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a b s t r a c t

In the recent paper (Fei et al., 2019), the study of delay-dependent stability of hybrid
stochastic differential delay equations (SDDEs) was generalized to superlinear ones
(namely, do not satisfy the usual linear growth condition). However, the theory devel-
oped there could not be applied to hybrid SDDEs with non-differentiable time delays, or
whose drift coefficients miss the key decomposition in (Fei et al., 2019) (see Assumption
1 below). This paper therefore is to deal with these two challenging problems so that
the delay-dependent stability criteria derived in (Fei et al., 2019) could be improved. The
decomposition scheme is modified in order to include more general hybrid SDDEs. The
differentiability assumption on time-varying delays is replaced by a relatively weaker
one. Also the Lyapunov functional used in this paper is modulated to adapt to these
new changes. Finally, two interesting examples, an application to mosquito model, and
design of nonlinear delay feedback control, respectively, are given to demonstrate the
effectiveness of our new theory.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Since 1990’s, there have been enormous papers on the analysis of stochastic differential delay equations with
arkovian chains (also known as hybrid SDDEs), due to their intensive applications to various real-world problems, such
s chemical refining processes [1], mobile manipulators [2], optimal consumption problem [3]. As one of the interesting
opics, stability draws many researchers’ attention. As the literature in this area is very huge, we only mention [4–10]
mong others. Two types of stability criteria are often discussed: delay-independent, establishing stability results for
ny delay value, or delay-dependent, taking into account some limited size of delays. Compared with the first type,
elay-dependent stability makes the most of additional information of time delays, and hence it seems less conservative,
specially for systems with small delays. We cite [11–18] to the reader for reference.
A general hybrid SDDE is described as

dx(t) = f (x(t), x(t − h(t)), t, r(t))dt + g(x(t), x(t − h(t)), t, r(t))dW (t) (1.1)

on t ≥ 0, where h(t) denotes the time delay. Detailed explanation of Eq. (1.1) and other notations will be given in
Section 2. Traditionally, the linear growth condition on the drift coefficient f and the diffusion coefficient g is needed for
delay-dependent stability (e.g., see [12–16]). In 2017, Fei et al. [17] made an important breakthrough in this area as they
got rid of this restriction and brought the study into superlinear systems. Unfortunately, in [17], f (x, y, t, i) was assumed
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o satisfy the global Lipschitz condition in the delay component y, which is relatively restrictive in practice. Later on,
o overcome this difficulty, Fei et al. [11] developed generalized results. Although their theory could cover more hybrid
DDEs, there are still two issues that require our further investigation.

1. The results established in work [11] rely closely on the following key assumption.

ssumption 1. Assume that f can be decomposed as f (x, y, t, i) = f1(x, y, t, i)+ f2(x, y, t, i), where there exists a positive
number β such that for any (x, y, t, i) ∈ Rn

× Rn
× R+ × S,

|f1(x, y, t, i) − f1(x, x, t, i)| ≤ β|x − y|. (1.2)

This assumption is in fact a little harsh since we could not always see this particular structure, for example, in
function f , the delay segment y is mixed with the current component x, such as f (x, y, t, i) = xy − x3, or the delay
component appears only in the superlinear term, such as f (x, y, t, i) = x+ y2 − x3. In these cases, the theory in [11]
is not applicable, and a class of hybrid SDDEs might be excluded.

2. The time delay function h(t) is supposed to be a differentiable function and satisfies

dh(t)
dt

≤ h̄ < 1, ∀t ≥ 0 (1.3)

for some constant h̄. Condition (1.3) also appears widely in the study of delayed systems (e.g., see [8,19,20]), but just
being imposed owing to the mathematical need to deal with the time lag. However, many real-world time delays
might miss this condition (e.g., [21–26]). For example, in the networked control systems, sawtooth delay appears
frequently, such as h(t) = τ

∑
∞

k=0 1[k,k+1)(t) (t − k) (e.g., see [24,25]). It was also found in [26] that the energy of a
vibrating system could decay exponentially with 2T -periodic switching delay, namely, h(t) = 4T in the first half of
one period and 6T in the latter, where T represents the wave period. These delays are even discontinuous, let alone
meeting condition (1.3). Therefore, it seems a little unreasonable to continue imposing this condition.

In summary, these two restrictions make the delay-dependent stability results derived in [11] less applicable in reality.
Therefore, this paper is aimed to remove them, and the main contributions can be summarized as follows. (1) We will
modify the decomposition scheme of function f in Assumption 1 by changing the Lipschitz coefficient on the second
segment of f1 from a constant β into a polynomial. (2) In theory, such a replacement will bring new mathematical
challenge, which results in the Lyapunov functional used in this paper different from that in [11] (more details can be
found in Section 3). (3) More general time-varying delay functions will be considered, which meet a weaker assumption
(namely Assumption 2, firstly being proposed by [23]) than differentiability assumption (namely condition (1.3)). (4)
Compared with [23], the delay function h(t) studied in this paper is no longer needed to be bounded below by a positive
number.

A description of the organization of this paper follows. In Section 2, we will present our model of hybrid SDDEs with
general time delays and impose some standing hypotheses to guarantee the unique solution of the underlying hybrid
SDDE. In Section 3, we will introduce our new scheme of drift coefficient decomposition and the Lyapunov functional used
in this paper under some extra conditions for the purpose of stability. After these preparations, we will give a method to
determine the upper bound of time delays and our delay-dependent stability results in Section 4, including H∞ stability,
moment asymptotic stability and almost sure asymptotic stability. Ultimately, Sections 5 and 6 are devoted to examples
and conclusion, respectively.

2. Model formulation and global solution

In Section 2.1, we will list some basic notations, and then discuss the time delay in detail. The delay function h(t)
takes values in [0, τ ] for some positive constant τ , and needs to satisfy Assumption 2 (firstly proposed in [23]), which
is obviously weaker than differentiability condition (1.3). In Section 2.2, we will show our existence-and-uniqueness
theorem.

2.1. Hybrid SDDEs with general time delays

We first provide the notations to be used widely in this paper. If a and b are both real numbers, then a∧b = min{a, b}
and a∨ b = max{a, b}. Denote by R+ the collection of all non-negative real numbers. Let Rn be the n-dimensional vector
space over the reals with Euclidean norm | · |. For a vector or matrix M , MT represents its transpose. If M is a matrix,
denote its trace norm by |M| =

√
trace(MTM). Let C ([−τ , 0];Rn) represent the family of all continuous functions φ from

−τ , 0] to Rn and designate the norm of its element φ by ∥φ∥ = sup−τ≤θ≤0 |φ(θ )|. For a set A, let 1A be its indicator
function, that is, 1A(a) = 1 if a ∈ A, and 0 otherwise.

We also let (Ω,F, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (that is, it
is increasing, right-continuous and F contains all P-null sets). Denote by W (t) = W (t), . . . ,W (t) T an m-dimensional
0 ( 1 m )
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rownian motion defined on the probability space. Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability
pace taking values in a finite state space S = {1, 2, . . . ,N} with transition rate matrix Q = (qij)N×N given by

P (r(t + H) = j|r(t) = i) =

{
1 + qijH + o(H), if i = j
qijH + o(H), if i ̸= j

s H ↓ 0. Here qij ≥ 0 is the transition rate from i to j if i ̸= j, while qii = −
∑

j̸=i qij. We assume that the Markov chain
(t) and the Brownian motion W (t) are independent under the probability measure P .
Consider the hybrid SDDE (1.1) with the initial data{

x(t)
⏐⏐− τ ≤ t ≤ 0

}
= ξ ∈ C([−τ , 0];Rn), r(0) = r0 ∈ S. (2.1)

ere, drift coefficient f : Rn
× Rn

× R+ × S → Rn and diffusion coefficient g : Rn
× Rn

× R+ × S → Rn×m are both Borel
measurable functions, h : R+ → [0, τ ] is the system delay.

As mentioned before, the mathematical techniques used in many papers to tackle the delay effect, such as [8,19,20],
orce the authors to impose the differentiability condition on the time delay h(t), which is too restrictive in many real
odels. Consequently, in this paper, we will consider a more general situation, by imposing the following assumption.

ssumption 2. Suppose that h(t) is a Borel measurable function with the property that

h∗
:= lim sup

H→0+

(
sup
s≥−τ

µ(Is,H )
H

)
< ∞, (2.2)

here µ(·) denotes the Lebesgue measure on the real line and

Is,H =
{
t ∈ R+

⏐⏐t − h(t) ∈ [s, s + H)
}
.

