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ABSTRACT Antimicrobial Resistance (AMR) is a growing public and veterinary health concern, and the
ability to accurately predict AMR from antibiotics administration data is crucial for effectively treating and
managing infections. While genomics-based approaches can provide better results, sequencing, assembling,
and applying Machine Learning (ML) methods can take several hours. Therefore, alternative approaches are
required. This study focused on using ML for antimicrobial stewardship by utilising data extracted from
hospital electronic health records, which can be done in real-time, and developing an interpretable 1D-
Transformer model for predicting AMR. Amulti-baseline Integrated Gradient pipeline was also incorporated
to interpret the model, and quantitative validation metrics were introduced to validate the model. The
performance of the proposed 1D-Transformer model was evaluated using a dataset of urinary tract infection
(UTI) patients with four antibiotics. The proposed 1D-Transformer model achieved 10% higher area under
curve (AUC) in predicting AMR and outperformed traditional ML models. The Explainable Artificial
Intelligence (XAI) pipeline also provided interpretable results, identifying the signatures contributing to
the predictions. This could be used as a decision support tool for personalised treatment, introducing
AMR-aware food and management of AMR, and it could also be used to identify signatures for targeted
interventions.

INDEX TERMS Transformer, multi-drug AMR, antimicrobial stewardship, missing labels, XAI, multi-label
prediction.

I. INTRODUCTION
Antimicrobial Resistance (AMR) is a major global health
concern associated with the inappropriate use of antimicro-
bial drugs. In particular, some empirical treatments used for
humans and livestock may be inappropriate [1], and can lead
to the emergence of AMR. One solution to combat AMR is
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personalised antibiotic treatments and effective antimicrobial
stewardship for humans and animals.

In order to combat AMR, it is crucial to develop accurate
and interpretable models for predicting AMR. This can
aid in selecting the appropriate antibiotic treatment for
patients and animals, and guiding antibiotic prescribing
decisions. Traditionally, laboratory testing has provided
accurate information about how patients will respond to
different treatment options. However, using this approach can
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take several days to obtain results and may not be feasible
for health professionals who need immediate treatment
decisions. In order to obtain a comprehensive understanding
of the response to all relevant treatments, it is vital to test
the isolated microorganisms for various resistances, not just
those used for current treatments. Another approach is to
use a genomics-based approach using Machine Learning
(ML) to analyse genomic data and predict AMR [2], [3].
While this approach is faster than laboratory-based methods,
it still requires the extraction, annotation, and prediction
of AMR from genomic data, which is not feasible in
real-time.

An alternative approach is to useML to predict AMRbased
on antibiotic usage data collected from Electronic Health
Records (EHR) and farm records. This approach enables real-
time AMR prediction at the initial treatment decision point
and helps identify trade-offs between multiple factors, such
as treatment effectiveness and harmful side effects. However,
previous studies on predicting AMR from EHR and farm data
have been limited and have used black-box models that do
not provide any interpretability of the results, do not support
missing labels and complex data and cannot predict multiple
AMRs simultaneously.

The availability of more electronic health data and
increasing Graphical Processing Unit (GPU) capabilities
have created a use case for rapid prediction of AMR with
Deep Learning (DL) models. However, DL models are
commonly referred to as ‘‘black boxes’’ because their internal
mechanisms are not easily understandable. This lack of
interpretability hinders trust in the model among healthcare
stakeholders and limits the ability to identify and address
systematic bias.

To address these issues, this study proposed to use
interpretable 1D-Transformer models for predicting AMR
from antibiotics administration data and identify the features
that contribute to their predictions and validate them. The
study aimed to assess how DL models can be used with
1D signals to classify antibiotic resistance status and to
translate the DL model output into recommendations to help
select the antibiotic of the narrowest possible spectrum. The
novel contributions of this article can be summarised as
follows:

1) To propose a 1D Transformer model to extract features
from antibiotics administration data collected to predict
the antibiotic resistance status and recommend thera-
pies.

2) To propose approaches to handle missing labels in the
antibiotics administration dataset.

3) To propose a multi-baseline Integrated Gradient
pipeline to identify significant features contribut-
ing to the decisions overcoming the limitations of
baselines.

4) To quantitatively validate the proposed model by com-
paring its performance with those from other models in
the literature and demonstrate the effectiveness of the
proposed Transformer and XAI approaches.

The paper is structured as follows. Section II covers the
background of this study. Section III describes the proposed
model, Explainable AI (XAI) pipeline andmetrics to measure
the performance. Section IV describes the experimental setup
to validate the methodology proposed. Section V reports the
test results. Section VI discusses the results and Section VII
finishes with concluding remarks.

II. BACKGROUND
Antibiotics are commonly used in the treatment of infec-
tions. However, the widespread and inappropriate antibi-
otic usage has resulted in the emergence of AMR. The
problem has further been exacerbated by the empirical
administration of antibiotics. To combat this issue, applying
ML models to the data on antibiotics usage collected
from EHRs and farm records are gaining prominence
as a solution to expanding antimicrobial stewardship
efforts while providing personalised treatment [4], [5].
By analysing antibiotics administration data with meta-
data and ML algorithms, healthcare professionals can
identify patterns in the usage of antibiotics and improve
prescription practices, leading to the more effective and
responsible use of antibiotics and, ultimately, the reduction
of AMR.

EHR contains crucial information that can be used to
predict AMR, such as prior infections, resistance profiles,
visits to hospitals, antibiotic treatments and treatment
response history. From these data, more significant features
can be identified using feature selection algorithms, and those
features can be used to predict AMR and their potential
influence on AMR.

