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Abstract—Load Disaggregation, or Non-intrusive Load Mon-
itoring (NILM), refers to the process of estimating energy
consumption of individual domestic appliances from aggre-
gated household consumption. Recently, Deep Learning (DL)
approaches have seen increased adoption in NILM commu-
nity. However, DL NILM models are often treated as black-
box algorithms, which introduces algorithmic transparency and
explainability concerns, hindering wider adoption. Recent works
have investigated explainability of DL NILM, however they
are limited to computationally expensive methods or simple
classification problems. In this work, we present a methodology
for explainability of regression-based DL NILM with visual ex-
planations, using explainable AI (XAI). Two explainability levels
are provided. Sequence-level explanations highlight important
features of predicted time-series sequence of interest, while point-
level explanations enable visualising explanations at a point in
time. To facilitate wider adoption of XAI, we define desirable
properties of NILM explanations - faithfulness, robustness and
effective complexity. Addressing the limitation of existing XAI
NILM approaches that don’t assess the quality of explanations,
desirable properties of explanations are used for quantitative
evaluation of explainability. We show that proposed framework
enables better understanding of NILM outputs and helps im-
prove design by providing a visualization strategy and rigorous
evaluation of quality of XAI methods, leading to transparency of
outcomes.

Index Terms—Deep Neural Networks, Explainable AI (XAI),
Non-Intrusive Load Monitoring, Load Disaggregation

I. INTRODUCTION

Load disaggregation or Non-intrusive load monitoring
(NILM) is the process of algorithmically inferring the energy
consumption of individual electrical appliances from the ag-
gregate metered power consumption of a residential building
[1]. There is a growing interest in NILM deployment due to
growing energy costs, energy efficiency initiatives and national
smart metering roll-outs. Deep learning based implementations
for NILM have grown sharply over the past few years with
very good performance demonstrated via domain-agnostic
accuracy metrics, such as the popular Mean Absolute Error,
across a wide range of real-world datasets [2]. However, using
accuracy metrics as a standalone determinant for selection of
an AI technology is inadequate for wider consumer adop-
tion, as put forth in [3] and [4]. The latter recommends
that, in order to ensure Trustworthy AI, robustness, fairness,
transparency, and privacy need to be addressed. Indeed, the
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European Commission has recently published seven principles
of Trustworthy AI [5], which include transparency as one of
the key elements of trustworthy AI systems. Transparency
is closely linked to traceability of the datasets, as well as
explainability of the technical processes of the AI system and
the related AI decisions, and finally communication of AI
system’s level of accuracy and limitations to the end-users
and system developers.

For AI-based NILM, the majority of work has focused
on addressing technical robustness in the form of accuracy,
reliability and reproducibility across different datasets [2], [6],
[7] and data transparency through the use of public, peer-
reviewed and well-documented datasets [8], [9], with limited
research in the area of privacy protection [10]–[12] and tech-
nical explainability [13]–[15]. The majority of deep learning-
based NILM approaches are designed as “black-box“ systems
due to their inherent algorithmic complexity and absence of
explainability. Since the underlying mechanics resulting in
NILM predictions are not interpretable or explainable, deep
learning (DL) based NILM cannot be fully trusted, which
somewhat hinders wider deployment of NILM systems [3]. As
the adoption of smart home devices and energy management
systems continues to grow, the necessity to ensure these
technologies are both transparent and understandable to con-
sumers grows concurrently. By developing and evaluating XAI
methods for NILM, the research community can contribute
to design of AI solutions that adhere to consumer standards
such as the EU’s vision of ethical and responsible AI [5]
and foster consumer trust in these emerging technologies,
empowering users to make informed decisions about their
energy consumption. Furthermore, understanding the produced
outputs can help improve the design, provide a better overview
of the model accuracy, and facilitate better understanding
of failure scenarios. Thus, the role of explainability is to
ensure a transparent inference process of the AI system by
providing decisions that are understood and traceable. As a
result, algorithmic transparency facilitated by explainability
has been identified as a paramount challenge in the present
landscape of NILM research [3].

