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Abstract: In recent years, it has been found that small weight percent additions of silicon to HA can
be used to enhance the initial response between bone tissue and HA. A large amount of research has
been concerned with bulk materials, however, only recently has the attention moved to the use of
these doped materials as coatings. This paper focusses on the development of a co-RF and pulsed DC
magnetron sputtering methodology to produce a high percentage Si containing HA (SiHA) thin films
(from 1.8 to 13.4 wt.%; one of the highest recorded in the literature to date). As deposited thin films were
found to be amorphous, but crystallised at different annealing temperatures employed, dependent on
silicon content, which also lowered surface energy profiles destabilising the films. X-ray photoelectron
spectroscopy (XPS) was used to explore the structure of silicon within the films which were found
to be in a polymeric (SiO2; Q4) state. However, after annealing, the films transformed to a SiO4

4−,
Q0, state, indicating that silicon had substituted into the HA lattice at higher concentrations than
previously reported. A loss of hydroxyl groups and the maintenance of a single-phase HA crystal
structure further provided evidence for silicon substitution. Furthermore, a human osteoblast cell
(HOB) model was used to explore the in vitro cellular response. The cells appeared to prefer the
HA surfaces compared to SiHA surfaces, which was thought to be due to the higher solubility of
SiHA surfaces inhibiting protein mediated cell attachment. The extent of this effect was found to be
dependent on film crystallinity and silicon content.

Keywords: hydroxyapatite; thin film; RF magnetron sputtering; pulsed DC; Silicon

1. Introduction

One of the many issues faced with regards to foreign objects being inserted into the body is the
reduction or elimination of adverse effects caused by a stimulated immune response. Many such effects
can be reduced with a careful material selection; however the current trend is to use the response
of the body to improve the initial success of implant materials which could lead to a longer device
lifetime, reducing the need for revision surgery. In the case of load bearing implants, such as in total
hip replacement (THR) or total knee replacement (TKR), further complications such as the mechanical
requirements of the material to bear load can reduce the number of materials available. It is often
the case that materials that possess the mechanical properties are not always the most compatible in
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these sites. A possible solution is to coat mechanically sound devices with materials which will be
more biologically favourable [1]. A considerable amount of work has already gone into this area [2,3]
but many problems such as selection of the most appropriate correct coating technique is required
to control properties such as coating adhesion [4], composition [5] and topography [6], which may
ultimately influence the biological response of the surface.

While many material systems offer attractive properties for biomedical applications, HA has
attracted much attention due to its excellent bioactive ability for the application of bone repair
and bone replacement [7]. Unfortunately, the nature of ceramic materials due to their reduced
mechanical performance in comparison to metals, means that they, including HA, are restricted to
the application of non-load bearing sites [8]. This problem can be overcome by applying an HA
coating onto metallic materials with superior mechanical strength and stiffness [9]. Currently, plasma
spraying is the only suitable commercial and FDA approved coating process employed [10,11],
but coatings are compromised by the inclusion of undesired calcium phosphate phases leading to
bioresorption and variable tissue response [12]. In addition, these coatings are often poorly bonded to
the metallic substrates, leading to failure in the form of cracking at the coating/substrate interface [13].
Physical vapour deposition (PVD), as an attractive alternative, offers dense, defect free, well adhered
single phase coatings with controllable deposition parameters [14,15].

Numerous authors have showed RF magnetron sputtering could be a potentially beneficial
technique for applying coatings to future implantable devices [16–20]. Current work has shown that
HA coatings are bioactive and exhibit similar properties to bulk materials. Many different compositions
have been achieved for HA thin films due to differing sputtering parameters [16–18,21]. However, it is
still unclear what suitable deposition parameters are and how factors such as power density and
sputtering environment affect resultant films. One important compositional parameter is the Ca/P
ratio, which can give rise to changes in the thermal stability, biological response, mechanical properties
and dissolution potential [17].

SiHA thin films have been shown to elicit an enhanced cellular response compared to HA, which
may provide a way to increase bone response in vitro and in vivo, thus improving the longevity of
implants for future generations [22,23]. Work concerning RF magnetron sputtered SiHA thin films
have only recently been investigated in the last decade [19,23–26]. Thin film systems often differ
from bulk material systems due to the manufacturing process. Therefore, it is assumed that silicate
groups substitute for phosphate groups and it is not fully understood what may happen at higher
silicon concentrations above 5 wt.% [23]. Furthermore, optimal silicon values (ca. 2.2 wt.%) have
been suggested but these are not in agreement [27,28]. Therefore, higher silicon additions [29] up to
13.4 wt.% and altered crystallinities have been investigated in this study.

2. Materials and Methods

2.1. Substrate Preparation

A commercially pure grade 1 titanium sheet (Timet, Swansea, UK) (CPTi) was wire eroded into
10 mm diameter, 1 mm thick discs, which were then ground to a mirror finish (Ra ~ 16 ± 4 nm) using
a series of silicon carbide paper (P240-P1200; Struers, Rotherham, UK), polished with a mixture of
colloidal silica (Buehler, Germany) and 10% hydrogen peroxide (Fisher Scientific, Loughborough, UK)
and finally water. The discs were cleaned for 30 min in acetone, IMS and distilled water and dried
under flowing nitrogen (BOC, London, UK).

Silicon single crystals (100) orientated Czochralski wafer (Compart Technology Ltd., Peterborough,
UK) were cut into squares approximately 10 mm × 10 mm in size with a diamond tipped scribe,
and were used as substrates for XRD to reduce peak contributions from the substrate.
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2.2. Target Preparation

The HA targets were manufactured by plasma spraying HA powder (Plasma Biotal, Buxton, UK)
onto a circular copper backing plate 75 mm in diameter and 5 mm in thickness, with a target material
thickness of ca. 500 µm. For the Si doping, a single 99.999% pure silicon target (Kurt J. Lesker, Hastings,
UK) was used, with dimensions 300 mm × 100 mm × 0.635 mm. Figure A2 demonstrates the target
composition via XRD analysis to be mostly HA.

2.3. RF/Pulsed DC Magnetron Sputtering

The HA and SiHA thin film coatings were produced using a TEER UDP-650 type 2 unbalanced
magnetron sputtering rig (Teer Coatings Ltd., Droitwich, UK). Before deposition, the chamber was
pumped using successive rotary (Edwards E2M40 rotary pump; 10−2 Torr) and diffusion (Edwards
750 diffusion pump) pumping steps to a minimum of 2 × 10−5 Torr. The chamber was then backfilled
with argon (36 sccm; 2 × 10−3 Torr; 99.999% purity; Pureshield BOC©, London, UK).

The HA target was powered by an Advanced Energies RF power supply unit whilst the silicon
target was powered by an Advanced Energy Inc. (Bicester, UK) DC Pinnacle pulsed DC power supply.
The frequency and pulse time were maintained constant at 150 kHz and 1500 ns, respectively. A −30 V
bias was applied to the substrates. The samples were mounted on a stainless steel plate with double
sided adhesive tape and rotated at 4 RPM. The samples were bias-cleaned for 2 min prior to sputtering.
The total deposition time for each coating type was maintained at 2 h, with approximate sputtering
rates of ca. 100 nm/h.