A. ML-BASED AMR PREDICTION WITH ANTIBIOTICS
ADMINISTRATION DATA
ML-based prediction of AMR is becoming more prevalent
due to the growth of experimental and clinical data, advance-
ments in technology, and the need for innovative solutions
to reduce the impact of the disease. The ML algorithms
can predict the AMR patterns for humans and livestock,
allowing for a more personalised approach to antibiotics
treatment using EHR and antibiotics usage data. Yet,
antibiotic treatments are empirically prescribed for suspected
infections before identifying the causative pathogen using
biological or phenotypic approaches, which will take more
than a few hours. A few of them may be inappropriate
treatments that may drive the problem of antibiotic-resistant
infections [1].

There have only been a limited number of studies that
have aimed at predicting AMR from EHR, despite the fact
that the EHR data contains crucial information that can be
used to determine AMR risks, such as past infections and
resistance patterns, exposure to hospitals and antibiotics,
laboratory results, pathology reports, and previous treatment
outcomes [6]. In another study, ML models were applied
to forecast antibiotic susceptibility for various pathogen-
antibiotic combinations in patients suffering from sepsis in an
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intensive care unit [7]. Another similar study was published
on predicting AMR for intensive care unit (ICU) patients in
Greece [8].

Another system was developed to predict resistance in out-
patients with Urinary tract infections (UTI) using antibiotics
administration data and a small set of clinical metadata [9].
A 30% reduction in the selection of inappropriate antibiotic
therapy was achieved using logistic regression and gradient-
boosted decision trees [9]. A similar study focused on
outpatients with uncomplicated UTIs [4].

Another study presented a decision algorithm to promote
outpatient antimicrobial stewardship for uncomplicated UTIs
by applying a Gradient Boosted Trees-based ML algorithm
to predict resistance in outpatient UTI patients and evaluated
the impact of a treatment decision algorithm [5]. The
algorithm considered both the susceptibility of the patient’s
urine culture and the patient’s demographic information.
The study found that the algorithm reduced inappropriate
antibiotic selection by 30%, improving patient outcomes
and reducing healthcare costs [5]. This study highlighted
the importance of incorporating patient demographic infor-
mation, in addition to susceptibility information, in AMR
prediction algorithms. However, this study only focused on
uncomplicated UTI treatment data, a common scenario. The
limitations of these ML-based models in predicting AMR
in complicated cases reveal the requirement for more robust
and interpretable ML models that can effectively handle
complex datasets and identify the contributing factors to
the decisions made. This lack of ability to predict AMR in
complicated cases highlights the need for more robust and
interpretable ML models that can effectively handle complex
datasets.

In another study, eightMLmodels were explored to predict
resistance in Cambodian children with bacteraemia [10].
These recent studies indicate the trend of designingML appli-
cations to predict AMR from clinical data and the need for
near-time AMR prediction. Furthermore, the ML algorithm
must evaluate numerous potential treatment decisions to
assess the effect of various treatment options simultaneously
and determine all potential treatments. This necessitates using
multi-label models to predict all possible AMR susceptibility
outcomes.

As far as we are aware, there is currently a lack of
published studies focusing on predicting AMR, specifically
from farm data. However, some literature-based frameworks
are available that aim to analyse the various environmental
factors contributing to AMR development [11].

DL models have improved significantly in recent years
due to the growth in computing power, allowing them to
achieve state-of-the-art results in many areas. Despite a
few studies published on predicting AMR from clinical
data [1], [4], [5], [6], [10], they are based on traditional
ML approaches, and the DL approach to handling missing
label scenarios has not been widely explored. Even though
methods proposed in previous studies address missing labels
for genomics data, these approaches are not often applied

to clinical data and tend to perform poorly in imbalanced
and missing data scenarios. A few studies have been
published predicting AMR using DL approaches [12], but
these published approaches did not consider missing labels
or imbalanced data scenarios.

B. EXPLAINABLE MODELS FOR AMR PREDICTION
Though DL models perform better, DL models are often
considered black box models that do not allow for a
straightforward interpretation of the results. This lack of
interpretability makes DL models less popular in critical
fields such as medicine, where interpretability is essential.
Therefore, there is a need to develop DL models that
can provide interpretable results, as it is vital to identify
biomarkers and use dimensionality reduction techniques in
predicting AMR [7].

Existing DL models are deficient in returning the feature
set and weights contributing to the classification decision,
making these models non-interpretable. The opacity of DL
models makes them difficult to interpret; hence they are
not widely adopted in critical fields such as medicine.
Increasing autonomy, complexity, and ambiguity in AI
methods increases the need for interpretability, transparency,
understandability, and explainability of AI output. Even
though there are few kinds of research done on interpreting
the results usingML approaches [2], [3], [14], [15], [16], [17],
there are only very limited researches to interpret the results
obtained by using clinical data [5], [18].

An ensemble-basedML approach was developed to predict
antibiotic resistance of bacterial infections of hospitalised
patients using the patients’ EHRs [18]. This study reported
the risk factors highly associated with results using the
Shapely approach. In another study, a logistic regression-
based decision algorithm was proposed, and the risk factors
related to the models were explained using the logistic regres-
sion weights. This study uses a model-specific explanation,
and the feature weights are subject to the feature value
range.

Another study demonstrated the insights about results
using interpretability analysis of data-driven models [19].
The post-hoc analysis of black-box models using Shap-
ley Additive exPlanations (SHAP) was applied to inter-
pret the model outputs which may be computation-
ally complex in larger number of features and size of
models.

The lack of interpretability in DL models is a significant
limitation in fields such asmedicine, where trust in the system
is crucial. While DL models can achieve high accuracy,
their inability to explain the decision-making process hinders
their adoption. There is a balance between the accuracy and
interpretability of AI models. The most accurate models,
like Convolutional Neural Networks, do not provide any
explanation, while more interpretable methods, like rule-
based systems, are often less accurate. XAI aims to bridge this
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gap by providing insight into the reasoning behind a system’s
predictions and decisions [20].

