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Multi-stage spontaneous symmetry breaking of
light in Kerr ring resonators

Lewis Hill® 2™ Gian-Luca Oppo® 2 & Pascal Del'Haye® '3

Symmetry breaking of light states is of interest for the understanding of nonlinear optics,
photonic circuits, telecom applications and optical pulse generation. Here we demonstrate
multi-stage symmetry breaking of the resonances of ring resonators with Kerr nonlinearity.
This multi-stage symmetry breaking naturally occurs in a resonator with bidirectionally
propagating light with orthogonal polarization components. The derived model used to
theoretically describe the system shows that the four circulating field components can display
full symmetry, full asymmetry, and multiple versions of partial symmetry, and are later shown
to result in complex oscillatory dynamics - such as four-field self-switching, and unusual
pulsing with extended delays between subsequent peaks. To highlight a few examples, our
work has application in the development of photonic devices like isolators and circulators,
logic gates, and random numbers generators, and could also be used for optical-sensors, e.g.
by further enhancing the Sagnac effect.
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pontaneous symmetry breaking (SSB) phenomena are of

fundamental importance to many areas of science with

some notable examples being the Brought-Engler-Higgs
mechanism in particle physics!, the superconductivity of metals
in condensed-matter physics, early universe models2,
plasmonics®, and even the evolution of swimming and flying
organisms in fluid dynamics and biology*°. In the field of non-
linear optics, there has been a recent explosion of work studying
SSB in Kerr ring resonators.

A Kerr ring resonator is a closed loop optical path, made of a
Kerr material where the refractive index depends on the intensity
of a strongly interacting coherent (laser) field. Laser light enters
and leaves the looped path of the resonator through optical
couplers such as beam splitters or evanescent coupling, in setups
similar to that displayed in Fig. 1. The cavity fields evolve as they
circulate the resonator due to a combination of the input pump
powers, laser detunings, interactions with the Kerr material, and
losses. Depending on the transmission of the two-way coupler,
the fields can circulate within the resonator for a very large
number of round trips, allowing for long evolution times. Upon
leaving the resonator, via the coupling mechanism, the circulating
fields then progress on towards different outputs where they can
be further processed or measured. Note however that Fig. 1 shows
a more complex scenario than a typical single input Kerr reso-
nator, in that two counter-propagating laser inputs are used
rather than a single one. These two inputs are subsequently split
into different orthogonal polarisation components. This config-
uration is the device of reference for the work presented here.

To date, studies of SSB in Kerr ring resonators have focused
on single-stage phenomena, where, for example, a symmetric
property is broken via a single bifurcation into a limited two
asymmetric states, such as two symmetric resonance frequencies
splitting into two that are then unequal. Symmetry breaking
phenomena involving multiple bifurcations (referred here as
multi-stage), where a symmetric property subsequently breaks
into more than two asymmetric states, which are common in,
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for example, biology®>, have however so far remained
unreported.

Common example mechanisms for observing single-stage SSB
in Kerr ring resonators use counter-propagating fields or use two
orthogonally polarised, co-propagating, field components. In the
first example, two, otherwise identical, input beams enter the
resonator in opposite directions. The evolutions of these field,
including their SSB, have been studied extensively
theoretically®-13, and, more recently, experimentally!4-18. The
second example involves a single, linearly polarised, laser input
splitting into two orthogonally polarised components. Theoreti-
cally this SSB was investigated by Geddes et al.! when con-
sidering transverse diffraction via two coupled Lugiato-Lefever
equations2%, and in by ref. 2! when considering longitudinal dis-
persion via two driven and damped nonlinear Schrédinger
equations. This two-polarization setup, and its SSB, have also seen
a recent flurry of studies, both theoretical and
experimental?10-22-26,

In order to achieve the elusive multi-stage SSB, we investigate
here if this would occur via the combination of the above two
well-known mechanisms. It is this combined system that is dis-
played in Fig. 1 and forms the basis of our analysis.