2.4. Post Deposition Heat Treatments

The obtained thin film coatings were recrystallised via heat treatment at a range of temperatures,
with a set time of 2 h using a Lenton Thermal Design tube furnace (Hope Valley, UK) in an argon
atmosphere. Argon was flowed at 100 sccm for 30 min before ramping the temperature up to 20 ◦C
min−1. Mass spectrometry indicated that all gases and water vapour were at untraceable levels before
ramping. The samples were then left to cool under flowing argon.

2.5. Materials Characterisation

2.5.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX)

A Phillips XL-30 scanning electron microscope (LaB6, Surrey, UK) was used to obtain micrographs
at accelerating voltages between 10–20 keV and a working distance of 10 mm. An Oxford Instruments
energy dispersive X-ray microanalysis (EDX) system (High Wycombe, UK) was utilised with a collecting
time of 50 s. Ten randomly selected spots were analysed. Approximately 90,000 total spectrum counts
were taken per sample area.

2.5.2. Focused Ion Beam SEM (FIB-SEM) and Transmission Electron Microscopy (TEM)

The HA and SiHA thin films were initially sectioned using a FEI Quanta 200 3D FIB-SEM
(Cambridge, UK) fitted with a Quorum cryo-transfer unit, an Omniprobe micromanipulator and
an INCA Oxford Instruments EDX analysis system. The FIB-SEM was operated at an ion beam
accelerating voltage of 30 kV and electron beam accelerating voltages of 5–20 kV. A coating of tungsten
was deposited in situ by chemical vapour deposition (CVD) to protect the HA coating. FEI-Runscript
software was employed to mill inspection trenches, using reducing milling currents of 7 to 1 nA for
rough sectioning, followed by milling currents of 0.5 nA to 30 pA in order to polish the lamella surfaces
and to fashion U-shaped cuts into the lamella to facilitate lift-out. A cross sectional microstructural and
chemical analysis was performed using a JEOL 2000-FX-II TEM (Welwyn Garden City, UK) operating
at 200 keV.
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2.5.3. X-Ray Diffraction (XRD)

A Bruker AXS D8 Advance X-ray diffractometer (Coventry, UK) was used in glancing angle
X-ray diffraction mode. Cu kα X-rays (λ = 1.5406 Å) incidented the samples at a 2θ range of 20◦–55◦,
a step size of 0.02◦ and a dwell time of 11 s. The samples were mounted and rotated at 30 RPM. A 2θ
range and dwell time of 25◦–35◦ and 2 s, respectively, was used for recrystallisation measurements.
Temperature scans were performed from room temperature to a maximum of 800 ◦C to investigate the
recrystallisation of thin films.

PC-APD version 3.5B DOS-based software was used to determine crystallite size of thin films
using the Scherrer equation:

B =
0.9λ
tcosθ

(1)

where B is the peak broadening (full width half maximum (FWHM) in radians), λ is the wavelength
of the XRD source material and t is the crystallite diameter. B factors in instrumental broadening
(B = B0bs − Binst) where Bobs is the observed line broadening, which includes instrumental factors such
as detector slit width, area of the specimen irradiated and possible Kα2 X-rays.

2.5.4. Reflective High-Energy Electron Diffraction

A RHEED unit coupled with a JEOL 2000fx TEM operated at 200 keV was used to assess the
surface crystallinity of films. The samples were held perpendicular to normal on a stage positioned
immediately below the objective lens. The samples were tilted so that the shadow edge was positioned
close to the primary beam to access near surface diffraction information. A GaN/GaAs single crystal
standard reference sample with known d-spacings and a camera constant of 33.8 ± 0.5 cm was used to
calculate thin films’ d-spacings.

2.5.5. X-Ray Photoelectron Spectroscopy (XPS)

A Kratos Instruments Axis Ultra (Manchester, UK) with a monochromated Al Kα X-ray source
was run at 10 keV and 15 mA. The instrument was operated in constant analysis energy (CAE) mode
with a pass energy of 20 eV for high-resolution scans. Chemical and compositional information was
obtained between 0–1400 eV. All samples were charge corrected to the C 1s adventitious carbon peak,
which was set to a value of 284.8 eV. The region areas were selected manually and peak deconvolution
was carried out using Gaussian-Lorentzian (GL30) line shapes. The data analysis and compositional
quantification were carried out using CasaXPS software (version 2.3.22).

2.5.6. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) was performed on the thin films using a Bruker
Optics Tensor 27 spectrometer (Coventry, UK) in glancing angle mode at 80◦ with a liquid nitrogen
cooled MCT detector. The chamber was flushed with compressed air continually at 500 sccm to reduce
background signal from water vapour. Samples scans were taken in triplicate for each coating with a
total of 90 scans per specimen. Resultant spectra were analysed using an OPUS software (version 7.0).

2.5.7. Surface Roughness – Optical Profilometry

A Mitutoyo Surftest SV-600 profilometer (Coventry, UK) equipped with Surfpak SV software was
used to measure surface roughness of the coatings. The stylus had a 5 µm radius tip. A scan length of
2 mm with a scan speed of 0.2 mm s−1 and a range of 80 µm were used for all samples. Calibration was
carried out prior to every session using a Mitotoyo Precision reference specimen with an Ra value of
2.95 µm.
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2.5.8. Surface Wettability—Sessile Drop/Contact Angle

Wetting angles of water droplets on the sample surfaces were tested using a sessile drop experiment.
H2O was pumped from a syringe at a rate of 1.0 µL·s−1, from a height 4.0 ± 0.5 mm above the sample’s
surface. A drop settling time of 10 s was implemented prior to data collection.

2.6. In Vitro Biocompatibility

2.6.1. Alamarblue™ Assay

Duplicate samples were placed in 24 well plates (Nunc, Warrington, UK) and UV sterilised.
Tissue Culture Plastic (TCP) was used as a control surface. Human Osteoblasts (HOBs) from bone chips
of femoral heads of patients undergoing total hip arthroplasty were seeded into wells at a density of
40,000 cells cm−2 and incubated at 37 ◦C and 5% CO2. Media (Dulbecco/Vogt Modified Eagle’s Minimal
Essential Medium (DMEM) supplemented with 10% fetal bovine serum (Gibco Life Technologies,
Inchinnan, Scotland), 1% L-Glutamine, 2% HEPES Buffer, 1% non-essential amino acids, 2% penicillin
and streptomycin (Invitrogen, Rugby, UK) and 75 mg ascorbic acid (Sigma, UK)) were replenished
every two days. At each respective time point (1, 4, 7, 10 and 14 days) the media were removed and
samples were washed three times in phosphate-buffered saline (PBS) solution. Then, a 1 mL dilution of
AlamarBlue™ (Serotec, Kidlington, UK) and Hank’s balanced salt solution (HBSS) (Gibco, Inchinnan,
Scotland) in the ratio of 1:10 was added to each well, including unseeded TCP wells, and incubated
for 80 min. The well plates were subsequently wrapped in foil and shaken at 300 rpm on a Heidolph
Titramax 100 for 10 min in a dark environment. The AlamarBlue™ solution was then removed and 100
µm aliquots were transferred into a 96 well plate (Nunc, Warrington, UK). Fluorescence was measured
using a Bio Tek Instruments FLx800 fluorescence plate reader (Swindon, UK) at 560 nm excitation and
590 nm emission filters. Unreduced AlamarBlue™was subtracted from recorded values to remove
background signal. The experiments were repeated twice.