Hence, there is a need for a comprehensive method
to overcome the issues of missing labels and to identify
signatures that contribute to the prediction of multi-AMR
from antibiotics administration data. To address this gap,
a comprehensive method is proposed that combines the
Transformer model with XAI to predict multi-drug resistance
from antibiotics administration data withmissing labels while
also identifying the features contributing to the prediction.
This approach aims to improve model interpretability,
enabling healthcare stakeholders to trust the model and
assess and fix any systematic bias without compromising
its performance. Adding an explainable component to the
DL pipeline provides model interpretability and enables
healthcare stakeholders to trust the model or assess and fix
any systematic bias without compromising themodel’s output
and performance.

III. METHODOLOGY
A Transformer [21] is a type of neural network architecture
using the attention concept. An attention layer is a neural
network layer used to weigh and combine different features
of the input data to allow the model to pay attention to other
data features at different times. The Transformer architecture
has been highly successful and has achieved state-of-the-art
results on several natural language processing tasks. It has
also been extended and modified for use in other domains,
such as computer vision and speech recognition.

A. 1D TRANSFORMER
This study utilises a 1D Transformer architecture, which
is well-suited for handling sequential data such as time
series or text data. The model includes an attention
layer to extract features from the input data, a classifier
layer to make predictions, and a loss function designed
to handle missing labels. A Transformer model extracts
features from the input data using a multi-head attention
layer, and a classifier layer made of two fully connected
dense layers with dropouts is used to predict multiple
AMR phenotypes using the antibiotics administration data
automatically.

Different attention mechanisms can be used in Transform-
ers, including dot-product attention, multiplicative attention,
and additive attention [21]. These mechanisms typically
involve calculating attention weights based on the input
data and some form of context or query, then using the
attention weights to weigh the input data before passing
it on to the next layer of the model. The dot-product
attention mechanism is computationally efficient compared
to other attention mechanisms. This is because the dot-
product attention is based on the dot product of the query
and key matrices, which can be computed quickly and
efficiently using matrix multiplication and easily parallelised
for large-scale computations, as the dot-product calculation
can be done independently for each position in the sequence.

These advantages make dot-product attention the better
choice.

B. MULTI-BASELINE INTEGRATED GRADIENT
Combining a Transformer model with an XAI pipeline has
the potential to improve the accuracy of predicting antibiotic
resistance and aid in developing personalised treatment
plans. Identifying features and contributions informative
to the classification decisions based on different feature
selection approaches [16], [17], [22] is challenging since
many layers are involved, and backtracking the contribution
is almost impossible. There is a trade-off between AI
accuracy and explainability: Normally, DLmodels provide no
explanations; understandable ways, such as rule-based, tend
to be less accurate.

Numerous XAI techniques have been developed to inter-
pret DL model outcomes without compromising accuracy.
These methods can be broadly categorised into forward-
pass-based attribution and backwards-pass-based attribution.
Forward-pass models, known as perturbation-based methods,
are independent of any particular model and can be utilised
after training on any such model. SHAP [23] and Local
interpretable model-agnostic explanations (LIME) [24] are
examples of this approach. Backwards-pass-based attri-
bution methods compute the attributions for all input
features in a single pass through the network. These
methods are generally faster than perturbation-based meth-
ods, but the outcome may not be directly related to an
output variation. The saliency method [25], Gradient ∗

Input [26] and Integrated Gradient [27] are examples of this
approach.

Due to the large number of features in this study,
using Shapely for feature importance calculation can be
computationally expensive, as it involves calculating the
contribution of all possible coalitions of feature values [28].
Additionally, the correct usage of neighbourhood selection is
not well defined when using LIME with tabular data [28] and
becomes even more complex with a large number of features.
Model-agnostic perturbation-based methods, such as SHAP
and LIME, are also more prone to instability compared to
gradient-based approaches [29].

To address these issues, this study employs gradient-based
approaches for interpretability. Gradient-based XAI pipelines
for 1D multi-label signals refer to a method for interpreting
the predictions made by an ML model that uses 1D multi-
label signals as input. The gradients-based feature attribution
method assigns importance scores to each feature in the
input data, indicating how much each feature contributes
to the model’s final prediction. By combining this method
with a Transformer model, the model’s predictions can be
made more interpretable, allowing users to understand the
reasoning behind the model’s decisions and identify any
potential biases or errors in the model. This can be useful in
applications such as predicting AMR in clinical data, where
understanding and trusting the model’s predictions is critical.
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Integrated Gradient is a popular gradient-based method
for interpreting the predictions of DL models. It generates
a linear interpolation between the baseline and the original
data, calculates gradients to measure the relationship between
changes to a feature and changes in the model’s predictions,
computes the numerical approximation through averaging
gradients and scales Integrated Gradient to Input. However,
it has some practical issues that may affect its performance
and usability:

• Baseline choice: The choice of baseline input for Inte-
grated Gradient can significantly impact the resulting
attribution values, and there is no universally agreed-
upon best choice for the baseline. Using all zeros as a
base for tabular data is not always appropriate because
many features can take zero as the values, and those
features cannot be captured through Integrated Gradient.

• Assumptions about the model: Integrated Gradient
assumes that themodel is linear in the input space, which
may not be true for complex models such as deep neural
networks.

• Sensitivity to input noise: Integrated Gradient is sensi-
tive to small perturbations in the input, which can lead
to noisy attribution maps.

To address these issues, some possible fixes, such as
applying multiple baselines to assess the attribution results’
robustness and mitigate the baseline choice’s impact and
applying methods such as SmoothGrad [30] to smooth the
attribution maps and reduce the effect of input noise. This
paper proposes amulti-baseline Integrated Gradient approach
where all zero, all 0.5 and random value baselines are used
to calculate the attributes and the average attributions are
returned to overcome the baseline effect.