It should be pointed out that this assumption is not so strong and can be met by many time-varying delay functions
in practice. For example, the piecewise constant function h(t) = T

∑
∞

k=0 1[(2k+1)T ,(2k+2)T )(t) satisfies Assumption 2 with
h∗

= 2, where T is a positive constant. Moreover, if h(t) is a Lipschitz continuous function with Lipschitz coefficient
ĥ ∈ (0, 1), then Assumption 2 is satisfied with h∗

=
1

1−ĥ
. For more details about Assumption 2 and these two examples,

we refer the reader to [23]. But different from [23], the delay function h(t) considered in this paper is not needed to be
ounded below by a positive constant. Of course we do not want to consider the case where h(t) = 0 for all t ≥ 0 as the
DDE reduces to a stochastic differential equation (SDE).
Next, we need to prepare a useful lemma, which plays a fundamental role when we discuss the properties of the hybrid

DDE (1.1).

emma 1. Let Assumption 2 hold. Let T > 0 and ϕ : [−τ , T ] → R+ be a continuous function. Then∫ T

0
ϕ(v − h(v))dv ≤ h∗

∫ T

−τ

ϕ(v)dv. (2.3)

This lemma tells us how to tackle the effect of time delays under our new Assumption 2. We also refer the reader to
emma 2.2 in [23] for more details. While a little differently, the integral of ϕ(v) in the right-hand side of (2.3) is from
τ to T , since the delay function h(t) in this paper could reach zero. But one can still use the same way as Lemma 2.2

n [23] was proved to show Lemma 1. So we omit the proof here. Moreover, it should be pointed out that h∗ given in
ssumption 2 always satisfies that h∗

≥ 1. In fact, if we let ϕ(t) ≡ 1 for all t ≥ −τ in Lemma 1. Then this lemma tells us
hat T ≤ h∗(T + τ ) for any T > 0, which implies that h∗

≥ limT→∞
T

T+τ
= 1.

.2. Global solution

At first, we do not want the system coefficients to grow very rapidly, so the following polynomial growth condition is
equired.

ssumption 3. Both coefficients f and g are locally Lipschitz continuous. Also assume that there exist constants q1 > 1
nd Kj ≥ 0, K̂j ≥ 0, (j = 1, 2, 3, 4) such that

|f (x, y, t, i)| ≤ K1|x| + K2|y| + K3|x|q1 + K4|y|q1 (2.4)

nd

|g(x, y, t, i)|2 ≤ K̂1|x|2 + K̂2|y|2 + K̂3|x|q1+1
+ K̂4|y|q1+1 (2.5)

or all (x, y, t, i) ∈ Rn
× Rn

× R × S.
+

3
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Condition (2.4) will be widely used in the subsequent stability analysis, particularly, in determining the upper bound
of τ , which relies on the coefficients K1, K2, K3 and K4. In order to have a larger τ as possible, we do not take the maximum
of these four numbers to control f , that is, |f (x, y, t, i)| ≤ (K1 ∨ K2 ∨ K3 ∨ K4)(|x| + |y| + |x|q1 + |y|q1 ). The same reason
pplies for condition (2.5).
But Assumption 3 cannot ensure the global solution of hybrid SDDE (1.1). Therefore we impose the following

eneralized Khasminskii-type assumption.

ssumption 4. Assume that there exist non-negative constants q ≥ 2q1, α1, α2, α3,i, and α4,i (i ∈ S), where

min
i∈S

{
α3,i −

h∗(q1 + 1) + q − 2
q1 + q − 1

α4,i

}
≥ 0, (2.6)

uch that

xTf (x, y, t, i) +
q − 1
2

|g(x, y, t, i)|2 ≤ α1|x|2 + α2|y|2 − α3,i|x|q1+1
+ α4,i|y|q1+1 (2.7)

or all (x, y, t, i) ∈ Rn
× Rn

× R+ × S.

The classical Khasminskii test (see [27]) is a powerful technique for SDEs to have non-explosion solutions without the
inear growth condition. More precisely, for an SDE dx(t) = f (x(t), t)dt + g(x(t), t)dW (t), if there is a Lyapunov function
ˆ (x, t) such that

V̂t (x, t) + V̂x(x, t)f (x, t) +
1
2
trace

(
gT(x, t)V̂xx(x, t)g(x, t)

)
≤ α̂1V̂ (x, t),

(i.e., the diffusion operator is bounded by a linear function of V̂ ), then the SDE has a global solution (no explosion at
a finite time). For our SDDEs, this test has been generalized to deal with superlinear delay terms (e.g., Assumption 2.2
in [17], Assumption 2.3 in [23]), that is, the condition above is described in a generalized form

V̂t (x, t) + V̂x(x, t)f (x, y, t, i) +
1
2
trace

(
gT(x, y, t, i)V̂xx(x, t)g(x, y, t, i)

)
≤α̂1(V̂ (x, t) + V̂ (y, t − h(t))) − α̂2Û(x, t) + α̂3Û(y, t − h(t)),

where in general Û grows faster than V̂ . The significant generalization here is that the diffusion operator is no longer
bounded by a linear function of V̂ . For example, in Assumption 4, we take the special form V̂ (x, t) = |x|q and Û(x, t) =

|x|q1+q−1 (see Theorem 1 and its proof). The latter is often used to eliminate the delay effect of superlinear term |y|q1+1,
which is given in Assumption 3. However, condition (2.6) is a little stronger than Assumption 2.3 in [23] since we require
α3,i −

h∗(q1+1)+q−2
q1+q−1 α4,i ≥ 0. But this is needed to deal with the difficulty arising from the time delay, which is bounded

elow by zero rather than a positive constant. It is because this stronger condition that the proof of the existence of a
lobal solution becomes easier.

heorem 1. Let Assumptions 2, 3 and 4 hold. Then for any given initial data (2.1), there is a unique global solution x(t) of
ybrid SDDE (1.1) on t ∈ [0, ∞) with the property that

sup
0≤v≤t

E|x(v)|q < ∞, ∀t ≥ 0. (2.8)

roof. Fix the initial data ξ ∈ C([−τ , 0];Rn) and r0 ∈ S. Since the system coefficients are locally Lipschitz continuous,
by Theorem 7.12 in [5], there is a unique maximal local solution x(t) on t ∈ [0, σe), where σe is the explosion time. Let
0 > 0 be sufficiently large for k0 ≥ ∥ξ∥. For each integer k ≥ k0, define the stopping time

σk = inf
{
t ∈ [0, σe)

⏐⏐|x(t)| ≥ k
}
.

learly, σk is increasing as k → ∞. Set σ∞ = limk→∞ σk, whence σ∞ ≤ σe a.s. If we can show that σ∞ = ∞ a.s., then
σe = ∞ a.s., and the solution x(t) is the global solution.

Now, for any k ≥ k0 and t ≥ 0, we derive from the Itô formula and condition (2.7) that

E|x(t ∧ σk)|q − |ξ (0)|q

≤E
∫ t∧σk

0
q|x(s)|q−2

(
xT(s)f (x(s), x(s − h(s)), s, r(s)) +

q − 1
2

|g(x(s), x(s − h(s)), s, r(s))|2
)
ds

≤E
∫ t∧σk

q|x(s)|q−2 (α1|x(s)|2 + α2|x(s − h(s))|2 − α3,r(s)|x(s)|q1+1
+ α4,r(s)|x(s − h(s))|q1+1) ds.
0

4
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E|x(t ∧ σk)|q − |ξ (0)|q ≤(qα1 + (q − 2)α2)E
∫ t∧σk

0
|x(s)|qds + 2α2E

∫ t∧σk

0
|x(s − h(s))|qds

− E
∫ t∧σk

0

(
qα3,r(s) −

q(q − 2)α4,r(s)

q1 + q − 1

)
|x(s)|q1+q−1ds

+ E
∫ t∧σk

0

q(q1 + 1)α4,r(s)

q1 + q − 1
|x(s − h(s))|q1+q−1ds. (2.9)

aking use of Lemma 1, we see that∫ t∧σk

0
|x(s − h(s))|qds ≤ h∗

∫ t∧σk

−τ

|x(s)|qds

nd ∫ t∧σk

0
|x(s − h(s))|q1+q−1ds ≤ h∗

∫ t∧σk

−τ

|x(s)|q1+q−1ds.

Substituting these into (2.9) yields that

E|x(t ∧ σk)|q ≤C1 + (qα1 + (q − 2 + 2h∗)α2)E
∫ t∧σk

0
|x(s)|qds

− E
∫ t∧σk

0
q
(

α3,r(s) −
h∗(q1 + 1) + q − 2

q1 + q − 1
α4,r(s)

)
|x(s)|q1+q−1ds

≤C1 + (qα1 + (q − 2 + 2h∗)α2)E
∫ t∧σk

0
|x(s)|qds

− qmin
i∈S

{
α3,i −

h∗(q1 + 1) + q − 2
q1 + q − 1

α4,i

}
E
∫ t∧σk

0
|x(s)|q1+q−1ds, (2.10)

here

C1 = |ξ (0)|q + 2h∗α2τ∥ξ∥
q
+

h∗q(q1 + 1)α4

q1 + q − 1
τ∥ξ∥

q1+q−1.

In particular, by (2.6),

E|x(t ∧ σk)|q ≤C1 + (qα1 + (q − 2 + 2h∗)α2)
∫ t

0
E|x(s ∧ σk)|qds

≤C1 + (qα1 + (q − 2 + 2h∗)α2)
∫ t

0
sup
0≤v≤s

E|x(v ∧ σk)|qds.