The wider problem of explainability of DL models has
recently gained traction, leading to the emergence of the
field of Explainable AI (XAI). Recent literature [16]–[22]
suggest that XAI can facilitate trust by providing algorithmic
transparency, support assessment of levels of bias, and improve
the overall understanding of the inner workings of deep
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learning models. The majority of XAI work, predominantly
tackling computer vision tasks, primarily centers around the
integration and development of techniques that analyse the
outputs of the model and visualise the importance of the input
features. Such work frequently illustrates that explainability
can enhance the understanding of the model and foster trust in
the AI systems [21]. However, many existing XAI techniques
can lead to unstable explanations in real-world scenarios due
to limited, qualitative evaluation [23]–[26]. Addressing such
issues is particularly important for systems that can reveal
personal information, such as temporal appliance patterns of
use, generated by NILM. XAI approaches for NILM are still
in their infancy, with limited literature available [13]–[15],
[27]. As XAI-based solutions for NILM continue to grow, it
is of vital importance to properly evaluate their explainability
components. This assessment can serve as a way to assert that
the used explainability techniques are truly able to be deployed
in the real-world scenarios and help with understanding of
model outputs. Therefore, XAI system design that incorporates
robust qualitative and quantitative evaluation procedures for
explainability techniques used in the real-world environment
is of crucial importance for the successful adoption in NILM.

The main contributions of this work are summarized as
follows:

• A new multi-temporal XAI visualisation technique for
regression-based DL NILM, taking into account the need
for different levels of visualisation granularity.

• Definition of three core properties for evaluation of
explainable NILM system: faithfulness, robustness, and
complexity, that quantify the quality of XAI NILM visu-
alisations with respect to the ability to identify important
features of the signal, deal with noisy inputs, and be
human understandable, respectively.

• Demonstration that the proposed approach can provide
visualisations and quantify well the quality of XAI NILM
systems using two public, well documented datasets and
five XAI approaches.

The rest of the paper is organised as follows. A detailed
literature review is presented in Sec. II to position our con-
tributions with respect to the state-of-the-art. The proposed
explainability framework is described in Sec. III followed by
the experimental results and key findings in Sec. IV, before
we conclude in Sec. V.

II. LITERATURE REVIEW

A. NILM Problem Formulation
Let y = (y1, y2, ..., yT ) be a sequence of aggregated

power consumption from M appliances, captured at time t =
{1, 2, ..., T}. Given a measurement of aggregate power y(t),
the goal of a NILM algorithm is to determine the individual
power contribution xi(t) of appliance i ∈ {1, 2, ...,M}, such
that the aggregate can be represented as:

y(t) =
M∑
i=1

xi(t) + n(t), (1)

where n(t) denotes noise caused by the measuring equipment
and unknown appliances contributing to the aggregate. NILM

can be treated as a regression problem if the task is to directly
infer xi(t) based on the aggregate signal y(t). On the other
hand, it can be regarded as a binary classification problem
if the task is to determine the on/off state of appliance i at
time t, based on the aggregate signal y(t). Formulated in this
manner, NILM can be solved in a range of supervised and
unsupervised approaches and eliminates the need for appliance
submetering, leading to a reduction in costs [28], while still
enabling a diverse set of applications such as energy usage
feedback [29], anomaly detection [30], and load shifting [31].

In terms of algorithmic approaches, CNNs are the most
widely used architectures in the latest NILM literature ac-
cording to the recent review of [32]. [33] use an event-
driven CNN for load disaggregation of residential appliances,
while [34] employ a CNN to perform unsupervised domain
adaptation. However, of all CNN-based works, sequence-to-
point (seq2point) learning represents one of the most cited
approaches [35]. Given an input sequence of aggregate signal,
the seq2point algorithm predicts the midpoint of the output
(i.e., appliance) signal instead of the whole sequence. This
approach has shown to be a better approximation of the
target distribution compared to previous approaches and con-
sequently provides advantageous predictive performance [36].

B. XAI for NILM

Algorithmic transparency in AI systems is often character-
ized by the clarity of decision making processes implemented
by AI algorithms [37]. From an engineering perspective, works
focusing on algorithmic transparency fall in the category of
XAI [17]–[20]. Despite the increased need for algorithmic
transparency and extensive research in XAI, the majority of
current AI systems lack the ability to provide clear explana-
tions of how the AI model generated an output.