C. MASKED LOSS
In order to train a Transformer model with antibiotics
administration data that have a large number of missing
labels, a masked loss function is proposed to mask out the
missing target values by introducing a Boolean mask matrix
where each row represents each sample, and each column
indicates whether it is a missing label value [2].

D. METRICS
During model training, metrics are utilised to monitor and
evaluate its performance. However, when label values are
absent and replaced with a default value, metrics based on
the predicted and target values become unreliable and may
generate inaccurate results. To address this, masked accuracy,
masked sensitivity, masked specificity and masked f1 score
are proposed to obtain justifiable values for a significant
amount of missing labels [2].

By masking missing target values, the masked F1 score
enables the calculation of precision and recall scores based
only on available labels, conveying a balance between the
two metrics. It can serve as an average score representing
precision and recall [2].

The area under the curve (AUC) is another metric
used to measure performance, representing the test’s ability
to distinguish between positive and negative cases [31].
In general, a higher AUC value indicates a better-performing
model. As this study has missing values, the Masked AUC is
calculated using the receiver operating characteristic (ROC)
curve, which plots masked sensitivity against (1 - masked
specificity) with different threshold values.

E. QUANTITATIVE VALIDATION OF XAI RESULTS AND
METRICS
Quantitative validation is crucial for ensuring the reliability
and generalisability of XAI methods, and it can help
build trust in the models and results produced by these
methods.

The Add-Delete metrics approach is used to evaluate
the stability and robustness of different Integrated Gradient
models. This approach assesses the impact of adding or
removing a single feature from the input on the model’s
output. Commonly, this metric is applied to a single label.
This study computed this metric for each label’s top N
positive and negative contributing features. The Add-Delete
metrics approach aims to examine the impact of single
feature changes on the model’s output, thus providing
insights into the stability and robustness of the Integrated
Gradient models. The approach starts by computing the
Integrated Gradient for each feature and selecting the top
N positive and negative contributing features. Then, the
Add metric was calculated by selecting only the selected
feature from the input, marking other features by the
baseline values, and observing the impact of this change
on the model’s output. Similarly, the Delete metric was
calculated by removing selected features by marking them
with baseline and observing the impact of this change on
the model’s output. These metrics were computed for each
of the four labels’ top N positive and negative contributing
features.

AUC of the Model Relevance N-features (AUC-MRNF)
is another metric proposed to validate the selected top N
quantitively features through the XAI pipeline by training the
model with only the best N features and calculating the AUC
using those subsets of features. N features from each label are
selected, and AUC-MRNF is calculated for the multi-label in
this study.

IV. EXPERIMENTS
This section describes our experiment setup and results for
AMR in the UTI dataset (AMR-UTI) [32], publicly available
on Physionet [33]. The proposed model was implemented in
Python using the Scikit-learn [34] library and TensorFlow
framework [35]; our source code, the genome IDs we used for
these experiments, and the pre-processed datasets are made
available on GitHub.1

1https://github.com/mukunthan/TransAMR
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FIGURE 1. Visualisation of the steps carried out for this chapter. First, different approaches are applied to group the features and then imputed with the
masking approach. Then, different models were implemented with masked-loss function to perform feature extraction and classification. Using the best
model, training data and test data gradient-based explainable AI model is implemented to get the interpretation for the results.

As shown in Fig. 1, the Transformer model and a few
other models with masked loss functions were applied for
the pre-processed dataset with the XAI pipeline. The results
from applying models have been analysed on the benchmark
AMR-UTI dataset, the uncomplicated and whole dataset.
Then, the best model based on the above result was compared
against similar works in the literature [5].

In addition, the results from the best model were further
analysed to get an explanation for the results. The key
signatures contributing to the decision were reported using
this model’s proposed XAI pipeline, and those results are
validated by comparing results in the literature.

A. DATASET AND PRE-PROCESSING
The AMR-UTI [32] dataset, publicly available on the Phy-
sionet [33] website, includes patient demographic informa-
tion, antibiotic prescriptions, medical procedures, previous
resistance test results or infections, comorbidities, and lab
test results as ground-truth antibiotic resistance profiles for
each patient. The data includes antibiotic exposures, prior
antibiotic resistance, prior infections, comorbidities, and
procedures over the 7, 14, 30, 90, and 180-day periods.
A population-level feature called colonisation pressure is also
included, defined as the proportion of resistant specimens to a
given antibiotic within a specified location and time window.
The dataset contains 788 features after some indicative fields
such as test data, uncomplicated status, and example ID are
removed.

The dataset is labelled for four antibiotics, Nitro-
furantoin (NIT), Trimethoprim-sulfamethoxazole (SXT),

Ciprofloxacin (CIP), and Levofloxacin (LVX), with the first
two being considered first-line antibiotics and the latter
two being second-line antibiotics. There are 80962 sam-
ples collected from the 2007-2013 year period and were
assigned for the training and internal cross-validation, while
11865 samples out of them were collected with uncompli-
cated cases. 35940 samples collected from the 2014-2016
year period were designated as the independent test set, and
3941 samples out of them were collected with uncomplicated
cases.

As illustrated in Supplementary Fig. 1, nearly 65 % of
the labels are Susceptible, while the other 35% counts for
resistant and missing values out of 80962 training data with
complicated and uncomplicated instances.

The study focused on predicting AMR and developing
better treatment strategies rather than tracking clinician
prescriptions and aimed to support automated prescriptions
in the future. The data was pre-processed to remove missing
values and outliers. The categorical variables were one-hot
encoded, and the data were normalised to 0 to 1. The missing
labels are marked as −1 to enable masked loss and metric
calculation.