Since the right-hand-side term is increasing in t , we must have

sup
0≤v≤t

E|x(v ∧ σk)|q ≤ C1 + (qα1 + (q − 2 + 2h∗)α2)
∫ t

0
sup
0≤v≤s

E|x(v ∧ σk)|qds.

Applying the Gronwall inequality, we have

sup
0≤v≤t

E|x(v ∧ σk)|q ≤ C1e(qα1+(q−2+2h∗)α2)t . (2.11)

This implies that

kqP(σk ≤ t) ≤ E|x(t ∧ σk)|q ≤ sup
0≤v≤t

E|x(v ∧ σk)|q < ∞.

We can hence let k → ∞ in the inequality above to obtain that P(σ∞ ≤ t) = 0, namely, P(σ∞ > t) = 1. Since t ≥ 0 is
arbitrary, we must have that P(σ∞ = ∞) = 1 as required. Letting k → ∞ in (2.11) gives the assertion (2.8) immediately.
The proof is therefore complete. □

Theorem 1 implies that for any t ≥ 0, the solution x(t) is in Lq, while both f (x(t), x(t − h(t)), t, r(t)) and g(x(t), x(t −

h(t)), t, r(t)) are in L2. These properties are significant when we discuss the stability of hybrid SDDE (1.1).

3. Conditions for stability

In Section 2, we have shown that there admits a global solution of hybrid SDDE (1.1) under our standing Assumptions 2,
3 and 4. But this is not enough to derive the delay-dependent stability. For this purpose, we will impose some additional
conditions on the system in this section. At the meantime, we will talk about the new decomposition of the drift coefficient
in Section 3.1, and the Lyapunov functional in Section 3.2.
5
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.1. New decomposition scheme

The key assumption in [11] is that f could be decomposed into two parts, one of which is globally Lipschitz continuous
n delay component. But as we mentioned before, this is a little restrictive. Therefore, in this paper, we will modify this
ecomposition, which is stated as the following assumption.

ssumption 5. Assume that the drift coefficient f can be decomposed as

f (x, y, t, i) = f1(x, y, t, i) + f2(x, y, t, i) (3.1)

nd, moreover, there exist three constants r ∈

[
0, q1−1

2

]
, β1 ≥ 0, β2 ≥ 0 and β3 ≥ 0, where β1, β2, β3 cannot be zero

simultaneously, such that

|f1(x, y, t, i) − f1(x, x, t, i)| ≤
(
β1 + β2|x|r + β3|y|r

)
|x − y| (3.2)

for all (x, y, t, i) ∈ Rn
× Rn

× R+ × S.

Remark 1. Here, in line with condition (2.4), we mention that the numbers r , β1, β2 and β3 also play a big part in the
determination of the upper bound of τ . As a result, we do not express the right-hand side of condition (3.2) in the form
of (β1 ∨ β2 ∨ β3)

(
1 + |x|r + |y|r

)
|x − y|.

It should also be underlined that our new decomposition scheme of f indeed enables us to include a wider class of
hybrid SDDEs. Recalling the examples in the introduction part, if f (x, y, t, i) = xy − x3, then f1(x, y, t, i) = xy with r = 1,
β1 = 0, β2 = 1, β3 = 0 and f2(x, y, t, i) = −x3; if f (x, y, t, i) = x + y2 − x3, then f1(x, y, t, i) = y2 with r = 1, β1 = 0,
β2 = 1, β3 = 1 and f2(x, y, t, i) = x − x3. Moreover, when β2 = β3 = 0 or r = 0, condition (3.2) becomes the familiar
condition (1.2) studied in [11].

Finally, we strengthen that the decomposition plan for many examples is always not fixed and there might exist other
possible schemes. But unfortunately, we currently could not provide a standard to determine which one is the best. In
practice, for convenience, we always tend to put the delay terms whose order are not larger than q1+1

2 in f1, and others
ncluding non-delay terms and higher-order delay terms in f2. This is because f1 represents the delay-dependent property
and we want it as simple as possible.

The key idea in this paper is to make use of the decomposition of f (x, y, t, i) defined in Assumption 5. We then rewrite
f (x, y, t, i) as

f (x, y, t, i) = (f1(x, y, t, i) − f1(x, x, t, i)) + (f1(x, x, t, i) + f2(x, y, t, i)). (3.3)

Thus the drift coefficient can be analyzed by two parts. The second part, f1(x, x, t, i) + f2(x, y, t, i), will be dealt with in
Section 3.2. Now, let us focus on the first part, f1(x, y, t, i) − f1(x, x, t, i). Recalling condition (3.2), we derive that

|f1(x, y, t, i) − f1(x, x, t, i)|

≤β1|x − y| + β2

√
|x|2r (|x| + |y|)

√
|x − y| + β3

√
|y|2r (|x| + |y|)

√
|x − y|

≤β1|x − y| +
β2

2ε1
|x − y| +

β2ε1

2
|x|2r (|x| + |y|) +

β3

2ε1
|x − y| +

β3ε1

2
|y|2r (|x| + |y|)

≤

(
β1 +

β2 + β3

2ε1

)
|x − y| +

β2(4r + 1) + β3

4r + 2
ε1|x|2r+1

+
β2 + β3(4r + 1)

4r + 2
ε1|y|2r+1, (3.4)

here ε1 > 0 is a parameter to be determined later. This then forces us to estimate the difference between x(t) and
(t − h(t)), which is the following lemma.

emma 2. Let all the conditions in Theorem 1 hold. Then for any t ≥ 2τ , we have

E|x(t) − x(t − h(t))|2 ≤(H1τ + H2)
∫ t

t−2τ
E|x(v)|2dv + (H3τ + H4τ )

∫ t

t−2τ
E|x(v)|2q1dv

+ (H5τ + H6)
∫ t

t−2τ
E|x(v)|q1+1dv, (3.5)

here H1 = 4
(
K 2
1 + K 2

2 h
∗
)
, H2 = 2(K̂1 + K̂2h∗), H3 = 4K 2

3 , H4 = 4K 2
4 h

∗, H6 = 2(K̂3 + K̂4h∗),

H5 = 4
((

K1K3 +
K1K4 + K2K3q1

q1 + 1

)
+

(
K2K4 +

K2K3 + K1K4q1
q1 + 1

)
h∗

)
.

roof. It is easy to see from hybrid SDDE (1.1) that

x(t) − x(t − h(t)) =

∫ t

f (x(v), x(v − h(v)), v, r(v))dv +

∫ t

g(x(v), x(v − h(v)), v, r(v))dW (v).

t−h(t) t−h(t)

6
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sing the elementary inequality |a + b|2 ≤ 2(|a|2 + |b|2) and the Hölder inequality, we can show that

|x(t) − x(t − h(t))|2 ≤ 2τ
∫ t

t−h(t)
|f (x(v), x(v − h(v)), v, r(v))|2dv + 2

⏐⏐⏐⏐∫ t

t−h(t)
|g(x(v), x(v − h(v)), v, r(v))|2dW (v)

⏐⏐⏐⏐2 .

ecalling the discussions below Theorem 1, we can take expectations on both sides and apply the Doob martingale
nequality to obtain

E|x(t) − x(t − h(t))|2 ≤ 2E
∫ t

t−h(t)

(
τ |f (x(v), x(v − h(v)), v, r(v))|2 + |g(x(v), x(v − h(v)), v, r(v))|2

)
dv. (3.6)

or any (x, y, t, i) ∈ Rn
× Rn

× R+ × S, by condition (2.4) and the Young inequality, compute

|f (x, y, t, i)|2 ≤2K 2
1 |x|2 + 2K 2

2 |y|2 + 2K 2
3 |x|2q1 + 2K 2

4 |y|2q1 + 2
(
K1K3 +

K1K4

q1 + 1
+

K2K3q1
q1 + 1

)
|x|q1+1

+ 2
(
K2K4 +

K2K3

q1 + 1
+

K1K4q1
q1 + 1

)
|y|q1+1.

This, combining with condition (2.5) then yields that

2
(
τ |f (x, y, t, i)|2 + |g(x, y, t, i)|2

)
≤

(
4K 2

1 τ + 2K̂1

)
|x|2 +

(
4K 2

2 τ + 2K̂2

)
|y|2 + 4K 2

3 τ |x|2q1 + 4K 2
4 τ |y|2q1

+

(
4
(
K1K3 +

K1K4 + K2K3q1
q1 + 1

)
τ + 2K̂3

)
|x|q1+1

+

(
4
(
K2K4 +

K2K3 + K1K4q1
q1 + 1

)
τ + 2K̂4

)
|y|q1+1.

ubstituting this into (3.6) gives that

E|x(t) − x(t − h(t))|2

≤

(
4K 2

1 τ + 2K̂1

) ∫ t

t−τ

E|x(v)|2dv +

(
4K 2

2 τ + 2K̂2

) ∫ t

t−τ

E|x(v − h(v))|2dv

+ 4K 2
3 τ

∫ t

t−τ

E|x(v)|2q1dv + 4K 2
4 τ

∫ t

t−τ

E|x(v − h(v))|2q1dv

+

(
4
(
K1K3 +

K1K4 + K2K3q1
q1 + 1

)
τ + 2K̂3

)∫ t

t−τ

E|x(v)|q1+1dv

+

(
4
(
K2K4 +

K2K3 + K1K4q1
q1 + 1

)
τ + 2K̂4

)∫ t

t−τ

E|x(v − h(v))|q1+1dv

≤(H1τ + H2)
∫ t

t−2τ
E|x(v)|2dv + (H3τ + H4τ )

∫ t

t−2τ
E|x(v)|2q1dv + (H5τ + H6)

∫ t

t−2τ
E|x(v)|q1+1dv,

where Lemma 1 has been used. This ends the proof. □

Before closing this subsection, we make some comments about the advantages and challenges of delay-dependent
stability.