2.6.2. Alkaline Phosphatase Assay

After each designated time point, media were removed from culture plates and washed three
times in PBS solution. Aliquots of 1 mL of sterile distilled water were added to each well. A freeze/thaw
method was employed to lyse the cells. The samples were frozen at −20 ◦C and then allowed to defrost
at room temperature. This was repeated three times. 50 µL of lysate solution was added to a 96 well
plate per sample which was mixed with 50 µL of 4−nitrophenylphosphate (Sigma, UK) mixed with an
appropriate quantity of diethanolamine buffer solution. Plates were shaken at 300 RPM for 1 min in a
dark environment. The luminescence was then measured using a Bio Tek ELx800 luminescence plate
reader with a primary wavelength of 405 nm and a reference wavelength of 630 nm.

2.6.3. DNA Hoechst Staining Assay

At each time point media were removed and HOBs were washed within PBS three times and
submerged in 1 mL of sterile distilled water. A freeze/thaw cycle was carried out in triplicate to lyse
HOB cell walls. Then, 100 µL of lysate was mixed with 100 µL of Hoechst 33,258 stain (Sigma, UK)
and shaken at 300 RPM for 1 min in a dark environment. Fluorescence was then read on a Bio Tek
Instruments FLx800 fluorescence plate reader with 360 nm excitation and 460 nm emission filters.

2.6.4. SEM Sample Preparation

At selected time points, media were removed and samples were washed with PBS thrice and
replaced with 3% Glutaldehyde in 0.1 M sodium cacodylate buffer. This was replaced after 30 min with
7% sucrose solution in 0.1 M sodium cacodylate buffer. Specimens were then washed three times for
5 min periods with 0.1 M cacodylate buffer solution and then immersed in osmium tetraoxide for 1 h.
Post fixing, cells were dehydrated using an ethanol/distilled water gradient (20% × 2 min, 40% × 5 min,
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60% × 5 min, 80% × 5 min 90% × 5 min and 100% × 5 min × 2). Specimens were then submerged in
hexamethyldisilazane (HMDS; Sigma, UK) for 5 min. This was then replaced with fresh HMDS and
left to dry overnight. The samples were mounted on aluminium stubs with carbon adhesive tabs and
gold/palladium coated (ca. 5 nm).

3. Results

3.1. Chemical and Structural Characterisation

3.1.1. Film Morphology and Thickness

Figure 1A shows a cross-section of a HA thin film on a CPTi disc annealed at 600 ◦C. Selected Area
Electron Diffraction (SAED) confirmed that the substrate and the coating was indeed CPTi and
polycrystalline HA. Moreover, the coating can be seen to be uniform in thickness, free of voids or
defects and 185 ± 4 nm in thickness. Figure 1B shows that the SiHA3 thin film measured 216 ± 5 nm in
thickness; films became thicker with increasing silicon content. Local recrystallisation of the HA films
was noted, however, this may be a result of the e-beam interaction.
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Figure 1. Bright field TEM image of (A) the tungsten/HA/Ti lamellar showing the HA thin film
deposited on a CPTi substrate with associated selected area electron diffraction (SAED) patterns
of the crystalline W protective coating, polycrystalline HA coating and crystalline Ti substrate and
(B) the tungsten/SiHA3/Ti lamellar showing an amorphous SiHA3 coating on a CPTi substrate and
associated SAED.

Surface micrographs of all films exhibited similar morphologies in as deposited and heat-treated
states following the topography of the CPTi substrates. Figure 2A shows a representative as deposited
HA film, showing a smooth dense coating without voids or defects. After a heat treatment at
600 ◦C (Figure 2B), all HA and silicon containing films looked similar in morphology with no notable
differences with respect to silicon addition. At 700 ◦C, films became notably more textured with distinct
features rising from the surfaces (Figure 2C).
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3.1.2. Energy Dispersive X-Ray Analysis (EDX)

Table 1 demonstrates averaged Ca/P ratios of all coatings, and plasma sprayed targets. All samples
were significantly higher than the stoichiometric value of bulk HA (1.67), however, they were
significantly lower than the Ca/P ratio of the target material. The standard error of the mean was found
to increase with increasing silicon content. Silicon content was seen to increase from 1.8 to 13.4 wt.%,
with increasing target power densities from 6.6 × 10−4 to 3.3 × 10−3, respectively.

Table 1. A summary of combined silicon content of HA and SiHA thin films batches as measured by
EDX. Values displayed are the mean ± standard error of the mean, where n = 6. Ca/P content calculated
from EDX and XPS measurements.

Sample Silicon Target
Density/Wcm−2

Ca/P Ratio
(EDX)

Ca/P Ratio
(XPS)

Silicon
Content/wt.%

Stoichiometric HA N/A 1.67 1.67 N/A

Plasma Sprayed HA Target N/A 1.90 ± 0.02 N/A 0.0 ± 0.1

HA N/A 1.76 ± 0.03 1.43 ± 0.03 0.0 ± 0.1

SiHA1 6.6 × 10−4 1.74 ± 0.03 1.23 ± 0.05 1.8 ± 0.3

SiHA2 1.6×10−3 1.79 ± 0.08 1.16 ± 0.06 4.2 ± 0.7

SiHA3 3.3×10−3 1.68 ± 0.09 1.03 ± 0.13 13.4 ± 1.4

3.1.3. X-Ray Diffraction (XRD) Analysis

XRD spectra (Figure 3) show representative XRD plots of as deposited films onto silicon (100)
wafers heat treated at both 600 (Figure 3A) and 700 ◦C (Figure 3B). All as deposited (unannealed)
coatings revealed an amorphous nature with a distinct hump at 27.5◦. Following heat treatment at
600 ◦C, HA, SiHA1 and SiHA2 films recrystallised forming a single-phase HA structure matching ICDD
card 09-432. Preferential orientation was seen along the (002) reflection when compared to a randomly
orientated sample. The peak intensity of films decreased after inclusion of silicon. This was seen by
peak broadening along the (002), (211), (112) and the (300) planes. Surprisingly, the SiHA3 samples
remained amorphous after heat treatment at both 600 and 700 ◦C. The silicon addition to SiHA3 clearly
had an effect on the recrystallisation transitional temperature of the HA structure. Full recrystallisation
was not achieved for the SiHA2 at 700 ◦C with clear broadening of the FWHM compared to the full
crystalline HA.