In addition to EHR data, antibiotic usage data were also
collected from July 2019 to August 2020 from a farm. Those
data were used to start this work before obtaining the above
public dataset and contained different antibiotics usage for
the given period and metadata related to cattle on a farm.
These data are weakly labelled as AMR and could not be
identified through laboratory-based testing. Therefore, these
farm antibiotics usage data were not included in reporting the
results but referred to in the conclusion section to highlight
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the future work needed. Ethical approval for collecting the
farm data was sought and obtained via the University of
Surrey – NASPA 514292-514283-58798367.

B. MODEL SELECTION
This study evaluated several models, and XAI approaches to
select the best one for the task at hand. A 1D-Transformer
model was developed to predict multiple AMR phenotypes
using clinical data, as shown in Supplementary Fig. 2. The
model comprises an input layer, a multi-head attention layer
to select contributing features, and two fully connected
dense layers with dropouts. Considering the fast and efficient
manner of dot-product attention compared to other attention
mechanisms, dot-product attention was applied to the model.
As the data was in tabular format, temporal dependency
was not crucial, while spatial dependence was vital in
this problem. Transformers were used to capture spatial
dependencies between features, and positional encoding was
added to the input of the Transformer encoder to capture
these dependencies. The encoded features were then passed
through a fully connected layer and the output layer for
classification.

Another model was a 1D-CNN, which includes an input
layer, two convolution layers, two down-sampling layers,
and four fully connected dense layers. The first convolution
layer used 64 1D convolution kernels with a length of
7 sampling points, while the second convolution layer used
32 1D convolution kernels with 7 sampling points. The output
of the convolution layers was then passed through a pooling
layer to compress the selected features.

The third model was compared with a ResNet archi-
tecture with 3 × 3 convolution and a fixed feature
map dimension of [64, 128]. This architecture bypassed
the input every two convolutions, allowing the gradi-
ents to flow directly from later layers to the initial fil-
ters, mitigating the vanishing gradient problem, as shown
in Supplementary Fig. 3.

Dropout regularisation is applied to the hidden layers of all
models to mitigate potential overfitting. The objective of the
model is to minimise the loss, and the prediction error is used
to update the network parameters through back propagation
using the Adaptive Moment Estimation (Adam) optimiser.
Themasked loss function is designed to handle missing labels
and is crucial in measuring the model’s error and defining
how to fit the data to achieve optimal results.

C. HYPER-PARAMETER TUNING
For each tested DL model, parameters were optimised from
preliminary experiments, and 0.0001 learning rate, Adam
optimiser and 100 EPOCHS with early stop by monitoring
loss were used as the optimal parameters based on the
empirical study. Every fully connected layer of each model
has been used with the Relu activation function except for
the output layer, where the sigmoid activation function has
been applied. The multi-head attention has been used in

Transformer with two heads and an embedding dimension
of 100.

D. XAI MODEL PARAMETERS
The Integrated Gradient approach establishes a baseline to
compare a data instance that is typically all zero. This
baseline will help the model gauge each feature’s influence
on the input data with respect to the prediction [28].
The gradients are summed at small intervals along the
path between the baseline and original input. The method
involves selecting specific points to calculate gradients,
which are then summed using a number of interpolated
steps (represented by ‘‘k’’) to approximate the integral of the
gradients. In this study, 50 interpolated states are selected
for the Integrated Gradient approach with the absence of
all features as the base dataset through an empirical study.
As part of multiple baselines, all zero baseline, all 0.5 value
baseline and random normalised baseline were applied as
a baseline to overcome baseline effects and to get robust
results.

E. OPTIMAL DECISION THRESHOLD VALUE SELECTION
The decision threshold is the point at which a decision is
made based on the outcome of the DL models. In predicting
AMR, the optimal decision threshold is the point at which
model results are used to determine whether or not a sample
is susceptible or resistant, which can impact the accuracy and
other metrics. Determining the optimal decision threshold
value requires careful consideration of the trade-offs between
sensitivity and specificity and the consequences of false
positive and false negative test results. This study determined
the optimal decision threshold values based on the desired
balance between sensitivity and specificity. The masked
geometric mean of sensitivity and specificity was calculated
for different threshold values to calculate the balance between
sensitivity and specificity.

Another key metric for the imbalanced dataset is the
F1 score, which measures the balance between Precision
and Recall. The threshold with better F1 scores can be
selected as the optimum threshold. As part of this research,
it was observed that thresholds for better F1 scores and the
geometric mean of sensitivity and specificity were different.
Therefore, a new metric combining the F1 score with the
geometric mean of sensitivity and specificity was proposed
to improve the overall performance. The optimal threshold
was selected to maximise this metric.

V. RESULTS
This section presents the results of the evaluation experiments
that were conducted. As part of this experiment, 1D-CNN,
modified ResNet to support 1D-CNN and Transformer
were trained with the uncomplicated AMR-UTI and whole
AMR-UTI datasets separately to measure their performance
and select one model to predict multi-label AMR from
clinical data collected from EHR. To validate the model,
the independent 3941 uncomplicated samples and 35,940

VOLUME 11, 2023 75343



M. Tharmakulasingam et al.: TransAMR: An Interpretable Transformer Model

FIGURE 2. A: Features contributing to NIT prediction; the left side plot represents the top 25 features positively contributing, while the right-side plot
represents the top 25 features negatively contributing to the prediction of NIT. B: Features contributing to SXT prediction; the left side plot represents the
top 25 features positively contributing while the right-side table represents the top 25 features negatively contributing to the prediction of SXT. C:
Features contributing to CIP prediction; the left side plot represents the top 25 features positively contributing while the right-side plot represents the top
25 features negatively contributing to the prediction of CIP. D: Features contributing to LVX prediction; the left side plot represents the top 25 features
positively contributing while the right-side plot represents top 25 features negatively contributing to the prediction of LVX.