Motivation for the attainment of multi-stage SSB in ring
resonators, beyond fundamental curiosity, lies in the myriad
successes of the single-stage systems. The polarisation system can
be used for example as a polarization controller?? and for pro-
ducing SSB temporal cavity solitons** and breathers>> with the
potential to provide novel methods for two-components fre-
quency combs. While the counter-propagating system, on the
other hand, can be used to enhance the Sagnac effect® for the
development of rotation sensors with increased sensitivity, and to
realise isolators and circulators?’ for, for example, all optical
computing.

Our aim here, therefore, is to derive and deliver a robust the-
oretical framework to guide the experimental realisation of a
system that proves itself capable of greatly expanding the range of
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Fig. 1 Studied setup. Two identical, linearly polarised, laser inputs enter a Kerr ring resonator (shaded blue) via a two-way coupling mechanism from
opposing directions. This leads to two counter-propagating, linearly polarised, fields circulating the resonator, red and blue coloured arrows respectively. By
splitting the linearly polarised light fields into left- and right-circularly polarised components we obtain a total of four circulating fields, U;_4.
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ring resonator applications in general, while also providing a
potential route for replacing multiple resonator devices with a
single one.

Results and discussions

This section describes results from using the system of equations
described, and derived, in the methods section of this paper,
which model the four circulating components U;_., of Fig. 1.

Multi-stage and multi-regional SSB. Figure 2 shows the evolu-
tions of the intensities of the four circulating components, |U; _4/?,
during an input intensity, |E;,|?, scan for a select cavity detuning
value of 6=3.85. This figure was created by numerically inte-
grating Eqgs. (4). The solid lines of the scan show the natural evo-
lution of the circulating field intensities as the input power is
gradually decreased. It can be seen that for the lower input power
values of this scan the single solid line (blue) mimics analogous
results of the separate models described in the introduction; that is
to say that for very low input intensities all four fields have fully-
symmetric, or equal, intensities: |U;|? = |U,|? = |Us|? = |Uy|2. At
higher values of the input intensity however, beginning at around
|E;,|> = 0.82 in this example, one observes that this single solid line
bifurcates into two (cyan) solid lines, and itself becomes a dashed
line (indicating here an unstable solution). This bifurcation is
indicative of spontaneous symmetry breaking, where now, rather
than full symmetry between the circulating field intensities the four
fields separate into two stable asymmetric pairs of symmetric fields,
with those pairings being either |U,|? = |U,|? & |Us|? = |UyJ? or
|Uy|2 = |Us|? & |U,|> = |Uy|%. This pair-separation amounts to
either a propagation direction or circular-polarization symmetry
breaking respectively, with the type of SSB and the dominant and
submissive roles taken by the two asymmetric pairs both being
randomly assigned by the noise within the system. This bifurcation
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Fig. 2 An input power scan of Eq. (4) for detuning § = 3.85. The scan runs
from right to left with the previous end iteration used as the initial condition
for the next input value. The solid lines show the natural circulating
evolutions, with indicative shading, while the dashed lines show unstable
states. Note that the solid line has four distinct regions with shaded
backgrounds. Region (1) has full symmetry where all fields have equal
intensity; region (2) begins with a symmetry breaking pitchfork bifurcation
and results in two asymmetric pairs of symmetric fields; region (3) begins
with a second symmetry breaking pitchfork bifurcation, leading to four
entirely asymmetric fields, and finally region (4) begins with a partial-
symmetry restoring pitchfork bifurcation, leading to a single pair of
symmetric fields, with the remaining two fields being both asymmetric to
each other and to the symmetric pair.

will likely come with little surprise to those knowing the theory of
the separate systems since it represents the well-known single-stage
symmetry breaking.

Atop the solid (stable) cyan lines, and the dashed blue line, in
this region there are other possible solutions, displayed by dashed
green lines. This type of, currently unstable, solution later
becomes stable, and will be discussed then. Note that the dashed
lines of Fig. 2, which show stationary but unstable states of the
system, are still discoverable by numerical integration when we
forcibly set, for example, U; = U, = U; = Uy (blue), (U; =U,) &
(U3 =Uy) (cyan), and U; = U, (green).