Consequently, a sequential heat treatment investigation (Figure 3C) was conducted on the
SiHA3 coating to determine the temperature of recrystallisation. Figure 3C shows that the structure of
SiHA3 did not alter after heat treatment up to 700 ◦C. At 800 ◦C, a single phase HA structure matching
ICDD card number 09-432 was observed. Preferential orientation along the (002) plane was no longer
observed, with the (211) plane being the most intense. For further heat treatments up to 1000 ◦C,
the intensity of the (002) increased, and peaks sharpened, indicating crystal growth.
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In addition, approximate crystallite size was calculated using the Scherrer equation. Table 2
lists calculated crystallite sizes of annealed HA and SiHA thin films from the XRD data presented.
The crystallite size of all coatings increased with increasing annealing temperature. For example,
the crystallite size of HA was ca. 78 and 89 nm following annealing at 600 and 700 ◦C, respectively.
Respective values were seen to decrease with increasing silicon content. Crystallite size could not be
calculated for SiHA3 at either annealing temperature, as both films were amorphous.

Table 2. A summary of HA crystallite size (nm) calculated by the Scherrer equation for HA and SiHA
thin films sputtered onto silicon (100) single crystal wafer using the <001> planes.

Sample
Heat Treatment Temperature/◦C

600 700

HA 78 ± 16 89 ± 16

SiHA1 65 ± 14 71 ± 14

SiHA2 71 ± 23 86 ± 31

SiHA3 N/A N/A

3.1.4. RHEED Analysis

All as deposited samples were amorphous (not shown), with RHEED being conducted mainly to
ascertain crystallinity and phase purity. After annealing at 600 ◦C, diffraction rings could be observed
(Figure 4A–D). Due to the low accuracy of the RHEED measurements and the large number of HA
diffractions, it proved difficult to index the rings. Therefore, only the most intense rings have been
indexed with confidence, with the first ring corresponding to the (002) plane and the second broader
ring corresponding to the (211), (112) and (300) planes. With increasing silicon content, the number of
rings present decreased. The SiHA1 sample, Figure 4B, exhibited only two hazy rings corresponding
to the d-spacings at 2.9 and 2.7 Å. The first ring was assigned to the (002) plane and the second broader
ring is a combination of the (211), (112) and the (300) planes. The SiHA2 samples, Figure 4C, displayed
the same rings as above but with lower intensity. The SiHA3 samples, however, showed no rings,
indicating that these samples were amorphous.

The samples annealed at 700 ◦C (Figure 4E–H) demonstrated sharper diffraction rings compared to
600 ◦C annealing. Ring intensity increased for the HA sample with no new observed peaks (Figure 4E).
The SiHA1 sample (Figure 4F) detailed the presence of additional rings related to a combination of HA
and rutile, which are shown in (Figure 5). For the higher silicon content coatings, (SiHA2 and SiHA3),
the number of rings decreases, reverting back to a HA system, however, it may be seen that in SiHA2
(Figure 4G) some rings relating to rutile remain. This was also the case for the SiHA3 (Figure 4H)
sample, however, the rings were more defuse.
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Figure 5. Comparisons of RHEED patterns for (A) SiHA1 film on a CPTi disc annealed at 700 ◦C in
flowing argon for 2 h and (B) CPTi sample annealed in air at 750 ◦C for 1 h. All indexed planes match
to ICDD card 76-1939 (Rutile) unless indexed with a superscript a plus diagonal arrows indicating
possible HA reflections matching to ICDD card 09-432 (HA).

3.1.5. X-Ray Photoelectron Spectroscopy (XPS)

Ca 2p, P 2p and O 1s high resolution XPS spectra are shown in Figure 6. A calcium doublet was
observed separated by 3.55 eV and fitted with two components at peak positions of 347.5 and 351.0 eV
for Ca 2p1/2 and Ca 2p3/2 respectively [30]. Calcium was in low concentrations in the as deposited
films (4.3–6.8 at.%), but increased after annealing at both temperatures (12.1–18.0 at.%). P 2p peaks
were fitted with a doublet [31], with separation energy of 0.84 eV. Phosphorus content decreased with
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both increasing annealing temperature and silicon content. Interestingly, no phosphorus was seen on
any of the HA thin films annealed at 600 ◦C, but was seen on HA samples annealed at 700 ◦C.
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The O 1s peak for the as deposited samples was fitted with two components at 531.0 eV and
532.5 eV, corresponding to PO4 [32] groups and C–O [32] or SiO2 groups [33], respectively. The second
C–O component became larger with increasing silicon content. Therefore, it is thought that this is
related to SiO2 binding [33]. After annealing at 600 or 700 ◦C, the O 1s peak could only be fitted
to a single component at 531.0 eV, which corresponded to PO4 bonds. Furthermore, a reduction in
oxygen content was seen in all films after annealing, however, no differences were observed between
the oxygen content of films annealed at 600 or 700 ◦C. In the HA samples annealed at 600 ◦C (which
showed no phosphorus present on the surface), no shift in the binding energy of the component at
531 eV was seen.

The Si 2p silicon peak was fitted to a single component. As already shown by the EDX data,
the silicon content of thin films increased with increasing power density applied to the silicon target.
These values, however, were in poor agreement with the EDX being consistently lower. In the as
deposited samples the chemical shift for the Si 2p were found to depend on the silicon content of
the film, with lower binding energies measured for the samples with lower silicon concentrations.
After annealing at both temperatures all Si 2p peak positions were in the region of 101.5. Silicon content
did not vary after annealing at 600 ◦C, compared with the as deposited samples, however after a heat
treatment of 700 ◦C, only very small quantities were seen on all of the SiHA samples.

The Ca/P ratio decreased with increasing silicon content from 1.43 in the HA samples to 1.03 in the
SiHA3 samples for the as deposited samples. After heat treatments of 600 ◦C the Ca/P ratio increased.
This increase was higher for higher concentration silicon containing HA films. Following annealing at
700 ◦C a further increase in Ca/P ratio was seen.

3.1.6. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR was used to assess the chemical bonding in RF magnetron sputtered thin films. Figure 7A
shows infrared spectra for as deposited HA and SiHA thin films sputtered onto CPTi. The HA,
SiHA1 and SiHA2 films exhibited four distinct bands at wavenumbers 1147, 1028, 950 and 617 cm−1,
which are indicative of υ3 P–O stretching. SiHA3 samples showed a reduction in the number of
phosphate bands, with only peaks at 1147, 950 and 617 cm−1 present.