whole samples, including complicated cases, were used for
all models, and the results are listed in Table 1.
Table 1 compares the performance of different DL models

trained to predict the susceptibility and resistance to antibi-
otics used to treat uncomplicated UTIs. The models include
1D-CNN, modified ResNet, and Transformer. The models
were trained using two different datasets: the uncomplicated
AMR-UTI dataset and the full AMR-UTI dataset. Table 1
presents the results of 1D-CNN, modified ResNet, and
Transformer models that were trained and evaluated for
predicting the susceptibility and resistance to antibiotics used
to treat uncomplicated UTIs. Table 1 shows the performance
metrics for each model, including masked accuracy, masked
sensitivity, masked specificity, masked AUC, and masked F1
score. The results were reported for the same independent
3941 uncomplicated samples and independent 35940 full
test samples, including complicated cases. It should also be
noted that all the models were trained with masked Entropy
loss unless mentioned otherwise. Also, 15 % of the training
data sets were used for internal validation to control the
training.

From the results, the Transformer model performed the
best overall, with the highest AUC and F1-score in most

configurations. The 1D-CNN model performed relatively
poorly in comparison when a larger training dataset was
used. The ResNet model has poor performance in most
of the datasets. It was observed that the performance of
the models varied when applied to uncomplicated and
full datasets, suggesting that the characteristics of the
data and the amount of data may impact the models’
performance. In addition, it is important to note that using
more layers in a ResNet led to longer training time.
Furthermore, the loss change over epoch in the training step
of the proposed 1D Transformer model can be observed
in Supplementary Fig. 4, and the optimum thresholds were
0.164 for NIT, 0.196 for SXT, 0.196 for CIP and 0.216 LVX
and identified using an index that combined the F1-score
and G-mean of specificity and sensitivity, as shown in
Supplementary Fig. 5.

As Transformer gave the best result, it is compared with
the best-performing linear regression model in the literature
[5], as shown in Table 2. Table 2 compares the performance
of the proposed Transformer model with the model in the
literature using linear regression on independent test sets of
3941 uncomplicated UTI cases. The performance metrics
reported in the table are the same as in Table 1. As the Linear
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TABLE 1. Performance of different models. All the models were trained with Masked Entropy loss unless mentioned otherwise. 11865 samples were used
for the uncomplicated AMR-UTI dataset, and 80962 samples were used with the full dataset. Results were reported for the same independent
3941 uncomplicated samples and independent 35940 full test samples, including complicated cases.

TABLE 2. Comparison of performances of the proposed model and the
models in the literature. 11 865 uncomplicated samples from the
AMR-UTI dataset were used to train the models, and results were
reported for the same independent 3,941 uncomplicated samples.

Regression model in the literature calculated performance for
each label separately [5], results were reported as average
values of those scores.

The results show that when trained with the uncompli-
cated dataset, the proposed Transformer model performed
better than the linear regression model in the literature on
masked accuracy, masked sensitivity and AUC. While the
Transformer has a lower masked specificity compared to
Linear Regression, it is important to consider the trade-off
between sensitivity and specificity. The higher sensitivity
of the Transformer model indicates its ability to accurately
detect positive cases, even if it comes at the cost of
reduced specificity. This can be advantageous in the context

TABLE 3. Comparison of performances with the proposed Transformer
model with full features and the grouped features. 11,865 uncomplicated
samples from the AMR-UTI datasets were used for training, and results
were reported for the same independent 35,940 full test samples,
including complicated samples.

of AMR prediction, as it prioritises correctly identifying
individuals at risk, potentially leading to more effective
interventions. Though the Linear regression model in the
literature outperformed in F1 score, the F1 score of the
proposed model improved significantly and surpassed the F1
score when the full dataset was used to train, as listed in
Table 2.
In summary, the proposed Transformer model outper-

formed the linear regression model in the literature on all
performance metrics. This suggests that the Transformer
model is better suited for predicting antibiotic resistance
status and recommending first-line and second-line therapies
to treat UTI patients.
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The selected Transformer model trained with the uncom-
plicated AMR-UTI dataset was chosen for further exper-
iments to identify the significant features contributing to
the prediction using the Integrated Gradient XAI pipeline.
The Integrated Gradient XAI pipeline was chosen because
it performed well in initial experiments and is considered
uncomplicated, meaning it is relatively easy to understand
and interpret.

Based on the results obtained from the Integrated Gradient
pipeline, it can be observed that the micro-previous resistance
of each type of antibiotic plays a significant role in predicting
AMR. For example, the top three features predicting AMR
for Nitrofurantoin (NIT) were the micro-previous resistance
of NIT, the micro-prev organism Escherichia 180, and
the selected micro colonisation pressure CLI 90 -granular
level. Similarly, the top three features predicting AMR for
Trimethoprim-sulfamethoxazole (SXT) were those of a white
race, Micro-previous Resistance of SXT All, and Micro-
previous Resistance of CFZ all. It is also worth noting
that other factors, such as antibiotics usage, demographic
information, complicated treatment status, and hospital
admission, also contributed to the decision-making process.
This highlights the importance of consideringmultiple factors
when predicting AMR and developing personalised patient
treatment plans.

In addition, it is observed that the top three features
predicting AMR of Ciprofloxacin (CIP) were Micro-
previous Resistance of CIP all, Micro-previous Resistance
of Levofloxacin (LVX) all, and prior fluoroquinolone use.
Also, the top three features predicting AMR of LVX
were the same as those predicting AMR of CIP, which
shows that these antibiotics are closely related in terms
of resistance. This further underlines the importance of
considering multiple factors and the relationship between
different antibiotics when predicting AMR and developing
treatment plans. It can be noted that micro-previous resistance
of the drug and previous exposures of all periods were
contributed rather than 7, 14, 30, 90, and 180 days
periods.