Tracking the input intensity to higher still values one sees a
secondary bifurcation, where the previously stable cyan line splits
into two stable yellow lines while becoming itself unstable. This
should immediately be recognised as a nested SSB bifurcation,
resulting in full asymmetry between the circulating field
intensities: |U, |2 # |U,|? # |Us|? # |Uy|2. Through this scan we
have thus observed a fully symmetric state break into asymmetric
pairs and finally then break again into a full asymmetric state i.e.
we have just observed the sought multi-stage spontaneous
symmetry breaking.

Pausing, momentarily, to reflect upon the implications of this
result. Firstly, as is explained by Kaplan et al.%, one can enhance
the Sagnac effect through exploiting the SSB of counter-
propagating fields. Since the degree of enhancement is propor-
tional to the magnitude of the difference between the circulating
components, we can actually enhance the Sagnac effect further
still through our multi-stage SSB. This is since we see that the
fully asymmetric solutions of our system allow for a greater
difference between the most dominant and most submissive field
components, than that which exists for the single-stage break.
This therefore has the potential to develop hyper-sensitive
rotation sensors. Secondly, the wider diversity of possible system
states, and the freedom to manipulate the resonator through said
states, lends itself to the possible development of logic gates,
building upon methods previously proposed using single-stage
SSB28, capable of more complex operation. Similarly, the multi-
stage structure allows for the development of polarisation
dependent isolators and circualtors?’. Finally, we immediately
recognise the possibility of multi-stage SSB phenomena perhaps
doubling, or more, the rate at which random numbers may be
generated based upon recently proposed single-stage SSB
techniques?°.

Returning attention to Fig. 2, we note, at last, the surprising
“partially”-symmetric region, caused by a solo symmetry restor-
ing bifurcation in but two of the components alone. In this
region, the previously unstable (dashed green line) solutions
becomes stable (solid green). This line describes a single
symmetric pair of field components, with the remaining two left
asymmetric both to each other and to the symmetric pair. Le.
|Ui|2 # |Uj|?2 = |Uil?> # |UJ? & |Uj|?> # |UJ? where here the solo
symmetric pair can be with |U;|> = |U,|? or |U,|> = |Us|%. This
indicates a symmetry retention along one of the diagonals of
Table 1 with asymmetry between the remaining diagonal
elements of the table. A region that also lends itself to many of
the applications above.

In summary, we find four system states in relation to various
degrees of symmetry within the system: (1) full symmetry, (2) two
symmetric pairs, (3) full asymmetry, and (4) one symmetric pair
with the others asymmetric.

To gain a better understanding of the useful states of Egs. (4),
we display in Fig. 3 the results of numerical scans in the
parameter space of input power In(|E,, |*> + 1) and cavity detuning
0, with the various field intensity relations described in the figure
caption. The detuning range of this figure is from 0 to 5.5, while a
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Table 1 Transformations to circular polarisation basis.
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Fig. 3 Input power—cavity detuning parameter space. The dark blue
region corresponds to fully symmetric stable solutions, the light blue region
to two asymmetric pairs of symmetric fields, the green region to a single
pair of symmetric fields, with the remaining two fields being both
asymmetric to each other and to the symmetric pair, and finally the yellow
region corresponds to four fully asymmetric fields. Also included is an
orange overlay which indicates the regions where the fields are unstable to
temporal oscillations. Red lines indicate the slices of the scan shown in
Figs. 2, 4 and 5 respectively.

similarly normalized detuning of up to 15 has been achieved
experimentally by ref. 2% Similarly, input powers of up to
|E;x|? = 11.5 have also been used experimentally, again by ref. 24,
while many results here require only up to |E;,|*=3.5. We
further believe that the experimental realisation of normalised
input powers beyond this referenced experimental value is
realistic. This is owed to their dependencies on resonator design
properties, such as resonator finesse, length, and Kerr response. It
can be seen that the system’s dynamics are very rich, and that
specific relationships between field intensities, such as being fully
asymmetric, are highly dependent on the input parameters. In
this scan we see additional regions of special interest, such as the
isolated second SSB, light blue, region, which emerges on
the right-hand side of the plot, and the orange regions, indicating
the temporal oscillations that emerge at high detuning values.
First focusing on the interest of the second isolated SSB region,
we provide an input intensity scan for 6 =2 in Fig. 4. Here we
show, again with solid lines, the natural evolution of the
circulating fields as we decrease the input power. Also shown
with dashed lines, are the stationary but unstable solutions when
we force U, = U, = U; = Uy (dashed blue) and U, = U,, Us; = U,
(dashed cyan). We see that at input powers of region (4) the states
with a single symmetric pair (green) are stable at the expense of
the state with two asymmetric symmetric-pairs (cyan). We
further note that the most and least intense field components of
the green solution set in this region are always higher than those
for the blue solution set, meaning that this region can also be used
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Fig. 4 Input intensity scan of Egs. (4) for detuning § = 2. For this low
detuning value we provide a much larger range of input intensity values
than in Fig. 2. This is to highlight a second symmetry broken region which
emerges at high input intensity values (light blue region on the RHS of
Fig. 3).