After heat treatments at 600 ◦C (Figure 7B), the HA films showed sharper peaks with an additional
phosphate band at 1080 cm−1 when compared to the as deposited HA film. Moreover, a small
OH peak was seen at 3643 cm−1. The SiHA1 sample showed all phosphate bonds exhibited by
the recrystallised HA sample, however, bands were slightly broader, with a new peak at 820 cm−1.
The SiHA2 sample showed broader phosphate bands, and the intensity of the peak at 820 cm−1 was
reduced. The SiHA3 sample only showed three broad phosphate bands at 1147, 950 and 617 cm−1.
This spectrum was very similar to the spectrum of the as deposited coating. Due to similarity of the
produced spectra, the 700 ◦C heat treatment is not shown.
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Figure 7. FTIR Spectra of (A) as deposited HA and SiHA thin films on CPTi substrates and (B) HA and
SiHA thin films on CPTi substrates heat treated at 600 ◦C for 2 h in argon.

3.1.7. Surface Roughness

Stylus profilometry was performed on coatings to assess surface roughness and morphology.
Figure 8 shows measured Ra values for uncoated polished CPTi, HA and SiHA coated discs.
Uncoated CPTi discs had an Ra value of ca. 16 nm and their roughness increased to ca. 25 and 70 nm
after heat treatment at 600 and 700 ◦C, respectively. As deposited HA and all SiHA coatings exhibited
similar roughness, ca. 20 nm. After heat treatments at 600 ◦C, HA films had the highest roughness
value at ca. 41 nm, which decreased gradually with increasing silicon content. This effect was also
observed for all films heat treated at 700 ◦C, but at significantly higher roughness values than the
samples treated at 600 ◦C, with HA films having a roughness of ca. 78 nm, and the SiHA3 samples
being measured at ca. 32 nm.
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Figure 8. Ra roughness values for CPTi, HA and SiHA thin films as received and heat treated at 600 and
700 ◦C in flowing argon for 2 h.

3.1.8. Film Wettability

Water contact angle testing was performed to establish the surface hydrophobicity or hydrophilicity
of thin film samples. Figure 9 shows measured contact angles for HA and SiHA thin films. All silicon
doped samples exhibited lower contact angles than the pure HA films whether in an as deposited or
annealed state. The as deposited HA film had a water contact angle of 67◦, which decreased with
increasing silicon content down to an angle of 27◦ for the SiHA3 samples. Following heat treatments at
600 ◦C, the contact angle for all samples decreased when compared to the as deposited samples to
values of 54, 41, 31 and 26◦ for the HA, SiHA1, SiHA2 and SiHA3, respectively. After heat treatments at
700 ◦C, an increase in contact angle was seen for all samples when compared to either the as deposited
or samples heat treated at 600 ◦C, measuring 69, 56, 42 and 36◦ for the HA to the SiHA3 samples.
Figure 9 also shows optical images of water droplets on as deposited HA and SiHA surfaces. It can
therefore be seen that the hydrophilicity increases with increasing silicon content.
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Figure 9. Measured contact angles of water droplets on HA and SiHA thin sputtered films. Mean ±
standard error of the mean where n ≥ 6. Also shown are digitally enhanced representative grayscale
photographs of water droplets on (A) HA (B) SiHA1 (C) SiHA2 and (D) SiHA3 thin sputtered films,
showing the effect of silicon doping on the contact angle of water. Photographs taken from as deposited
sample set.

3.2. In Vitro Cytocompatibility Testing

3.2.1. Elusion Testing – Metabolic Activity, DNA Content and Morphology

Figure 10A1 shows no significant difference (p > 0.05) between the metabolic activity of either the
control thermanox samples or the samples in HA and SiHA dissolution media. This was confirmed by
the Hoest DNA staining assay (Figure 10A2), in which there was no significant difference (p > 0.05) in
DNA content of HOBs grown in the dissolution products of any of the coatings.

Cell morphologies for the control (Figure 10B insert) and all samples (Figure 10B–D) appeared to
be similar, showing a monolayer over the thermanox surface. Cells were well spread, appearing to
cover similar cell areas. Filopodia and lamellapodia were also observed, indicating cell signalling was
occurring successfully and did not demonstrate significant cytotoxicity.
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Figure 10. Combined elusion testing results showing: (A1) Metabolic activity and (A2) DNA content of
pre-seeded HOB cells exposed to dissolution media of HA and SiHA samples for 24 h (Both expressed
as mean ± standard error; n = 6); (B–D) SEM micrographs of HOB cell morphology on thermanox
slides after 24 h of culture in media containing the dissolution products of (B) HA, (C) SiHA1, (D)
SiHA2 and (E) SiHA3 thin films (insert image in B shows cells culture in fresh media for reference).

3.2.2. Initial Attachment

Figure 11 shows the adhesion of HOB cells as a percentage of a TCP control. As deposited and heat
treated HA thin films showed good attachment after 90 min with values of 51 and 91% of the control,
and were found to be significantly different (p < 0.05). As deposited and heat treated SiHA1 and
SiHA2 samples showed poor cell attachment which was less than 20% of the control. All values for
SiHA1 and SiHA2 samples were significantly lower than the heat treated HA thin film (p < 0.05).
The as deposited SiHA3 samples showed good cell attachment compared to the as deposited and
annealed SiHA1 and SiHA2 samples, and were not significantly different from the heat treated HA
samples (p < 0.05). Following heat treatments at 600 ◦C for 2 h, the SiHA3 sample showed poor cell
adhesion; 7% of the attachment seen on the control surface.
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Figure 11. The 90 min attachment of HOB cells to as deposited and heat treated HA and SiHA films at
600 ◦C. Values are mean ± standard error where n = 6.

3.2.3. Proliferation and Differentiation—Cellular Activity, ALP, and Morphology

The AlamarBlue™ assay results of all sample types annealed at 600 ◦C (Figure 12A) demonstrate
that the HA surface exhibited the highest cellular metabolic activity at every time point. The lowest
activity was recorded on the SiHA1 samples. There appeared to be no increase in metabolic activity
until day 14, where cell activity significantly increased. Conversely, metabolic activity increased
with increasing silicon content of SiHA samples. The SiHA2 and SiHA3 samples showed higher
cellular activity compared to the SiHA1 samples, and their metabolic activity increased gradually
over time. However, HA and SiHA1 surfaces annealed at 700 ◦C (Figure 12B) demonstrated similar
metabolic activity at all time points, but the differences were not statistically significant (p > 0.05).
Overall proliferation of both samples was seen to increase gradually up to the 10 d time point, followed
by a slight reduction at day 14.

DNA measurements (Figure 12C,D) confirmed the trends shown by the Alamar Blue™ assay,
with HA annealed at 600 ◦C (Figure 12C) exhibiting the highest DNA content, followed by the SiHA3,
SiHA2 and then the lowest, exhibited by the SiHA1 samples. HA consistently showed higher DNA
values than all other samples. Annealing at 700 ◦C showed no significant difference between the HA
and SiHA1 samples at any time point (Figure 12D).

ALP activity was negligible for all 600 ◦C annealed surfaces after seven days of culture (Figure 12E).
After a time period of 10 days significant ALP activity was seen for the HA samples at approximately
35% of the TCP control. Negligible values were recorded for all silicon containing coatings. For the
700 ◦C annealed samples (Figure 12F), ALP was not expressed until day 10 for the HA sample, recording
a value at 45% of the control with no significant difference at day 14. The SiHA1 samples arguably
exhibited ALP production at day seven at approximately 10% of control. This was seen to significantly
increase (p < 0.05) at day 10 to a value of 50%, which increased further to approximately 55% of the
control at day 14.