Remark 2. In the study delay-independent stability, we often use the delay-free information to suppress the impact of
time delays. Thus the delay size is of no use, but the non-delay term is always strengthened. For example, to obtain a
delay-independent stability criterion for the underlying hybrid SDDE in this paper, the following assumption

xTf (x, y, t, i) +
q1
2

|g(x, y, t, i)|2 ≤ −ν1|x|2 + ν2|y|2 − ν3|x|q1+1
+ ν4|y|q1+1,

here ν1 > ν2h∗ and ν3 >
h∗(q1+1)+q1−1

2q1
ν4, might be needed. Certainty, such a requirement is sometimes a little strong.

o ease this restriction, in the research of delay-dependent stability, we use another way to cope with the effect of time
elays. More precisely, we estimate x(t)− x(t − h(t)), the difference between current-time state and past-time state, and

hope it could be small enough if the time lag is sufficiently small. Consequently, the conditions on the non-delay term
could be relaxed.

Remark 3. However, the estimation of x(t) − x(t − h(t)) is challenging. We are always forced to impose some
xtra conditions. In [17], f (x, y, t, i) was required to be globally Lipschitz continuous in y. In [11], f (x, y, t, i) could be

decomposed into two parts, one of which should satisfy global Lipschitz condition in the delay segment. While, in this
paper, the global Lipschitz condition is replaced by condition (3.2). But here we still need r ≤

q1−1
2 to achieve the stability

purpose.
7
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Moreover, due to the mathematical skills, we can currently just estimate x(t)− x(t −h(t)) in the sense of mean square.
In fact, instead of (3.4), |f1(x, y, t, i) − f1(x, x, t, i)| can be computed in another way,

|f1(x, y, t, i) − f1(x, x, t, i)| ≤
(
β1 + (β2 + β3R)|x|r + β3R|x − y|r

)
|x − y|

≤β1|x − y| +
r(β2 + β3R)

r + 1
|x|r+1

+

(
β2 + β3R
r + 1

+ β3R
)

|x − y|r+1

here R = 2(r−1)∨0. In this situation, the delay part in f1(x, y, t, i) could be handled completely by estimating x − y.
Our conditions on the system coefficients could hence be less conservative (e.g., q1

2 |g(x, y, t, i)|2 could be replaced by
2r+1
2 |g(x, y, t, i)|2 in Assumption 6). Nevertheless, we are not able do with E|x(t) − x(t − h(t))|2r+2. As a result, in this

paper, we set free parameter ε1 and use the integral transform (Lemma 1) to reduce the influence of time delays. More
details can be found in Lemma 3 below.

Anyway, how to overcome these difficulties deserves our further investigation.

3.2. Lyapunov functional

In the previous subsection, we have worked on the part f1(x, y, t, i) − f1(x, y, t, i) in decomposition (3.3). Now let us
pay attention to f1(x, x, t, i) + f2(x, y, t, i). But we have known little about this term. This forces us to give the following
assumption.

Assumption 6. For each i ∈ S, assume that there exist real constants ai, āi, positive constants ci, c̄i, and non-negative
constants bi, b̄i, di, d̄i such that

xT(f1(x, x, t, i) + f2(x, y, t, i)) +
1
2
|g(x, y, t, i)|2 ≤ ai|x|2 + bi|y|2 − ci|x|q1+1

+ di|y|q1+1 (3.7)

and

xT(f1(x, x, t, i) + f2(x, y, t, i)) +
q1
2

|g(x, y, t, i)|2 ≤ āi|x|2 + b̄i|y|2 − c̄i|x|q1+1
+ d̄i|y|q1+1 (3.8)

for all (x, y, t, i) ∈ Rn
× Rn

× R+ × S, while both

A = −2diag(a1, a2, . . . , aN ) − Q , Ā = −(q1 + 1)diag(ā1, ā2, . . . , āN ) − Q (3.9)

are non-singular M-matrices.

We set (η1, . . . , ηN )T := A−1(1, . . . , 1)T, (η̄1, . . . , η̄N )T := Ā−1(1, . . . , 1)T. As A and Ā are non-singular M-matrices, all
ηi and η̄i are positive. Denote by C2,1(Rn

× R+ × S;R+) the family of all continuous non-negative functions, which are
continuously twice differentiable in x and once in t for each i ∈ S. Define a function U(x, t, i) ∈ C2,1(Rn

×R+ × S;R+) by

U(x, t, i) = ηi|x|2 + η̄i|x|q1+1, (x, t, i) ∈ Rn
× R+ × S (3.10)

while define a function LU : Rn
× Rn

× R+ × S → R by

LU(x, y, t, i) =2ηi

(
xT(f1(x, x, t, i) + f2(x, y, t, i)) +

1
2
|g(x, y, t, i)|2

)
+

N∑
j=1

qijηj|x|2

+ (q1 + 1)η̄i|x|q1−1
(
xT(f1(x, x, t, i) + f2(x, y, t, i)) +

q1
2

|g(x, y, t, i)|2
)

+

N∑
j=1

qijη̄j|x|q1+1.

Making use of Assumption 6 and the Young inequality, we observe that

LU(x, y, t, i) ≤ − |x|2 + 2biηi|y|2 −

(
(q1 + 1)c̄iη̄i −

q21 − 1
2q1

d̄iη̄i

)
|x|2q1 +

(q1 + 1)2

2q1
d̄iη̄i|y|2q1

− (2ciηi + 1 − (q1 − 1)b̄iη̄i)|x|q1+1
+ (2diηi + 2b̄iη̄i)|y|q1+1. (3.11)

rom this observation, to cope with the effect of time lag, Assumption 6 is not enough to ensure the stability and should
e strengthened.
8
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ssumption 7. Let Assumption 6 hold. Additionally, assume the following three numbers Bj (j = 1, 2, 3) are positive

B1 = 1 − h∗ϖ1, B2 = ϖ2 −
q1 − 1 + (q1 + 1)h∗

2q1
ϖ3, B3 = ϖ4 − h∗ϖ5 + 1 −

(
q1 − 1

2
+ h∗

)
ϖ6, (3.12)

n which

ϖ1 =2max
i∈S

biηi, ϖ2 =(q1 + 1)min
i∈S

c̄iη̄i, ϖ3 =(q1 + 1)max
i∈S

d̄iη̄i,

ϖ4 =2min
i∈S

ciηi, ϖ5 =2max
i∈S

diηi, ϖ6 =2max
i∈S

b̄iη̄i. (3.13)

The main method to investigate the delay-dependent stability in this paper is the technique of Lyapunov functionals.
or this aim, we define a segment x̂t = {x(t + s)| − 2τ ≤ s ≤ 0} for t ≥ 0, where we set x(s) = ξ (−τ ) for −2τ ≤ s < τ .
he Lyapunov functional used will be of the form

V (x̂t , t, r(t)) = U(x(t), t, r(t)) +

∫ 0

−2τ

∫ t

t+s

(
θ1|x(v)|2 + θ2|x(v)|2q1 + θ3|x(v)|q1+1) dvds, (3.14)

or t ≥ 0, where θj (j = 1, 2, 3) are positive constants to be determined later.
By the generalized Itô formula and the fundamental theory of calculus, we can show that V (x̂t , t, r(t)) is in fact an Itô

rocess on t ≥ 0 with its Itô differential

dV (x̂t , t, r(t)) = LV (x̂t , t, r(t))dt + Ux(x(t), t, r(t))g(x(t), x(t − h(t)), t, r(t))dW (t) + dM(t), (3.15)

where

LV (x̂t , t, r(t)) =LU(x(t), x(t − h(t)), t, r(t))
+ Ux(x(t), t, r(t))(f1(x(t), x(t − h(t)), t, r(t)) − f1(x(t), x(t), t, r(t)))

+ 2θ1τ |x(t)|2 + 2θ2τ |x(t)|2q1 + 2θ3τ |x(t)|q1+1

− θ1

∫ t

t−2τ
|x(v)|2dv − θ2

∫ t

t−2τ
|x(v)|2q1dv − θ3

∫ t

t−2τ
|x(v)|q1+1dv (3.16)

and M(t) is a continuous martingale vanishing at t = 0. The explicit form of M(t) is of no use in this paper so we omit it
here, but it can be found in Theorem 1.45 in [5].

Remark 4. From (3.16), we can see that the last three terms, the integrals of |x(v)|2, |x(v)|q1+1 and |x(v)|2q1 , are the same
as those terms in the right-hand-side of (3.5). This is the reason why we establish the Lyapunov functional in the form
of (3.14). It also makes the construction of this kind of Lyapunov functionals more flexible according to different needs.