The use of grouped features was also employed to obtain
a more consistent interpretation of the results, and these
findings are compared with those obtained from other
ML approaches reported in the literature [5]. The features
were grouped based on their known risk factor domains
associated with resistance. This included combining columns
with different time frames for prior antibiotic resistance,
prior antibiotic exposures, colonisation pressure, and hospital
antibiotic usage. As a result, a new dataset was created with
only 127 features, reducing the number of inconsistent and
insignificant features.

Table 3 compares the performance of the proposed
Transformer model when trained with the full set of features
andwhen trainedwith a reduced set of features grouped based
on their known risk factor domains associatedwith resistance.
The model was evaluated using masked accuracy, sensitivity,
specificity, AUC, and F1 score metrics.

TABLE 4. Comparison of Add and Delete metrics for the N
top-performing features with the different integrated gradient pipelines
and model trained with the grouped features.

The results show that when the Transformer model was
trained with the grouped features, it achieved an overall
improvement in performance compared to when it was
trained with the complete set of features. Specifically,
the masked accuracy increased by 7.4%, the masked sen-
sitivity increased by 2.81%, and the masked specificity
decreased by 4.25%. These results indicate that the proposed
Transformer model performance did not change too much
by grouping correlated features. This suggests that using
a reduced set of features more relevant to the task at
hand may lead to better performance in predictive models
in addition to the model complexity and advantages in
interpretability.

As the next steps, different interpretation methods were
applied to a model’s predictions, and interpretations were
quantitively validated. Table 4 compares the Add and Delete
metrics of the N top-performing features using different
Integrated Gradient pipelines, namely Integrated Gradient,
InputXGradient, multi-baseline Integrated Gradient and
Integrated Gradient with SmoothedGrad. The results were
validated using the model’s performance on the dataset and
an independent validation set, which constituted 15% of the
training data set. The table’s first row indicates the model’s
AUC when all input features were used. The remaining rows
show the impact on the AUC when adding or deleting the
top N important features from each label, with N being 10,
25, 50, and 100. The results indicate that the interpretation
method impacted on the model’s accuracy, as evidenced by
the varying AUC scores between pipelines.

When trained on subsets of the top N features, the
performance varies somewhat between the different methods,
but the differences are not large overall. When adding
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the top 25 important features, the AUC scores ranged
from 67.35% to 69.07%. Similarly, when deleting the top
10 important features, the AUC scores ranged from 66.53%
to 66.60%. The results suggest that the multi-baseline
Integrated Gradient and Integrated Gradient with Smoothed
gradients pipelines provided more consistent results across
different feature addition and deletion scenarios, making
them more robust and reliable in interpreting the model’s
predictions.

It is worth noting that the impact of Add and Delete metric
was not the only factor to consider when evaluating the
accuracy of the model. The complexity of the pipeline also
played a role. In this case, the multi-baseline Integrated Gra-
dient pipeline performed well as it had fewer computations
than the SmoothGrad [30] approach. Therefore, this study
proposes using themulti-baseline IntegratedGradientmethod
to identify the signatures contributing to the proposed 1D
Transformer model.

Based on the results obtained from the multi-baselines
Integrated Gradient pipeline, it can be observed that the
micro-previous resistance of each type of antibiotic played
a significant role in predicting AMR, as shown in Fig. 2A,
2B, 2C and 2D. Microbial resistance to specific antibiotics
and the use of certain drugs were the most significant
factors in predicting AMR. Microbial resistance to second-
line antibiotics, such as LVX and CIP, played a significant
role in the prediction of AMR for both antibiotics as
they are both fluoroquinolones. Additionally, factors such
as complicated treatment status and hospital admission
(inpatient or emergency room) had a positive impact,
while factors such as hospital admission (outpatient), ICU
admission, and being white had a negative impact. The
ten most positive and negative significant features for four
labels were extracted during this experiment and listed
in Supplementary Table 1. Comparing these results with
those in the literature [5], the features selected in the
current experiment align with the previous study’s findings
regarding the impact of prior exposure to antibiotics and
prior antibiotic resistance on AMR prediction. However, the
current investigation includes additional features, such as
hospital admission and uncomplicated status, which were not
included in the previous study.

As having zero values for the non-significant features
may be due to possible zero values in the real dataset, the
AUC of the Model Relevance N-features (AUC-MRNF) was
calculated to validate the selected approach. The Transformer
model was trained using the most significant 25 positive and
negative features extracted from each of the four labels in this
approach. This resulted in a model with a total of 53 features,
and the performance was evaluated using the AUC metric.
The results showed that the model achieved an AUC score
of 68.49%, which was only 0.20% lower than when all the
features were used. This result suggests that the extracted
25 significant positive and negative features represent the
overall trend in the data and that the model can still perform
well with fewer features.

VI. DISCUSSION
This study clearly demonstrated that the Transformer model
outperformed ResNet and 1D-CNN on Masked Accuracy,
Masked Sensitivity, Masked AUC, and Masked F1 score
when the uncomplicated dataset was used for training.
Although the ResNet has more layers, the Transformer
outperformed due to the ability of the Transformer to
extract the features and the lack of sufficient data in the
training phase. Generally, the proposed models achieved
good performance in predicting AMR, especially with the
Transformer model, which appeared to be robust to different
data types. However, it also seems that there is still room
for improvement in precision and F1 score. Further research
should be conducted to optimise the models and apply
them to more varied and representative data to improve the
results.