to further enhance the Sagnac effect by the method based upon
intensity difference as described by refs.®’. Comparing the
differences between the most and least intense field components
for an example selected input power of In(|E;,|> + 1) = 1.4, we
find a 70% increase in the difference when comparing the
multistage symmetry broken solution set (green) to the single
stage (cyan). Further, perhaps quite surprising to those who study
the separate system, one may also see the second, entirely
separate, symmetry broken regime which emerges at high input
intensities. Within this region lies the previously unstable
asymmetric symmetric-pairs of fields. That is to say, in this high
input intensity region the pairings |U;|? = |U,|? & |U,|? = |Us|?
are stable, with the other possible combinations of pairings
previously described now being unstable. This means that within
our system any combination of two asymmetric symmetric-pairs
are stable and observable at some point in parameter space.

Temporal oscillations, chaotic attractors, and spontaneous
switching. As hinted at by the orange overlay on Fig. 3, the
system described by Eqgs. (4) is susceptible to oscillations for some
parameter regions. In Fig. 5 we display the full range of possible
oscillatory behaviours for a selected value of the detuning
0=5.25. In subsequent figures we display these behavioural
regions in more detail.

Focusing first on the LHS of Fig. 5, in Fig. 6 we present the
temporal evolutions of the intensities of the four fields and in the
corresponding complex planes after transients have been
discarded for 8 =525, and In(|E;,|*> + 1) = 1.0, panels (a) and
(b), In(|E;,|> + 1) = 1.25, panels (c) & (d). The examples provided
in Fig. 6 are characteristic of the two orange regions on the far left
of Fig. 3, respectively, and show that these regions are quite
different in nature. The first region displays oscillations where the
four fields have split into two asymmetric symmetric-pairs, as
described in the above section, (see Fig. 6a, b), whereas in the
second region all four fields oscillate in a fully asymmetric way
with respect to one another (see Fig. 6¢, d).

Turning attention to the RHS of Fig. 5, we now focus on the
the range of field intensity oscillations for high input intensities.
We show, in Fig. 7, the distinct types of oscillations which are
possible here. The first type of oscillation occurs when two
asymmetric symmetric-pairs of fields, again with the possible
combinations of fields described in the above section, follow the
same phase-space paths and have the same average intensities
(see red lines of Fig. 5). An example of this type of behaviour is
displayed in Fig. 7a, b, for input intensity In(|E;,|> + 1) = 5.5. Due
to the overlap of the phase space paths and the average intensities,
this type of oscillation is very similar to those shown in Fig. 6a, b,
which leads to this state retaining some of its underlying
symmetry. We note, however, that unlike Fig. 6a, b the fields
here do not oscillate in phase and all four fields have fully
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Fig. 5 Field oscillation intensity ranges against input intensity for detuning 6 = 5.25. The solid black lines of the plot trace the maxima and minima of the
four field's oscillatory ranges for the given input intensities (meaning up to eight black lines for some input intensities are possible). Regions shaded in
different tones of blue indicate where oscillations are occurring. The tone of the blue shading itself indicates how many different fields overlap in their
respective oscillation intensity ranges. The lightest blue indicates no overlap between any number of fields, the darkest shading implying all four field's
oscillatory ranges overlap in this region, and finally the intermediate tone implies that only two of the four field's oscillatory ranges overlap in this region.
The red lines track the averages of the four fields over many oscillations, four red lines are always present but may overlap where fields have globally

symmetric intensity evolutions.
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Fig. 6 Field intensity evolutions and their complex phase-space paths. For detuning @ = 5.25 and input powers In(|E;;|> + 1) =1.0, for (a, b), and
IN(|E;n|2 + 1) =1.25 for (¢, d), we show the field intensity evolutions over time, (a, ¢), and their complex phase-space paths, (b, d). Each of the four coloured
lines corresponds to one of the four circulating fields U;_, 4. Computed by integrating Egs. (4). Note that in (a, b) two pairs of fields evolve together causing
two pairs of exact line overlaps, where as in (¢, d) all four fields evolve asymmetrically to each other resulting in four distinct lines in each panel.

