (d) 

 
Figure 7. Wave resistance and associated peaks at different water depths, computed using MHydro. 

(a) shows the time-history of the resistance, (b) shows the magnitude of the peak for varying d/T 

ratios, (c) show the position of the peak as a function of d/T while  (d) shows the resistance value at 

Fh =1. 
 

4.4.  Unsteady free surface effects 

The results presented in the preceding sections, obtained through the solution of the fully unsteady 

boundary value problem (BVP) defined in Eq. (1), (4), and (5), provide valuable insights. To further 

investigate the effect of unsteadiness on the free surface boundary condition, a quasi-steady solution is 

proposed. In this approach, the time-dependent terms in Eq. (4) and (5) are ignored at each time step, 

while the body surface boundary condition in Eq. (1) remains unchanged. For both the steady and 

quasi-steady methods, the unsteady Bernoulli's equation in Eq. (12) is utilized to calculate the 

hydrodynamic force, specifically the wave-making resistance in the present study. 

Figure 8 provides a direct comparison between the results obtained from the quasi-steady and 

unsteady free-surface solutions mentioned earlier. The observed discrepancies highlight the 

significance of considering the unsteady free-surface condition in the context of the acceleration 

problem investigated. Notably, the free-surface effects exert a predominant influence in the vicinity of 
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the critical speed region. Given the unsteady nature of the acceleration problem, it is crucial to take 

into account the unsteady terms in the free-surface condition. 

 

 
Figure 8 Wave-making resistance obtained by MHydro with 

and without considering the time-dependent terms on free-

surface boundary condition. The water depth used here is 

d/T =1.2. 
 

5.  Conclusions and recommendations for future work 

When a watercraft accelerates beyond the speed of the fundamental wave in a given medium, it 

experiences fluctuations in resistance. While such effects are well-known in aerodynamics, they had 

not been previously documented in the field of marine hydrodynamics, to the best of the authors' 

knowledge. In shallow water, the wave speed remains constant and depends only on gravitational 

acceleration and water depth. This provides an opportunity to investigate hydrodynamic equivalents to 

the sonic boom. The aim of the present study was to fill this gap in the literature by combining 

URANS and potential flow solutions. 

The research focused on modelling four acceleration intensities and two water depths using the 

Wigley parabolic hull. In all cases, a pronounced resistance peak was observed near the critical depth 

Froude number. The results showed a maximum disagreement in predicting the location of the 

resistance peak along the examined depth Froude number, ranging from 5.54% to 12.44% for d/T =1.2 

and 6.23% to 11.75% for d/T =1.5. 

The findings indicated excellent agreement in the low and high-speed range beyond the critical 

transition, suggesting that resistance in that range is linear and primarily influenced by unsteady rather 

than nonlinear terms. Some deviations were observed between the two solvers near the critical speed, 

suggesting that nonlinear effects influence the solution in that range. An intersection point was 

identified near, but less than, Fh =1 for both modelled water depths, where all acceleration intensities 

intersect. This point's existence was attributed to the proximity of the trans-critical boundary and the 

fact that no steady flow is possible when the depth Froude number is unity. 

While the results presented in this study demonstrate good agreement between the two solvers, it is 

important to note that experimental data on trans-critically accelerating ship resistance would be 

invaluable for validating the accuracy of the predictions. Furthermore, models of trans-critical 

acceleration in fully confined water are of particular interest, as the blockage ratio would also play a 

significant role. Such cases are intriguing because the trans-critical range can occupy a substantial 

portion of the depth Froude number, depending on the blockage [29]. 
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