This study applied the multi-baseline Integrated Gradient
XAI pipeline to the 1D data from the AMR-UTI dataset,
which contained demographic, antibiotic prescriptions, med-
ical procedures and lab tests. The goal was to identify
which features are most important for predicting antibiotic
resistance and to understand how these features related
to the risk factor domains associated with resistance.
The Integrated Gradient pipeline returned the features
contributing to the prediction of each label. It could be
observed that each type’s micro-previous resistance played
a significant role while other factors, such as antibiotics
usage, demographic information, complicated treatment
status, and hospital admission, contributed next. This infor-
mation can be used to control AMR spread and introduce
robust antimicrobial stewardship for a common outpatient
diagnosis.

The significant features include prior exposure to antibi-
otics, prior antibiotic resistance, and various clinical factors
such as hospital admission, age, and uncomplicated status.
The significant features identified in this study can have
major implications for antibiotic resistance management.
The findings indicate that previous resistance patterns
significantly predict antibiotic resistance for UTI. Healthcare
providers can use this information better to understand the
likelihood of resistance in a given patient and to make
more informed decisions about which antibiotics to prescribe.
In addition, the discovery of the contribution of factors such
as demographic information, complicated treatment status,
and hospital admission highlights the need for a holistic
approach to managing antibiotic resistance. These findings
suggest that strategies to prevent the spread of resistance must
not only focus on the responsible use of antibiotics but also on
other factors that may contribute to resistance, such as patient
demographics and healthcare practices.

The proposed 1D Transformer-based model offers several
advantages over traditional CNN and ResNet models. The
1D Transformer-based model has been designed to capture
spatial dependencies between features, which is important
for correctly classifying the data. The addition of positional
encoding enables the model to capture these dependencies
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and perform well in predicting multiple AMR phenotypes.
The 1D Transformer-based model has a higher complexity
than traditional CNN and ResNet models due to the inclusion
of the attention mechanism, but the improved performance
of the model and future possibilities to use time series data
justify the choice.

An Integrated Gradient was used in this study to identify
the significant features contributing to the model’s decision.
Multi-baselines were used to avoid baseline effects and
ensure the robustness of the feature importance estimates.
This approach enabled the researchers to obtain a more
accurate and reliable estimate of feature importance and gain
valuable insights into the genomic features contributing to
AMR prediction. While the use of Integrated Gradients can
increase the computational complexity of the model, it is an
invaluable tool for XAI and can provide valuable insights into
the decision-making process of complex models.

Overall, these results support the importance of consid-
ering both prior exposure to antibiotics and prior antibiotic
resistance and various clinical factors. These findings can
inform the development of decision algorithms for promoting
outpatient antimicrobial stewardship in uncomplicated UTI.

Moreover, the findings also highlight the importance
of considering patients’ treatment and admission status in
predicting AMR. Patients undergoing complicated treatments
or hospital admission, especially inpatients or emergency
rooms, are more likely to have AMR. In addition, the impact
of race on AMR is also an essential factor to consider.

According to the findings, being white is negatively
correlated with AMR, suggesting that race may play a role
in the development of AMR. This highlights the need for
further research to understand the impact of race and other
demographic factors on AMR.

Although colonisation pressure, an indirect measure of
local resistance rates, was included as a feature in the model,
it was not selected as a significant predictor. Various factors
can influence local resistance rates, including antibiotic
prescribing practices and regional variations in resistance
patterns, which can introduce noise and make it difficult
to isolate their direct impact on individual predictions.
Furthermore, the model may indirectly capture the effect of
local resistance rates through other correlated features in the
dataset.

Furthermore, the ability of the Integrated Gradient XAI
pipeline to identify the most important features contributing
to the prediction of antibiotic resistance has the potential
to improve the accuracy and precision of existing models
for predicting resistance. By focusing on the most relevant
features, the models can be optimised for better prediction
and reduced false positive and false negative rates. This can
lead to more efficient use of resources and a reduced risk of
antibiotic resistance spreading. The results demonstrate that
the proposedmulti-baseline IntegratedGradient approach can
effectively identify themost important features in a DLmodel
and can be a valuable tool for feature selection and model
interpretation.

VII. CONCLUSION
In this study, data-driven prescription strategies are proposed
to identify AMR and prescribe optimal treatment to treat
UTIs, which will help to reduce broad-spectrum antibiotic
use. The results of this paper suggest that the proposed
Transformer-based model and Integrated Gradient XAI
pipeline are effective tools for predicting antibiotic resistance
and providing personalised treatment recommendations for
patients with UTIs. The study highlights the potential of using
DL models and XAI techniques for predicting antibiotic
resistance and improving patient outcomes. In addition,
interpretable models were able to identify the features
contributing to the decision, which may support the decision
as a second opinion. This reduces the risk of choosing
unnecessarily broad antibiotics and increases the chances of
successfully treating the infection.

However, there are also limitations to this study. The
limited representation of different patient populations and
demographics is one limitation. Further research is needed
to validate the findings with diverse patient populations and
cultural backgrounds to ensure the model is generalisable
and applicable to a wide range of patients and antibiotics
that enhance its clinical usefulness. In addition, this study
only focused on predicting the antibiotic resistance status of
UTI patients and recommending first-line and second-line
therapies. However, in practice, a patient may be diagnosed
with multiple conditions, and antibiotics may affect the
resistance status of other bacterial infections. Therefore,
future research should explore the potential of using this
approach to predict antibiotic resistance for multiple bacterial
infections and develop a comprehensive treatment plan
that considers the potential interactions between different
antibiotics.

In conclusion, this study has demonstrated the potential
for using advanced ML techniques to predict antibiotic
resistance and provide personalised treatment recommenda-
tions. The proposed models effectively identify significant
features, reduce the complexity of feature selection, and
provide interpretable predictions that can help clinicians
make informed decisions. While there are limitations to the
approach, such as the need for high-quality clinical data
and significant investment in resources, the potential benefits
are substantial. By supporting antimicrobial stewardship
efforts and improving human and animal patient outcomes,
this approach casn significantly impact the fight against
antimicrobial resistance.
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