4. Delay-dependent stability

In Section 3, we have presented our new decomposition scheme of f (x, y, t.i) and dealt with its decomposing parts,
f1(x, y, t, i) − f1(x, x, t, i) and f1(x, x, t, i) + f2(x, y, t, i), respectively. But before starting our stability criteria, for the
convenience of the reader, we give the following lemma, which will be used to estimate LV (x̂t , t, r(t)) later.

Lemma 3. Set three positive free parameters ε1, ε2, ε3, where ε1 has been already given in (3.4). Then under Assumption 5,
for any (x, y, t, i) ∈ Rn

× Rn
× R+ × S, we have

Ux(x, t, i)(f1(x, y, t, i) − f1(x, x, t, i))

≤(ηMε2 + J1ε1)|x|2 + J2ε1|y|2 +

(
(q1 + 1)η̄M

2
ε3 + J3ε1

)
|x|2q1 + J4ε1|y|2q1

+ (J1 + J3)ε1|x|q1+1
+ (J2 + J4)ε1|y|q1+1

+

(
β1 +

β2 + β3

2ε1

)2 (
ηM

ε2
+

q1 + 1
2

η̄M

ε3

)
|x − y|2, (4.1)

here ηM = maxi∈S ηi, η̄M = maxi∈S η̄i, and

J1 =
β2(4r + 1) + β3

2r + 1
ηM +

β2 + β3(4r + 1)
(2r + 1)(2r + 2)

ηM ,

J2 =
β2 + β3(4r + 1)

2r + 2
ηM ,

J3 =(q1 + 1)
β2(4r + 1) + β3

4r + 2
η̄M +

(q1 + 1)q1
q1 + 2r + 1

β2 + β3(4r + 1)
4r + 2

η̄M ,

J4 =
(q1 + 1)(2r + 1) β2 + β3(4r + 1)

η̄M .

q1 + 2r + 1 4r + 2

9
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roof. Recalling the estimation of f1(x, y, t, i) − f1(x, x, t, i) in (3.4), we have for any (x, y, t, i) ∈ Rn
× Rn

× R+ × S

Ux(x, t, i)(f1(x, y, t, i) − f1(x, x, t, i))

≤
(
2ηM |x| + (q1 + 1)η̄M |x|q1

) ((
β1 +

β2 + β3

2ε1

)
|x − y| +

β2(4r + 1) + β3

4r + 2
ε1|x|2r+1

+
β2 + β3(4r + 1)

4r + 2
ε1|y|2r+1

)
. (4.2)

y the elementary inequality and the Young inequality, compute

2ηM |x|
(

β1 +
β2 + β3

2ε1

)
|x − y| ≤ ηMε2|x|2 +

(
β1 +

β2 + β3

2ε1

)2
ηM

ε2
|x − y|2,

(q1 + 1)η̄M |x|q1
(

β1 +
β2 + β3

2ε1

)
|x − y| ≤

q1 + 1
2

η̄Mε3|x|2q1 +
q1 + 1

2

(
β1 +

β2 + β3

2ε1

)2
η̄M

ε3
|x − y|2,

2ηM |x|
β2 + β3(4r + 1)

4r + 2
ε1|y|2r+1

≤
β2 + β3(4r + 1)
(2r + 1)(2r + 2)

ηMε1|x|2r+2
+

β2 + β3(4r + 1)
2r + 2

ηMε1|y|2r+2,

(q1 + 1)η̄M |x|q1
β2 + β3(4r + 1)

4r + 2
ε1|y|2r+1

≤
(q1 + 1)q1
q1 + 2r + 1

β2 + β3(4r + 1)
4r + 2

η̄Mε1|x|q1+2r+1

+
(q1 + 1)(2r + 1)

q1 + 2r + 1
β2 + β3(4r + 1)

4r + 2
η̄Mε1|y|q1+2r+1.

ubstituting these into (4.2) and rearranging terms gives that

Ux(x, t, i)(f1(x, y, t, i) − f1(x, x, t, i))

≤ηMε2|x|2 + J1ε1|x|2r+2
+ J2ε1|y|2r+2

+ J3ε1|x|q1+2r+1
+ J4ε1|y|q1+2r+1

+
(q1 + 1)η̄M

2
ε3|x|2q1

+

(
β1 +

β2 + β3

2ε1

)2 (
ηM

ε2
+

q1 + 1
2

η̄M

ε3

)
|x − y|2,

here J1, J2, J3, J4 have been given before. Noting that |x|2r+2
≤ |x|2 + |x|q1+1 and |x|q1+2r+1

≤ |x|q1+1
+ |x|2q1 , since

0 ≤ r ≤
q1−1

2 , which is required in Assumption 5, we further derive that

Ux(x, t, i)(f1(x, y, t, i) − f1(x, x, t, i))

≤(ηMε2 + J1ε1)|x|2 + J2ε1|y|2 +

(
(q1 + 1)η̄M

2
ε3 + J3ε1

)
|x|2q1 + J4ε1|y|2q1

+ (J1 + J3)ε1|x|q1+1
+ (J2 + J4)ε1|y|q1+1

+

(
β1 +

β2 + β3

2ε1

)2 (
ηM

ε2
+

q1 + 1
2

η̄M

ε3

)
|x − y|2.

This completes the proof. □

From the proof of Lemma 3, we find that parameter ε1 is used to eliminate the influence of |x|2r+1 and |y|2r+1, and
parameters ε2, ε3 are used to cope with |Ux(x, t, i)|. By making use of Assumption 7 and selecting an appropriate τ , we
are able to let LV (x̂t , t, r(t)) become negative. Base on this, we can now present our stability results. The first one is H∞

stability.

Theorem 2. Let all the conditions in Theorem 1 and Assumptions 5, 7 hold. Then there is a positive number τ ∗ such that for
any initial data (2.1), the solution of hybrid SDDE (1.1) has the property that∫

∞

0
E|x(t)|2q1dt < ∞ (4.3)

and

sup
0≤t<∞

E|x(t)|q1+1 < ∞ (4.4)

as long as τ < τ ∗.

Before giving the proof, to make this theorem can be implemented in practice, we make some comments on how to
determine the value of τ ∗.
10
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emark 5. We define a domain Λ on R3
+

by

Λ =

{
(ε1, ε2, ε3)

⏐⏐⏐⏐ε1 > 0, ε2 > 0, ε3 > 0, ηMε2 + (J1 + J2h∗)ε1 < B1,

q1 + 1
2

η̄Mε3 + (J3 + J4h∗)ε1 < B2, (J1 + J2h∗
+ J3 + J4h∗)ε1 < B3

}
,

nd four functions on Λ by

ϕ1(ε1, ε2, ε3) =B1 − ηMε2 − (J1 + J2h∗)ε1,

ϕ2(ε1, ε2, ε3) =B2 −
q1 + 1

2
η̄Mε3 − (J3 + J4h∗)ε1,

ϕ3(ε1, ε2, ε3) =B3 − (J1 + J2h∗
+ J3 + J4h∗)ε1,

ϕ4(ε1, ε2, ε3) =

(
β1 +

β2 + β3

2ε1

)2 (
ηM

ε2
+

q1 + 1
2

η̄M

ε3

)
.

Then τ ∗ is given by

τ ∗
= sup

(ε1,ε2,ε3)∈Λ

ϕ(ε1, ε2, ε3),

where

ϕ(ε1, ε2, ε3) =

−H2 +

√
H2

2 + 4H1
ϕ1(ε1,ε2,ε3)
2ϕ4(ε1,ε2,ε3)

2H1
∧

√
1

H3 + H4

ϕ2(ε1, ε2, ε3)
2ϕ4(ε1, ε2, ε3)

∧

−H6 +

√
H2

6 + 4H5
ϕ3(ε1,ε2,ε3)
2ϕ4(ε1,ε2,ε3)

2H5
.

ince we require that β1, β2 and β3 cannot be zero at the same time in Assumption 5, ϕ4(ε1, ε2, ε3) is always positive,
hich implies that we must have τ ∗ < ∞. With a little effort, we find that when (ε1, ε2, ε3) approaches the boundary of
, the continuous function ϕ(ε1, ε2, ε3) tends to zero. As a result, there exists (ε̂1, ε̂2, ε̂3) ∈ Λ such that

τ ∗
= max

(ε1,ε2,ε3)∈Λ
ϕ(ε1, ε2, ε3) = ϕ(ε̂1, ε̂2, ε̂3). (4.5)

From now on, the free parameters ε1, ε2, ε3 are fixed as ε̂1, ε̂2, ε̂3, respectively. Meanwhile, we denote by ϕ̂1 =

ϕ1(ε̂1, ε̂2, ε̂3), ϕ̂2 = ϕ2(ε̂1, ε̂2, ε̂3), ϕ̂3 = ϕ3(ε̂1, ε̂2, ε̂3), ϕ̂4 = ϕ4(ε̂1, ε̂2, ε̂3) for convenience. Next, we show that Theorem 2
is true.