asymmetric intensity evolutions. This type of behaviour provides
an alternative way to obtain self-switching between dominant and
suppressed fields in polarisation or counter-propagating systems,
as discussed by refs. 1112, In these studies the “periodic self-
switching”-regions were extremely narrow, while here we observe
very broad regions where periodic self-switching behaviour is
possible.

In Fig. 5, one observes a pale-blue region around In(|E,,|? + 1) =
5.4 beginning and ending with bifurcations in both the black
(tracking the minima and maxima of the field intensity oscillations)
and red (tracking the average of the field intensity oscillations) lines.

These bifurcations beginning and ending the region are known as
global symmetry breaking and global symmetry restoring bifurca-
tions respectively, and correspond to a single symmetric attractor
splitting into two attractors and to two attractors being the
symmetric of each other and merging. In either case, the global
bifurcations produce sudden and large changes to the morphology
of the attractors and can be identified by the merging of attractor
paths in the complex phase space. The types of oscillations which
occur within these regions are characterised by the example
oscillation traces shown in Fig. 7c, d, where In(|E;,|> + 1) =54.
Note that the previous pairs of fields which held residual
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(a, ¢, e, g i) show the intensity evolution; (b, d, f, h, j) show the complex phase. For more detailed discussion please refer to main text.

6 COMMUNICATIONS PHYSICS | (2023)6:208 | https://doi.org/10.1038/s42005-023-01329-3 | www.nature.com/commsphys


www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01329-3

ARTICLE

Circ. Field Intensity,
2

= = 0.3 ONE :
ar vl | .
2% ; Pl
G2 02F 1 | . bl
[=N h '
gz { :
=204f i ' oL
sT LN ' i
S5 oA\ ‘ L L\ |
500 1000 1500 2000 2500
Time (t)

Fig. 8 Pulsing dynamics. By taking the difference between the intensities of
the two fields existing in close pairs (a) as they evolve over time, pulse
structures (b) can be observed with long delays between their production.
The example displayed is for an input laser intensity of In(|E;,|2 + 1) ~1.21
and detuning 6 = 5.25.

average-intensity symmetry have split, and their complex-phase-
space attractors have also split into two separate attractors—
indicating a global symmetry breaking bifurcation. Ending these
regions however, the average-intensity and complex-phase-space-
path symmetries are restored, and the split attractors merge once
again (a global symmetry restoring bifurcation),with an example of
this shown in Fig. 7e, f where In(|E,|? + 1) = 5.35.

There are also extended regions of non-periodic switching,
Fig. 7g, h, and later even four-field periodic switching. This is seen
where a single continuous red line is displayed in Fig. 5, where all
attractors have merged perfectly, resulting in all four fields
displaying symmetric average intensities and perfectly overlaid
phase-paths, Fig. 7i, j.

Slowtime pulsing behaviour. To complete our discussions sur-
rounding the system’s temporal dynamics, we display pulsing
behavior on the slow time scale with long delays between each
structure generation. This occurs within the region where all four
fields can oscillate with separate values of their intensities as one
approaches the region’s low-input-intensity limit—at approxi-
mately In(|E;,|> + 1) = 1.21 in Fig. 5. An example of this is shown
in Fig. 8. The pulse structures can be observed by taking the dif-
ference between two of the circulating fields, as shown in Fig. 8b,
with possible pairings of the top two and bottom two fields
being |ULI2 = |Usf? & |Us]2 = |Usl? or |Uy|? = |Us|? & |Uy|2 = | Uyl
These structures are a result of the system periodically almost
gaining and then rapidly losing either of the polarization or
propagation-direction symmetries in this region via a relaxational
limit cycle.