The morphology of cells on thermanox slides (Figure 12G), HA (Figure 12H) and SiHA3 (Figure 12I)
samples annealed at 600 ◦C at day 14 are shown in Figure 12G–I. SiHA3 was used as a representative
for SiHA samples. HOBs on all surfaces appeared to be multi-layered, indicating desirable osteoblast
cell growth. Both HA (Figure 12J) and SiHA1 (Figure 12M) surfaces (one day incubation) annealed
at 700 ◦C appeared to be more textured than samples treated at 600 ◦C. Cells appeared to react to
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this topography in the case of both samples by larger numbers of extending extra cellular processes
compared to the 600 ◦C sample. After seven days of cell culture (Figure 12K,N), cells on both samples
covered the sample surfaces and multilayering had occurred, and no differences were seen between
the two samples. Cracks were also seen in both cell samples, which was due to the dehydration
protocol adopted. Fourteen-day samples (Figure 12L,O) exhibited cracks again, but no difference in
morphologies was seen. Some directional growth can be seen in both samples.
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Figure 12. Combined cellular proliferation data showing: AlamarBlue™ assay of HOBs on HA and
SiHA surfaces heat treated at (A) 600 ◦C and (B) 700 ◦C; DNA content of HOBs on HA and SiHA surfaces
heat treated at (C) 600 ◦C and (D) 700 ◦C; ALP activity of HOBs on HA and SiHA surfaces heat treated
at (E) 600 ◦C and (F) 700 ◦C (All graphs are plotted with mean ± standard error of the mean where n
= 6); SEM micrographs of cellular morphology showing 14 day incubation on 600 ◦C annealed (G)
Thermanox (Control), (H) HA, and (I) SiHA3; Further SEM micrographs of cell morphology on 700 ◦C
annealed HA and SiHA1 samples incubated at day (J),(M) 1, (K),(N) 7 and (L),(O) 14, respectively.
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4. Discussion

4.1. Composition and Topographical Analysis

Studies on bulk SiHA, as well as thick and thin film SiHA coatings, have identified them as
eliciting an enhanced cellular and tissue response compared to HA [22,28,34–36]. The characterisation
of thin film materials is still limited, despite detailed articles within the literature [25,37–45]. As a result,
the role of silicon in the HA crystal structure is still not fully understood in the metastable system
descried here and, moreover, how this interacts with cells; hence the importance and role of this study.

Morphologically, the surface (Figure 2) and cross-sectional (Figure 1) results, in conjunction
with the XRD (Figure 3) and RHEED (Figures 4 and 5) analysis demonstrated clear trends regarding
crystallisation of the films, in addition to increasing silicon content, which is in good agreement
with Agyapong et al. [29] and Wang et al. [46] The films showed an increase in thickness with
increasing power density applied to the Si target confirmed via TEM (Figure 1), which is to be expected
since increasing the power density causes an increase in sputtering yield [47]. Furthermore, as is
expected with magnetron sputtering deposition [30], the film exhibited good step coverage, as seen
in the SEM (Figure 2) and roughness measurements (Figure 8). Silicon content had no effect on
deposited film roughness but an increase in roughness was seen after annealing at 600 ◦C, except
the SiHA3 sample, which remained constant. At higher annealing temperatures (700 ◦C), roughness
typically doubled on all sample types; as crystals grow an increase in surface roughnesses will be
observed. Furthermore, the higher the recrystallisation temperature the larger the crystallite size
(Table 1) and in turn the more textured the surface (Figure 2). However, silicon inclusion has been
shown by a number of authors to inhibit the crystallite growth of HA in both bulk and coatings [34],
corroborating the current data, where roughness increases by a smaller amount for each increase in
silicon addition to the point where the 13.4 wt.% SiHA shows no change in surface roughness (Figure 8).

For SiHA materials, it has been shown that structural configuration is important when trying
to enhance osteoblast response [48]. Silicate (SiO4

4−) is considered soluble, whereas silica (SiO2) is
insoluble in water, with Balas et al. [48] identifying that SiO4

4−, due to enhanced solubility, generated a
more favourable cellular response. XPS (Figure 6) found that binding energy shifts were consistent
with increasing silicon content, with Okada et al. [49] and Stevenson et al. [50] confirming this trend.
If fewer silicon atoms are present on the surface it is more probable that silicon will bond to oxygen,
with higher silicon concentrations causing polymerisation; sharing electrons between silicon atoms.
The increase in binding energy signifies a chemical change in Si–O bonding from polymeric SiO2

(Q4) to monomeric SiO4
4− (Q0) structure; Qn where n represents the number of bridging oxygen

atoms per SiO4 tetrahedron. Post annealing (600/700 ◦C) exhibited Si 2p 3/2 binding energies of
approximately 101.5 eV, suggesting a Q0 structure, as detailed in two independent studies [48,51];
SiO4

4− had successfully substituted for PO4
3− groups. However, Balas et al. [48] demonstrated that this

effect only occurred with up to 1.6 wt.% silicon addition in bulk materials, above which, it reverted back
to a Q4 configuration (103 eV). In the current study however, up to 13.4 wt.% (bulk)/6 at.% (surface) was
successfully substituted into the HA films; a ‘super saturated’ state compared to theoretical values of
5 wt.% being substituted for PO4

3− tetrahedra in bulk SiHA [52]. The position of the silicate tetrahedra
may occupy PO4

3− vacancies, however, further proof is required since OH site doping, leading to
Ca10(PO4)4(SiO4)2, could be possible, as no OH groups are seen in SiHA samples from FTIR analysis
(Figure 7). However, the above phase would be detected in the XRD (Figure 3) and FTIR (Figure 7) data,
but this was not the case, giving further evidence of a silicate substituted hydroxyapatite structure.

Ca/P ratios were significantly different from stoichiometric HA, with clear discrepancies between
the EDX (bulk) and XPS (surface) data (Table 1), with EDX determining Ca/P ratios varied from
1.68 to 1.80, potentially from CaO formation [53]. Ratios obtained from XPS were all lower than
EDX values (Table 1), likely due to preferential phosphate sputtering [54]. The Ca/P ratios of the
as deposited samples decreased with increasing silicon from 1.43 to 1.03, potentially through the
sputtering environment allowing the formation of P–Si–O bonds. This is a likely scenario as a large
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number of Ca–P, Ca–O and P–O like species have been found in HA plasmas [53]. As more silicon
is made available due to increasing bias on the silicon target, more P–Si–O groups may form, thus
lowering the Ca/P ratio. Furthermore, it was seen that on annealing, the Ca/P ratio increased due to a
loss of phosphorus [55,56].