Proof. Fix the initial data ξ ∈ C([−τ , 0];Rn) and r0 ∈ S arbitrarily. We obtain from (3.15) that

V (x̂t , t, r(t)) = V (x̂0, 0, r(0)) +

∫ t

0
LV (x̂s, s, r(s))ds +

∫ t

0
Ux(x(s), s, r(s))g(x(s), x(s − h(s)), s, r(s))dW (s) + M(t).

hen we can use the same stopping time {σk}k≥k0 defined in the proof of Theorem 1 to obtain that

EV (x̂t∧σk , t ∧ σk, r(t ∧ σk)) = V (x̂0, 0, r(0)) + E
∫ t∧σk

0
LV (x̂s, s, r(s))ds.

or each k ≥ k0,⏐⏐⏐⏐∫ t∧σk

0
LV (x̂s, s, r(s))ds

⏐⏐⏐⏐ ≤

∫ t∧σk

0

⏐⏐LV (x̂s, s, r(s))
⏐⏐ ds ≤

∫ t

0

⏐⏐LV (x̂s, s, r(s))
⏐⏐ ds.

ecalling the definition of LV (x̂t , t, r(t)) in (3.16) and using condition (3.2), the Hölder inequality, the Young inequality,
we have⏐⏐LV (x̂t , t, r(t))

⏐⏐ ≤|LU(x(t), x(t − h(t)), t, r(t))|

+ |Ux(x(t), t, r(t)) ∥ f1(x(t), x(t − h(t)), t, r(t)) − f1(x(t), x(t), t, r(t))|

+ 2θ1τ |x(t)|2 + 2θ2τ |x(t)|2q1 + 2θ3τ |x(t)|q1+1

+ θ1

⏐⏐⏐⏐∫ t

t−2τ
|x(v)|2dv

⏐⏐⏐⏐+ θ2

⏐⏐⏐⏐∫ t

t−2τ
|x(v)|2q1dv

⏐⏐⏐⏐+ θ3

⏐⏐⏐⏐∫ t

t−2τ
|x(v)|q1+1dv

⏐⏐⏐⏐
≤C

(
1 + |x(t)|2q1 + |x(t − h(t))|2q1 +

∫ t

t−2τ

(
|x(v)|2 + |x(v)|2q1

)
dv
)

,

11



H. Xu and X. Mao Nonlinear Analysis: Hybrid Systems 50 (2023) 101413

w

ϕ

F

F

here C is a positive number independent from t . This then yields that

E
∫ t

0

⏐⏐LV (x̂s, s, r(s))
⏐⏐ ds =

∫ t

0
E
⏐⏐LV (x̂s, s, r(s))

⏐⏐ ds
≤

∫ t

0
C
(
1 + E|x(s)|2q1 + E|x(s − h(s))|2q1 +

∫ s

s−2τ

(
E|x(v)|2 + E|x(v)|2q1

)
dv
)
ds < ∞,

where we have used (2.8) and the Fubini theorem. Letting k → ∞ and using the Fatou lemma, the dominated convergence
theorem gives that

EV (x̂t , t, r(t)) =E
(
lim inf
k→∞

V (x̂t∧σk , t ∧ σk, r(t ∧ σk))
)

≤ lim inf
k→∞

EV (x̂t∧σk , t ∧ σk, r(t ∧ σk))

=V (x̂0, 0, r(0)) + lim inf
k→∞

E
∫ t∧σk

0
LV (x̂s, s, r(s))ds

=V (x̂0, 0, r(0)) + E
∫ t

0
LV (x̂s, s, r(s))ds. (4.6)

By (3.11) and Lemma 3, it is easy to show from (3.16) that

LV (x̂s, s, r(s)) ≤ −
(
1 − ηM ε̂2 − J1ε̂1 − 2θ1τ

)
|x(s)|2 + (ϖ1 + J2ε̂1)|x(s − h(s))|2

−

(
ϖ2 −

q1 − 1
2q1

ϖ3 −
q1 + 1

2
η̄M ε̂3 − J3ε̂1 − 2θ2τ

)
|x(s)|2q1

+

(
q1 + 1
2q1

ϖ3 + J4ε̂1

)
|x(s − h(s))|2q1

−

(
ϖ4 + 1 −

q1 − 1
2

ϖ6 − (J1 + J3)ε̂1 − 2θ3τ
)

|x(s)|q1+1

+
(
ϖ5 + ϖ6 + (J2 + J4)ε̂1

)
|x(s − h(s))|q1+1

+

(
β1 +

β2 + β3

2ε̂1

)2 (
ηM

ε̂2
+

q1 + 1
2

η̄M

ε̂3

)
|x(s) − x(s − h(s))|2

− θ1

∫ s

s−2τ
|x(v)|2dv − θ2

∫ s

s−2τ
|x(v)|2q1dv − θ3

∫ s

s−2τ
|x(v)|q1+1dv.

Substituting this into (4.6), then using Lemma 1, and recalling the definition of constants B1, B2, B3 in (3.12), and ϕ̂1, ϕ̂2,
ˆ3, ϕ̂4 in Remark 5, we obtain that

EV (x̂t , t, r(t)) ≤C2 − (ϕ̂1 − 2θ1τ )E
∫ t

0
|x(s)|2ds − (ϕ̂2 − 2θ2τ )E

∫ t

0
|x(s)|2q1ds

− (ϕ̂3 − 2θ3τ )E
∫ t

0
|x(s)|q1+1ds + ϕ̂4E

∫ t

0
|x(s) − x(s − h(s))|2ds

− θ1E
∫ t

0

∫ s

s−2τ
|x(v)|2dvds − θ2E

∫ t

0

∫ s

s−2τ
|x(v)|2q1dvds − θ3E

∫ t

0

∫ s

s−2τ
|x(v)|q1+1dvds, (4.7)

where

C2 = V (x̂0, 0, r(0)) + (ϖ1 + J2ε̂1)h∗τ∥ξ∥
2
+

(
q1 + 1
2q1

ϖ3 + J4ε̂1

)
h∗τ∥ξ∥

2q1 + (ϖ5 + ϖ6 + (J2 + J4)ε̂1)h∗τ∥ξ∥
q1+1.

or t ∈ [0, 2τ ], we clearly have∫ t

0
E|x(s) − x(s − h(s))|2ds ≤

∫ 2τ

0
2
(
E|x(s)|2 + E|x(s − h(s))|2

)
ds ≤

∫ 2τ

0
4 sup

−τ≤v≤2τ
E|x(v)|2ds ≤ 8τ sup

−τ≤v≤2τ
E|x(v)|2.

or t > 2τ , recall the estimation in Lemma 2, that is∫ t

0
E|x(s) − x(s − h(s))|2ds ≤(H1τ + H2)

∫ t

0

∫ s

s−2τ
E|x(v)|2dvds + (H3τ + H4τ )

∫ t

0

∫ s

s−2τ
E|x(v)|2q1dvds

+ (H5τ + H6)
∫ t

0

∫ s

s−2τ
E|x(v)|q1+1dvds.
12
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hen for any t ≥ 0, we obtain that

ϕ̂4

∫ t

0
E|x(s) − x(s − h(s))|2ds

≤C3 + (H1τ + H2)ϕ̂4

∫ t

0

∫ s

s−2τ
E|x(v)|2dvds + (H3τ + H4τ )ϕ̂4

∫ t

0

∫ s

s−2τ
E|x(v)|2q1dvds

+ (H5τ + H6)ϕ̂4

∫ t

0

∫ s

s−2τ
E|x(v)|q1+1dvds, (4.8)

where C3 = 8τ ϕ̂4 sup−τ≤v≤2τ E|x(v)|2. Putting (4.8) into (4.7) and letting

θ1 = (H1τ + H2)ϕ̂4, θ2 = (H3τ + H4τ )ϕ̂4, θ3 = (H5τ + H6)ϕ̂4,

gives that

EV (x̂t , t, r(t)) ≤C2 + C3 −
(
ϕ̂1 − 2

(
H1τ

2
+ H2τ

)
ϕ̂4
) ∫ t

0
E|x(s)|2ds −

(
ϕ̂2 − 2

(
H3τ

2
+ H4τ

2) ϕ̂4
) ∫ t

0
E|x(s)|2q1ds

−
(
ϕ̂3 − 2

(
H5τ

2
+ H6τ

)
ϕ̂4
) ∫ t

0
E|x(s)|q1+1ds.

ecalling the discussion in Remark 5 and using the properties of quadratic functions, when τ < τ ∗, we have

H1τ
2
+ H2τ <

ϕ̂1

2ϕ̂4
, H3τ

2
+ H4τ

2 <
ϕ̂2

2ϕ̂4
, H5τ

2
+ H6τ <

ϕ̂3

2ϕ̂4
.

his immediately yields that

η̄ME|x(t)|q1+1
≤ C2 + C3

nd

C4

∫ t

0
E|x(s)|2q1ds ≤ C2 + C3,

here C4 = ϕ̂2 − 2
(
H3τ

2
+ H4τ

)
ϕ̂4 is a positive constant. Finally, letting t → ∞ implies the required assertions (4.3)

nd (4.4). □

In Theorem 2, we have known that x(t) is bounded in Lq1+1. Then it is not difficult to show that E|x(t)|2 is uniformly
ontinuous in t . Combining with the fact that

∫
∞

0 E|x(t)|2q1dt < ∞, we can conclude that hybrid SDDE (1.1) is also moment
symptotically stable.

heorem 3. Let all the conditions in Theorem 2 hold. Then the solution of hybrid SDDE (1.1) satisfies that

lim
t→∞

E|x(t)|q̄ = 0 (4.9)

or any q̄ ∈ [2, q1 + 1) and any initial data (2.1) provided τ < τ ∗.