Focusing on only, for example, the top two fields of Fig. 8, in
Fig. 9b we show our theorised HSS. It contains an optical
bistability cycle of the symmetric state, say |U;|?=]|U,/%
coexisting with asymmetric solutions, all of which are unstable
to oscillations. The observed intensity evolutions of Fig. 8a can
then be explained by the following consideration: focusing on one
period of the intensity oscillation in Fig. 9a, the two fields begin
with almost perfect polarization or propagation-direction sym-
metry on the lower branch of the optical bistability of Fig. 9b,
purple dot. This HSS is metastable so that the system initially
evolves away from this symmetric point and is attracted to the
two asymmetric solutions, blue and red dots respectively of panel
(b), leading to an increasingly large asymmetry between, as an
example, the intensities of the two polarization components of the
field. Since we predict the asymmetric HSS to be unstable to
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Fig. 9 Relaxational limit cycle. a Intensity evolutions which can cause pulse
structures when subtracted. b Theorised HSS diagram explaining the field
dynamics producing (a). ¢ Visual representation of how the fields oscillate
between the various HSS that we theorise are possible in (b).

oscillations however, the system does not settle on the
asymmetric values, and instead it is drawn to a predicted
attractive but metastable symmetric solution which lies on the
upper branch of the symmetric optical bistability. Unable to find
a stable solution even here however, the system continues to
oscillate where it is attracted to the original symmetric, but
metastable, solution on the lower branch of the HSS, and the
cycle then repeats. This process is summarised in panel (c) with
arrowed paths.

The proposed explanation in terms of metastable states on an
optical bistable cycle and unstable asymmetric branches is further
supported by similar observations in the separate systems’,
supplemented with the, required, nested spontaneous symmetry
breaking bifurcations—the primary result of this paper.

Conclusions

We derived and presented a theoretical model for Kerr ring
resonators with two counter-propagating input beams with two
orthogonally polarized components for each beam. The model
predicts that the physical system will be able to display a vast
number of novel behaviours while simultaneously also being able
to mimic simpler systems if required.

We showed that the system is capable of multi-stage symmetry
breaking bifurcations and restoring events; capable of displaying
full symmetry, partial-symmetry breaking and restoring, and even
total asymmetry. These results alone allow for, for example,
hyper-enhancement of the Sagnac effect, complex logic gates,
polarization-dependent isolators and circulators, and efficient
random number generation.

Turning attention to the stability of the system and its sus-
ceptibility to oscillations, we completed a behavioural scan of the
system for a range of parameters, which revealed a number of
regions where the system was unstable and susceptible to a range
of oscillatory behaviours—again with various degrees of sym-
metry broken or retained. We showed that multiple chaotic
attractors can merge as input parameters are varied, and that this
leads to not only two-field self-switching but also the complex
dynamical behaviour of four-field self-switching, brought about
by a global symmetry restoring bifurcation. Contrary to to the
self-switching dynamics of the separate systems, which occurred
for only small windows of input parameters, our self-switching
dynamics were shown to be maintained for large input ranges.

Atop these novel field behaviours, the system further provides
the option of producing, on a single device, the field behaviours of
the two separate systems, counter-propagation and orthogonal
polarizations. This is to say, it can produce the behaviours of two
counter propagating fields—lending itself to applications such as
enhancing the Sangac effect for use in rotation sensors®,
gyroscopes!®, and elsewhere, and in the realisation of all-optical
components, such as isolators and circulators?’, while also being
able to produce the behaviours of the system with two orthogonal
polarisation components, allowing for applications such as
acting as a Kerr polarisation controller?3, potentially supporting
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(fast-time) temporal cavity solitons for the generation of fre-
quency combs2425, or for use in optical neural networks used in
artificial intelligence applications or for systems for quantum
information processing®. The benefit of this combined system
however should be obvious—it can achieve the behaviours of both
systems simultaneously, all while taking place within one reso-
nator. For industrial applications this has the benefit of saving
both space and fabrication costs, and should be easily achievable
with current resonator or fibre loop technology. There would also
be applications of the physical system in high speed tele-
communication systems, particularly for polarization mode
multiplexing and for the possibility of having counter-
propagating light in telecoms systems. For these reasons, physi-
cal realisation of these devices can benefit from the wide range of
predicted behaviours displayed here.