From the FTIR data (Figure 7), increasing the silicon content caused widening of the PO4 bands,
suggesting bond formation is inhibited through silicon addition, even on annealed samples. The presence
of OH bonding in the HA sample, which disappeared in the SiHA samples, is due to SiO4

4− species
substituting for PO4

3− bonds; an imbalance of −1 is created. The most energetically favourable method of
reducing this effect is to reduce the number of OH groups associated with the molecule [34,57]. The numbers
of substitutions will be indirectly proportional to the number of OH groups. XPS (Figure 6) confirmed the
super saturated state, which may explain why no OH was seen, opposed to just a reduction in OH peak
intensity. This effect has also been shown in other apatite systems [58].

Wettability testing (Figure 9) showed that the incorporation of silicon into the HA lattice led to a
more hydrophilic surface [51,59], demonstrating that SiHA has a more negative surface charge and
increased surface adhesion than HA. Takeda and Fukawa [60] found that OH groups were a major
factor governing surface chemical properties of oxide thin films. Higher contact angles were obtained
for as deposited samples than samples annealed at 600 ◦C. When the samples were annealed, residual
stresses could be corrected for, thus lowering the surface energy. This was confirmed by the small
difference seen between the measured contact angles of as deposited and 600 ◦C SiHA3 samples, as this
sample did not recrystallise at this temperature. After annealing at 700 ◦C, contact angles were higher
than both the as deposited and 600 ◦C samples, likely due to the appearance of titanium and rutile
phases at the sample’s surface, as demonstrated from the RHEED analysis (Figures 4 and 5) [61].

As deposited HA and SiHA thin films were shown to be amorphous, with all samples except the
SiHA3 sample showing a single phase HA structure post annealing (Figure 3); the SiHA3 samples
required 800 ◦C annealing to recrystallise. Gibson et al. [34] and others have shown that introducing
silicon into HA lowers the thermal stability. It has commonly been shown that silicon additions of
5 wt.% or more causes HA, on sintering, to decompose into undesirable phases like CaO and α- or
β-TCP. However, no secondary phases were found in any of the films at any annealing temperature.
This evidence, in conjunction with the XPS data (Figure 6), further suggests that higher amount
of silicon may be substituted in the HA thin film structure than previously reported elsewhere.
Crystallinity decreased with increasing silicon content, as confirmed by Zou et al. [43], for lower Si
contents (0.8–2.0 wt.%). After annealing at 700 ◦C the SiHA1 samples showed rutile diffraction patterns,
also confirmed via XPS (Figure 6) and RHEED (Figures 4 and 5).

4.2. In Vitro Cytocompatibility

Initial cell adhesion studies carried out on as deposited and HA thin films annealed at 600 ◦C
demonstrated cells preferentially adhered to HA surfaces, with poor adhesion on all SiHA surfaces,
with the exception of the SiHA3 as deposited samples, which showed good adhesion (Figure 11).
Furthermore, the 14 day cell assays using HA and SiHA samples annealed at 600 ◦C provided further
evidence that HOB cells preferred HA to the SiHA surfaces (Figure 12). Osteoblasts on HA surfaces
showed increased proliferation but also were seen to be differentiating, indicated by the ALP activity.
This affect was not seen on any of the SiHA surfaces after 14 days. This result was considered surprising,
as a large amount of literature has been published demonstrating that SiHA ceramics lead to increased
proliferation and differentiating activity of osteoblast cells with both bulk and coating materials in vitro
and in vivo [62,63]. Assays ruled out that the samples had toxic effects on cells, moreover studies have
shown that increased quantities of silicon in cell media can lead to the up-regulation of genes that aid
cell proliferation and differentiation [64,65]. It is likely no enhancing effect was seen in our elution
study because the test only exposed osteoblasts to media for one day (Figure 10). The stability of SiHA
thin films in solution must be considered to be responsible for the poor adhesion and therefore the low
proliferation compared with HA films. Qualitative EDX of samples used for the cytotoxicity study (see
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Figure A1) confirmed that SiHA surfaces annealed at 600 ◦C are unstable; dissolving in cell culture
media within hours for the highest doped sample. Cells have been shown to attach poorly to highly
soluble (bioactive) surfaces, with the converse being noted for stable surfaces [66]. Despite cellular
preference for HA surfaces, it was shown that cell number occurred in the order of SiHA3 > SiHA2 >

SiHA1, from highest to lowest. When samples are immersed in cell culture media, serum proteins
will attach to the surface allowing subsequent attachment of osteoblast cells. Over time, the film will
dissolve, taking away with it attached adhesion proteins. Proteins will then change confirmation not
allowing cells to attach. A new conditioning layer of protein will then redeposit but will again be
removed by dissolution. If cells do manage to attach, they will subsequently be removed with the
protein layer. When the protein changes confirmation, the cell will no longer be able to adhere and so
will be released. This process will happen continually until cells can attach to a stable surface such as
the underlying CPTi substrate. In the case of the SiHA1 compositions, this event does not occur until
after day 10, but the dissolution rate was high enough to inhibit long term adhesion. SiHA2 however,
showed increasing proliferation with time demonstrated by both the Alamarblue™ and the DNA assay
(Figure 12). Again, from XPS data (not shown), only 1–2 at.% of the SiHA3 thin film remained after
2 days in cell culture media. Furthermore, it was observed in the contact angle testing experiments that
some film dissolution would occur even when exposed to water for a few minutes. These observations
and measurements may explain why initial adhesion of HOB cells is possible and sustainable on the as
deposited and 600 ◦C SiHA3 films (Figure 11). Essentially, the CPTi substrates are revealed to cells
which act as a stable protein mediated adhesion site. Initial adhesion studies comparing titanium and
HA surfaces have demonstrated that titanium surfaces show a better response in a 90 min attachment
period [67], but this was not seen in the case of the as deposited SiHA3 samples, which is thought
to occur due to some cells undergoing apoptosis or programmed cell death during the prolonged
attachment time. It is well known that cell adhesion via proteins allows signalling which can inhibit
apoptosis [68]. Cell adhesion to the substrate via proteins is also necessary for a musculoskeletal cell’s
vitality, growth, migration, and differentiation [69,70].

It has been shown both in this study and other studies that SiHA bulk and thin film materials have
a higher dissolution potential than HA [24,71]. Moreover, the staining protocol required for the initial
adhesion may further affect the stability of the surface owing to numerous washing steps involved,
accelerating film dissolution and removal of any adhered cells. In the current study, we investigated
silicon contents higher than previously reported, ranging from 1.8–13.4 wt.%. Furthermore, coating
thicknesses were higher, which tends to lead to higher residual stress in the films and on recrystallisation
will give a higher crystallinity. In comparison to bulk materials, Arcos et al. [52] investigated the
in vitro response of osteoblast cells to bulk high quantity silicon doped apatites. It was found that
high silicon content apatite (low crystallinity) showed poor cell proliferation over a seven day period.
This was explained by cells poorly adapting to their environments, however, it is more likely that this
is due to surface dissolution inhibiting cell adhesion.