We can use the same analysis as in the proof of Theorem 3.6 in [17] to show this theorem so we omit it. Next, making
se of the idea of stochastic LaSalle theorem developed in [28], we can show the almost sure asymptotic stability of hybrid
DDE (1.1) in the following theorem.

heorem 4. Under the same conditions in Theorem 2, for any initial data (2.1) and τ < τ ∗, hybrid SDDE (1.1) obeys that

lim
t→∞

x(t) = 0 a.s. (4.10)

roof. Fix the initial data ξ ∈ C([−τ , 0];Rn) and r0 ∈ S arbitrarily. From Theorem 2 and the Fubini theorem, we know
hat

E
∫

∞

0
|x(t)|2q1dt < ∞,

hich yields that

lim inf
t→∞

|x(t)| = 0 a.s.

f the required assertion (4.10) is false, we can find a sufficiently small number ε > 0 such that
q1+1
P(|x(t)| ≥ 2ε) ≥ 4ε.

13
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W
e can use the same stopping time σk defined in the proof of Theorem 1, then (4.7) can be rewritten as

EV (x̂t∧σk , t ∧ σk, r(t ∧ σk)) ≤C2 − (ϕ̂1 − 2θ1τ )E
∫ t∧σk

0
|x(s)|2ds − (ϕ̂2 − 2θ2τ )E

∫ t∧σk

0
|x(s)|2q1ds

− (ϕ̂3 − 2θ3τ )E
∫ t∧σk

0
|x(s)|q1+1ds + ϕ̂4E

∫ t∧σk

0
|x(s) − x(s − h(s))|2ds

− θ1E
∫ t∧σk

0

∫ s

s−2τ
|x(v)|2dvds − θ2E

∫ t∧σk

0

∫ s

s−2τ
|x(v)|2q1dvds

− θ3E
∫ t∧σk

0

∫ s

s−2τ
|x(v)|q1+1dvds.

Since kq1+1P(σk ≤ t) ≤ E|x(t ∧ σk)|q1+1
≤ EV (x̂t∧σk , t ∧ σk, r(t ∧ σk)), we can let k → ∞ and use the θ1, θ2, θ3 defined in

the proof of Theorem 2 to obtain

lim sup
k→∞

k2r+2P(σk ≤ t) ≤C2 − (ϕ̂1 − 2θ1τ )E
∫ t

0
|x(s)|2ds − (ϕ̂2 − 2θ2τ )E

∫ t

0
|x(s)|2q1ds

− (ϕ̂3 − 2θ3τ )E
∫ t

0
|x(s)|q1+1ds + ϕ̂4E

∫ t

0
|x(s) − x(s − h(s))|2ds

− θ1E
∫ t

0

∫ s

s−2τ
|x(v)|2dvds − θ2E

∫ t

0

∫ s

s−2τ
|x(v)|2q1dvds − θ3E

∫ t

0

∫ s

s−2τ
|x(v)|q1+1dvds

≤C2 + C3.

There exists a positive integer k1 such that kq1+1P(σk ≤ t) ≤ C2 + C3 + 1 whenever k ≥ k1. Since this holds for any t ≥ 0,
we have kq1+1P(σk < ∞) ≤ C2 + C3 + 1. Then in line with the discussion of Theorem 2 in [11], the required assertion
(4.10) must hold. This ends the proof. □

5. Examples

We give two examples here to illustrate the effectiveness of our theory. The first one is an application to mosquito
model. The second one is to design nonlinear delay feedback control, whose Lipschitz coefficient is not a constant. To avoid
complicated calculations, we let W (t) be a scalar Brownian motion, r(t) be a continuous Markov chain taking values in

S = {1, 2} with transition rate matrix Q =

(
−1 1
6 −6

)
.

5.1. Application to mosquito model

Consider the following scalar non-autonomous hybrid SDDE

dx(t) =

(
b̂r(t)(t)e−0.1|x(t−h(t))|x(t − h(t)) − âr(t)(t)x(t) − ĉr(t)(t)x3(t)

)
dt + d̂r(t)(t)x(t − h(t))dW (t) (5.1)

on t ≥ 0 with delay function h(t) and

â1(t) =0.6(1 + sin2(t)), b̂1(t) = − (1 + cos2(t)), ĉ1(t) =0.4(2 + sin(t)), d̂1(t) =0.4 cos(t),

â2(t) =0.2
(
1 +

1
1 + t

)
, b̂2(t) = −

0.8
1 + t

, ĉ2(t) =0.3
(
1 +

1
√
1 + t

)
, d̂2(t) =

0.2
√
1 + t

.

This equation can be used to model the behaviors of adult female mosquitoes (see, e.g. [29]).
Let us first pay attention to two special cases, namely, h(t) ≡ 0 and h(t) ≡ 3. The simulation results with initial

data ξ (t) = 1 + 0.1 sin(t) for t ∈ [−3, 0] and r0 = 1 are shown in Fig. 1 (the second subfigure and the third subfigure,
respectively). The former one indicates that hybrid SDDE (5.1) is asymptotically stable with h(t) ≡ 0, while the latter one
shows us the corresponding SDDE is unstable with h(t) ≡ 3. As a consequence, hybrid SDDE (5.1) could become stable
when the time delay becomes smaller and smaller. And our theory is aimed to give a bound for the delay.

Let us consider the delay function h : R+ → [0, τ ] meeting Assumption 2 and assume that h∗
= 2. Letting

f (x, y, t, i) = b̂i(t)e−0.1|y|y − âi(t)x − ĉi(t)x3 and g(x, y, t, i) = d̂i(t)y, It is easy to show that Assumption 3 is satisfied
with q1 = 3, K1 = 0.6, K2 = 2, K3 = 1.2, K4 = 0, K̂1 = 0, K̂2 = 0.16, K̂3 = 0, K̂4 = 0. Then, we observe that

xf (x, y, t, 1) +
q − 1
2

|g(x, y, t, 1)|2 ≤ − 0.6|x|2 + |xy| − 0.4|x|4 +
q − 1
2

0.16y2,

xf (x, y, t, 2) +
q − 1
2

|g(x, y, t, 2)|2 ≤ − 0.2|x|2 + 0.8|xy| − 0.3|x|4 +
q − 1
2

0.04y2.
14
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m
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U

Fig. 1. Ten sample paths of Markov chain, hybrid SDDE (5.1) with h(t) ≡ 0, with h(t) ≡ 3, with h(t) given in (5.2), using the truncated Euler–Maruyama
ethod with time step size 10−4 .

ence, we can choose q = 6, which is no less than 2q1, to let Assumption 4 hold with α1 = 0.2, α2 = 0.9, α3,1 = 0.4,
3,2 = 0.3, α4,1 = 0, α4,2 = 0. Additionally, we see that α3,1 −

h∗(q1+1)+q−2
q1+q−1 α4,1 = 0.4 and α3,2 −

h∗(q1+1)+q−2
q1+q−1 α4,2 = 0.3.

p to mow, all the conditions in Theorem 1 have been checked. Next, we can decompose f as Eq. (3.1) with

f1(x, y, t, i) = b̂i(t)e−0.1|y|y, f2(x, y, t, i) = −âi(t)x − ĉi(t)x3.

Since for any (x, y, t, i) ∈ R × R × R+ × S,

|f1(x, y, t, i) − f1(x, x, t, i)| ≤ |b̂i(t)|
(
e−0.1|x|

|x − y| + |y|
⏐⏐e−|x|

− e−|y|
⏐⏐) ≤ |b̂i(t)|

(
e−0.1|x|

+ 0.1|y|
)
|x − y|,

we see that Assumption 5 is satisfied with β1 = 2, β2 = 0, β3 = 0.2, and r = 1. To verify Assumption 7, compute

x(f1(x, x, t, i) + f2(x, y, t, i)) ≤

{
− 0.6|x|2 − |x|2e−|x|

− 0.4|x|4, i = 1,

− 0.2|x|2 − 0.8|x|2e−|x|
− 0.3|x|4, i = 2.

As a result, we obtain

a1 = − 0.6, a2 = − 0.2, b1 =0.08, b2 =0.02, c1 =0.4, c2 =0.3, d1 =0, d2 =0,

ā1 = − 0.6, ā2 = − 0.2, b̄1 =0.16, b̄2 =0.04, c̄1 =0.4, c̄2 =0.3, d̄1 =0, d̄2 =0,

and

A =

(
2.2 −1
−6 6.4

)
, Ā =

(
3.4 −1
−6 6.8

)
.