Methods

We first derived a mathematical model to aptly describe the system of Fig. 1. As
indicated by our introduction, this system is comprised of two counter-propagat-
ing, linearly polarised, laser inputs, which enter a Kerr ring resonator via optical
couplers (e.g. a waveguide close to the resonator). The circulating light fields within
the resonator can then be decomposed into orthogonal polarization components,
as shown in Fig. 1. As a starting position for our model, we first consider the
propagation of a single vectorial field, E, in a Kerr ring cavity as discussed in by
ref. 1. When normalized and neglecting dispersion or diffraction, one obtains:

dE ,
5 =F- (1+in0)E

d (1)
+ iq[A(E - E*)E + B(E - E)E*],

where E = £ X + £,y is the normalised vector electric field envelope (comprised of
components along t{le x and y axis respectively, with the cavity axis along z), E, is the
input field, # = £ 1 in the case of a self-focusing and self-defocusing medium
respectively, 0 is the cavity detuning (the difference between the input laser frequency
and the closest cavity resonant frequency) and the constants A, B represent the self-
and cross-phase modulation strengths respectively'?, which are here given by:

A= (X(131)22 + X(fz)lz), B =y, @

where y(3) is the third order susceptibility tensor3..

The self- and cross-phase modulation constants describe the strengths with
which the two polarisation components affect themselves and each other, respec-
tively, as they circulate the ring resonator!C.

We next sought to generalise this model to take into account an additional input
of Fig. 1, which causes a second, counter-propagating, field to circulate within the
resonator. We did this by considering the propagation of light in the medium in a
manner similar to that outlined by ref. 32, that is, we set clockwise, subindex cw,
and counter-clockwise, subindex ccw, polarization components via:

_ il
Ex,y - gcwx.cwy €

kz —ikz
+ Eeomreony® s ®3)

where k the light wavevector. By expanding Eq. (1) with Eq. (3), neglecting the fast
varying terms, and separating all £, £,,» € E ey terms as far as possible, one
eventually arrives at a relatively long system of four coupled equations. We then
simplified these equations by moving to a circular polarisation basis as defined in
Table 1.

In this basis our model takes on the more succinct form of Eqs. (4), where E;, is
the input amplitude E, in this new basis and C= A + 2B. Similar to Eq. (1), the
first terms within the square brackets of Egs. (4) are caused by self-phase mod-
ulation, whereas the second, third, and fourth terms are caused by cross-phase
modulation. The last term is responsible for an energy exchange between the two
circular components of each beam32, an exchange which is not present in the
separate models. This final component also prevents us from finding the homo-
geneous stationary states (HSS) of the system in the usual manner!?, although we
can still numerically integrate Egs. (4) using well-known Runge-Kutta techniques
to search for stable or dynamic solutions.

For equal pumping and detunings, Eqs. (4) is invariant under the transforma-
tions that exchange the indexes 1 with 2 and 3 with 4 (polarization component
exchange), that exchange the indexes 1 with 3 and 2 with 4 (line counter-
propagation component exchange) and that exchange the indexes 1 with 4 and 2
with 3 (cross counterpropagation component exchange). These are the various

symmetries that are broken by bifurcations we describe.

U, + CU,ULU, ],

U, + CU,U3U, |,

U, + CU,U3U, ],

U, + CU, U U, ],
(O]

Wy — By — (14 i00) U, +in[(AIU, > + CIU, 2 + 241U + ClU, P

& = E, — (1+in0) U, +in[(AIU, > + CIU, 2 +24|U,* + C|U, P

s — By — (14 106) Us + in[(AIUS 2 + CIU, P + 241U, + CIU, P
= ( ) [(

. _ 1+in0)U, +in[(AIU,* + CIU, > + 2A|U, | + C|U,?

NN NN

Throughout the results and discussion section of our paper, including the
numerical simulations of Eqgs. (4), we used values of A =2/3 and C = 4/3, since
these correspond to those associated with silica glass fibers, where
Xiz & X1 & X2 & X /3-
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