In order to overcome high dissolution rates of samples annealed at 600 ◦C, the cellular
response of samples annealed at 700 ◦C were investigated, however, due to the reduced crystallinity
and lower stability of the SiHA2 and SiHA3 samples, only the SiHA1 sample was investigated.
Proliferation and differentiation on SiHA1 surfaces were slightly higher than on HA surfaces,
however, this was not significantly different (p > 0.05). This conflicts with a large number of
studies providing strong evidence that SiHA materials elicit an enhanced response when compared
with HA materials [22–24,27,28,35,39,40,71–75]. This may be explained by the presence of a HA/rutile
phases at the surface of the 700 ◦C samples. Moreover, a much lower silicon content was seen on
the surface of the samples annealed at 700 ◦C compared to that of those annealed at 600 ◦C. Even so,
it has been shown that even 0.4 wt.% silicon addition to HA can have a pronounced effect on adhesion
and proliferation [27]. As almost no silicon content is present on the SiHA1 after annealing at 700 ◦C,
it would be expected that this surface would have the lowest dissolution rate and be unlikely to
cause problems for cell adhesion, but it may in fact have a beneficial effect leading to the slightly
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increased cellular response, although this was not shown to be significantly different (p > 0.05) from
the HA sample.

Commonly in the literature, it has been seen that increasing the post deposition temperature of HA
ceramics increases the cell proliferation and differentiation in both bulk and thin film systems [67,76,77].
Roughness, topography chemistry and surface energy are all known to influence cell response to a
given surface [78]. Data obtained would suggest that in the current study cells have reacted to the
roughness and chemistry. The majority of studies concerned with topography have concentrated on
the micron scale, with only a few authors concentrating on the nanometre scale. This is mainly due to a
lack of knowledge of how to produce such surfaces, however Affrossman et al. [79] have used polymer
demixing to achieve nanotopographies. It has been reported that cells can detect changes as small as
5 nm and in vivo cells commonly respond to 66 nm banding on collagen fibrils [80]. In this study there
was a roughness difference of 35 nm and cells were shown to react to this will increasing numbers of
lamellapodia and filopodia leading to distinct attachment sites. This led to no significant difference (p
> 0.05) in cell number and metabolic activity, suggesting that roughness values on this scale have no
major effects on cellular response. Recently, Kahn et al. [81] used neural cells to investigate several
surface textures ranging from 10 to 250 nm in roughness. Values between 20–100 nm promoted
cell adhesion and longevity, however, surfaces led to a decrease in attachment at values > 100 nm.
Similar trends have been found in other studies using different cells [82], but it is often the case that
differences as low as 30 nm did not yield any notable difference. Dalby et al. [83] studied the effect of
nano-islands on polystyrene materials with fibroblasts. It was found that islands as low as 13 nm high
led to increased adhesion, proliferation and cytoskeletal development when compared to flat controls.
Conversely, nano-islands 95 nm in height lead to unusual, stellate morphologies with poorly formed
cytoskeletons [84]. Intermediate islands (45 nm) showed no difference in cell area from the control,
however the cytoskeleton was less well formed. Studies have shown that RF magnetron sputtered HA
surfaces show no significant difference (p > 0.05), when compared with titanium substrates at initial
time points [28,85] and the current study agrees with such work. It may, however, be that because
phosphorus was not found at the top few atomic layers the cellular response was impaired. While not
directly comparable, it has been shown that cells respond preferentially to surfaces with stoichiometric
Ca/P values [86]. The literature confirms that surface texture and chemistry are important, but it is still
under debate which has a more positive effect.

Overall, the combination of nanotopography and change in surface chemistry has led to small
changes in cell morphology and proliferation over a 14 day time period, however such differences in
the HA and SiHA1 surfaces annealed at 700 ◦C for 2 h were too subtle to be significantly different.

5. Conclusions

The work performed in this study investigated HA and SiHA RF/Pulsed DC magnetron sputtered
thin films as coatings for orthopaedic applications. As deposited HA thin films were found to be
amorphous or nanocrystalline, however, upon annealing (600 ◦C for all samples, except SiHA3, which
required 800 ◦C) recrystallised. Furthermore, the addition of silicon to HA thin films inhibited HA
crystallite growth as demonstrated by crystallite sizes calculated from XRD line broadening.

Both EDX and XPS showed a reduction in Ca/P ratio with increasing silicon content due to possible
creation of a P–Si–O chemical species during deposition, which allows P to reach the substrate more
readily. After annealing, however, the Ca/P ratio increased with increasing temperature, likely due
to the evaporation of volatile phosphate species, facilitated by silicon inclusion destabilising the HA
structure. XPS demonstrated that deposited SiHA thin films contain polymerised silicate networks,
transforming to monomeric states after annealing, suggesting SiO4

4− substitution in the HA lattice for
PO4

3− chemical species.
The roughness was shown to be similar for all as deposited films, which were measured to be

approximately 20 nm (Ra), similar to the CP-Ti substrate, which increased following annealing; this
was inversely proportional to the silicon content, due to silicon inhibition of the HA crystallite growth
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and the rise of rutile grain growth. Silicon is also known to inhibit rutile growth, thus explaining
the lowering in roughness with increasing silicon content. Water contact angle testing demonstrated
silicon addition to the HA structure increased hydrophilicity with increasing silicon content.

Initial adhesion, proliferation and differentiation assays all suggested HOBs preferred HA to the SiHA
surfaces, due to silicon doping destabilising the HA thin films, removing the protein conditioning layer
essential for normal cell adhesion and growth. HOBs on the highest silicon doped HA thin films annealed
at 600 ◦C showed some proliferation due to the stable CPTi substrate surface becoming available for protein
mediated cell adhesion. After annealing at 700 ◦C, no significant difference (p > 0.05) was seen between
the HA and the SiHA1 surfaces, suggesting enhanced cellular response due to crystallinity levels.

This study ultimately demonstrates that for higher (one of the highest tested in the literature),
meta-stable doping levels of Si into the HA structure, cellular response is strongly linked to the
crystallinity of the produced HA and SiHA films, the surface stability, as well as other properties, such
as surface wettability, roughness, etc. Despite literature studies showing small doping levels of Si
have a positive effect on cellular proliferation, this is not seen in higher-doped systems and, therefore,
careful optimisation is required to glean appropriate properties.
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Figure A1. Percentage of HA and SiHA thin films annealed at 600 ◦C remaining as a percentage of
original coating Ca content. Data plotted is mean ± standard error of the mean; n = 4. Non-linear
one-phase decay regression plots were calculated using GraphPad Prism software based on the data
shown. Due to the high variance of the SiHA1 sample, a suitable regression line was unable to be
plotted, hence a probable area has manually been fitted for visual enhancement.
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Figure A2. XRD plot for a Plasma Biotal plasma sprayed copper backed target. All major diffraction
planes are indexed. Arrows indicate potential β-TCP secondary phase, however, with the low intensity
accurate quantification is difficult.
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