We hence show that (η1, η2) = (0.9158, 1.0149) and (η̄1, η̄2) = (0.4556, 0.5491), which shows that A, Ā are non-singular
M-matrices. We also have B1 = 0.7069, B2 = 0.6589, B3 = 1.1715. Consequently, all the conditions in Assumption 7 are
fulfilled. Until now, we have check all the conditions in Theorem 2.

By Theorems 3 and 4, we conclude that hybrid SDDE (5.1) is asymptotically stable in both Lq̄ (q̄ ∈ [2, 4)) and almost
sure sense if τ < τ ∗. Using the method introduced in Remark 5, we derive that τ ∗

= 0.005. Finally, we choose

h(t) = 0.001
∞∑
k=0

1[0.001(2k+1),0.001(2k+2))(t). (5.2)

One can easily verify that this delay function satisfies Assumption 2 with h∗
= 2 and τ = 0.001. The computer simulation

is given in Fig. 1 (the bottom subfigure). The simulation supports our results clearly.
15
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.2. Nonlinear delay feedback control

Consider the modified stochastic van der Pol–Duffing oscillator studied in [30] described by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx1(t) =

(
−(1 + λr(t))x1(t) + B̂r(t)(x2(t) − x1(t))3 + λr(t)x2(t) − Âr(t)x31(t)

)
dt + δr(t)x21(t)dW (t)

dx2(t) =

(
λr(t)x1(t) − ρr(t)x3(t) − B̂r(t)(x2(t) − x1(t))3 − (λr(t) + 1)x2(t) − Ĉr(t)x32(t)

)
dt + δr(t)x22(t)dW (t)

dx3(t) =

(
x2(t) + ρr(t)x3(t) − D̂r(t)x33(t)

)
dt + δr(t)x23(t)dW (t)

on t ≥ 0, where λ1 = 0.5, λ2 = 0.3, ρ1 = 0.2, ρ2 = 0.1, Â1 = 1, Â2 = 0.8, B̂1 = 0.2, B̂2 = 0.4, Ĉ1 = 0.8, Ĉ2 = 1, D̂1 = 0.8,
D̂2 = 1.2, δ1 = 0.3, δ2 = 0.2. Letting x(t) = (x1(t), x2(t), x3(t))T, we can rewrite the oscillator system as

dx(t) = F (x(t), r(t))dt + G(x(t), r(t))dW (t), (5.3)

where G(x, i) = δi
(
x21, x

2
2, x

2
3

)T and

F (x, i) =

⎛⎜⎝ −(1 + λi)x1 + B̂i(x2 − x1)3 + λix2 − Âix31
λix1 − ρix3 − B̂i(x2 − x1)3 − (λi + 1)x2 − Ĉix32

x2 + ρix3 − D̂ix33

⎞⎟⎠ .

Through computer simulation (see Fig. 2 (the middle one)), we see that Eq. (5.3) is unstable. Then we want to design a
delay feedback control to stabilize equation (5.3). It should be pointed out that delay feedback controls in the most results
(see, e.g. [23,31,32]) are globally Lipschitz continuous, as a result of which the linear ones are usually used. But due to
the oscillations of environment such as wind and electricity, we sometimes need to implement the following nonlinear
controller

u(x, i) = −κidiag
(√

1 + 0.02 cos2(x)
)
x (5.4)

ith κ1 = 0.8, κ2 = 0.5 and time lag h(t) meeting Assumption 2 with h∗
= 1.25. Obviously, our control function u(x, i)

does not meet the global Lipschitz condition. But with further analysis, we derive that for any x, x̃ ∈ R3

|u(x, i) − u(x̃, i)|2 =κ2
i

3∑
j=1

(√
1 + 0.02 cos2(xj)xj −

√
1 + 0.02 cos2(x̃j)x̃j

)2

≤2κ2
i

3∑
j=1

((
1 + 0.02 cos2(xj)

)
(xj − x̃j)2 +

(√
1 + 0.02 cos2(xj) −

√
1 + 0.02 cos2(x̃j)

)2

x̃2j

)
≤2κ2

i

(
1.02 + 0.0001|x̃|2

)
|x − x̃|2,

here we have used the differential mean value theorem. Thus we can apply the theory developed in this paper to the
elay-state-feedback controlled problem

dx(t) =
(
F (x(t), r(t)) + u(x(t − h(t)), r(t))

)
dt + G(x(t), r(t))dW (t). (5.5)

It is easy to check that Assumption 3 holds with K1 = 3.6056, K2 = 0.808, K3 = 3.7736, K4 = 0, K̂1 = 0, K̂2 = 0,
ˆ3 = 3.7736, K̂4 = 0, q1 = 3. Then, compute

xTF (x, i) ≤ −x22 − ρix2x3 + ρix23 − Âix41 − Ĉix42 − D̂1x43 ≤

(
ρ2
i

4
+ ρi

)
|x|2 −

1
3
(Âi ∧ Ĉi ∧ D̂i)|x|4

and

xTu(x̃, i) ≤
√
1.02κi

3∑
j=1

(
1
2
x2j +

1
2
x̃2j

)
≤

√
1.02
2

κi(|x|2 + |x̃|2).

We can choose q = 6 ≥ 2q1 to let Assumption 4 hold with α1 = 0.614, α2 = 0.404, α3,1 = 0.0417, α3,2 = 0.1667,
α4,1 = 0, α4,2 = 0. Until mow, all the conditions in Theorem 1 have been verified. Next, the drift coefficient can be
decomposed as f1(x, x̃, t, i) = u(x̃, i), f2(x, x̃, t, i) = F (x, i). Hence Assumption 5 is fulfilled with β1 = 1.1426, β2 = 0,
β3 = 0.0113, and r = 1. Compute

xTF (x, i) + u(x, i) +
1
|G(x, i)|2 ≤

(
ρ2
i

+ ρi −
√
1.02κi

)
|x|2 −

(
1
(Âi ∧ Ĉi ∧ D̂i) −

1
δ2i

)
|x|4
2 4 3 2
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Fig. 2. Computer simulations of E|x(t)|2 of oscillator system (5.3) (top), controlled oscillator system (5.5) (bottom) using the truncated Euler–
Maruyama method with step size 10−4 and sample size 200 as well as the fixed initial data for ξ (t) = (ξ1(t), . . . , ξNe(t))T , where ξ (t) =

(0.1 + 0.1 cos(t), 0.1 + 0.1 sin(t), 0)T for t ∈ [−0.1, 0] and r0 = 1 for all 200 samples.

and

xTF (x, i) + u(x, i) +
q1
2

|G(x, i)|2 ≤

(
ρ2
i

4
+ ρi −

√
1.02κi

)
|x|2 −

(
1
3
(Âi ∧ Ĉi ∧ D̂i) −

q1
2

δ2i

)
|x|4.

Then we derive that a1 = −0.598, a2 = −0.4025, ā1 = −0.598, ā2 = −0.4025, c1 = 0.2217, c2 = 0.2467, c̄1 = 0.1317,

c̄2 = 0.2067, b1 = b2 = b̄1 = b̄2 = d1 = d2 = d̄1 = d̄2 = 0 and A =

(
2.1959 −1

−6 6.805

)
, Ā =

(
3.3918 −1

−6 7.6099

)
. We then

see that (η1, η2) = (0.8727, 0.9164) and (η̄1, η̄2) = (0.4346, 0.4741), which shows that A, Ā are non-singular M-matrices.
Consequently, Assumption 7 is satisfied with B1 = 1, B2 = 0.2289, B3 = 1.3869. Recalling the discussions in Remark 5,
we obtain that τ ∗

= 0.009. By Theorems 3 and 4, we conclude that controlled Eq. (5.5) is q̄th moment asymptotically
stable (q̄ ∈ [2, 4)) and almost surely asymptotically stable if τ < 0.009. Ultimately, we select

h(t) =

∞∑
k=0

(
0.2(t − k)1[k,k+0.5)(t) + (0.2 − 0.2(t − k))1[k+0.5,k+1)(t)

)
. (5.6)

Delay function (5.6) meets Assumption 2 with h∗
= 1.25 and τ = 0.001. The simulation in Fig. 2 (the bottom one) shows

our results clearly.

6. Conclusion

In this paper, compared with [11], the generalized delay-dependent stability criteria of superlinear hybrid SDDEs have
been established with two restrictions lifted, in the sense of H∞ stability, moment asymptotic stability, almost sure
asymptotic stability. The major contributions of our new work could be concluded as follows. (1) The drift coefficient
of the underlying system is decomposed into two parts, in one of which the Lipschitz coefficient of the delay component
is a polynomial rather than a constant required in the aforementioned work [11]. The results in this paper hence have
much wider applications. (2) Time-varying delay function is not necessary to be differentiable (see [8,11,19,20]), or limited
by a strictly positive lower bound (see [23]) anymore. Then more general time delays in practice can be covered. (3) The
technique of constructing Lyapunov functionals is modified, which could be a reference to other work when using this
kind of Lyapunov functionals to study superlinear SDDEs. (4) By setting the free parameters, we can reduce the influence
of time delays and let the Lyapunov operators become negative easily.
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