XAI for decision-tree based NILM was demonstrated in
[27], whereby Partial Dependance Plots and Individual Con-
ditional Expectation were used to explain the predictions of
the NILM multi-class classifier by highlighting feature impor-
tance for individual appliances. However, the remaining XAI
approaches for NILM focus on explainability of DL-based
NILM. The first XAI approach for NILM, proposed in [13],
focuses on occlusion sensitivity, and provides visual insight
into important features of the prediction of a regression-
based NILM AI algorithm. Explanations are generated by first
occluding parts (i.e., setting to zero value) of the signal with a
sliding window across the time series. Then, for each window
position, model output at a single point is calculated. The
information about the resulting outputs is used to determine the
importance of individual time steps and create the explanation
heatmap. The sliding window is slid over the whole sequence
that largely contains power levels under 500 W. However,
the proposed approach suffers from issues of computational
complexity due to the nature of the sliding window approach.
Furthermore, occlusions that are set as zero values are rarely
observed in practice due to the baseload presence, making the
presented methodology exposed to potential out-of-distribution
inference scenarios, which can result in unstable predictions.
A comparison between a gradient-based technique, GradCAM
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[19], and an occlusion-sensitivity approach for visualizing the
important features of a NILM classifier is examined in [14].
However, [14] uses a less challenging NILM approach based
on multi-class CNN to only determine the existence of an ap-
pliance in the input time-series, without detecting on/off states,
using a single dataset. [15] propose a learning mechanism that
utilizes XAI techniques for training of DL NILM models using
the paradigm of knowledge distillation [38]. Authors explored
the transfer of knowledge in the Teacher-Student scenario,
identified the main inconsistency in the transfer of explainable
knowledge, and proposed a modification to the knowledge
distillation loss function to improve the model performance
by minimizing the inconsistencies between the Teacher and
Student explanations.

Despite the recent advancements, there are several gaps
in the literature with respect to XAI for NILM that warrant
further exploration. One notable gap is the scalability and com-
putational complexity of current XAI visualization methods
for regression-based NILM. For instance, existing techniques
for regression-based NILM, such as occlusion sensitivity [13],
are computationally heavy, limiting their feasibility for large-
scale datasets or real-time applications. Another critical gap
is the lack of standardized evaluation metrics for assessing
the quality and usefulness of XAI techniques in the context
of NILM. All existing work in NILM relies solely on qual-
itative evaluation of XAI methods. However, developing a
comprehensive set of benchmarks for domain-relevant aspects
of explainability would enable better comparisons between
different XAI approaches and facilitate the identification of
best practices. Even though the aforementioned works can be
considered as an entry-point towards explainability in NILM
systems, to the best of our knowledge, there is still no work in
NILM literature that evaluates XAI methods in a quantitative
manner. This suggests a lack of rigorous evaluation of the
quality of generated explanations, which is a requirement
to ensure trust in the explanation outputs of XAI-based AI
systems [22], [24]–[26], [39]–[43].

C. Explainability methods

In this study, our focus lies on post-hoc XAI methods that
aim to explain outputs of a trained DL model by assigning
attribution or relevance values to each input feature. Given an
input to a DL model and a target concept, attribution-based
XAI aims to map the importance of each input feature to the
target concept. The target concept is either a class of interest
in classification tasks or an output value in regression-based
problems. We refrain from using feature-based approaches
such as LIME [44] and SHAP [45], due to their instability and
computational complexity [24], [46]. Instead, we examine five
popular families of methods that best exemplify the variety of
algorithmic approaches contained in the field of XAI, namely
GradCAM [19], LRP [20], SmoothGrad [18], and Integrated
Gradients [17].

1) Gradient-weighted Class Activation Mapping (Grad-
CAM): GradCAM is an XAI technique used to create an
explanation for a prediction of a target concept (e.g., a class
or a signal sequence) by computing its gradient w.r.t the

final convolutional layer of a CNN network [19]. In order
to generate an explanation map hc ∈ RW×H of width W and
height H for a target concept c, the gradient of the output for
the target concept yc w.r.t the kth feature map activations Ak

of the last convolutional layer is computed, i.e., ∂yc

∂Ak . Next,
a global average pooling operation is applied over the height
and width (indexed by i and j, respectively) on the computed
gradients, to obtain neuron importance weights [19]:

ωc
k =

1

W ×H

∑
i

∑
j

∂yc

∂Ak
i,j

. (2)

The generated weights represent the importance of feature
map k for the target concept c. In order to compute the
explanation map hc, weighted combination of feature map
activations, followed by ReLU function, is performed [19]:

hc = ReLU

(∑
k

ωc
kA

k

)
. (3)

2) Improved Gradient-weighted Class Activation Mapping
(GradCAM++): GradCAM++ is an extension of the original
GradCAM method that has been shown to provide better visual
explanations for CNN models [47]. The main improvement
lies in the calculation of the neuron importance weights, which
now considers not only the first-order partial derivatives but
also the second-order partial derivatives to capture higher-
order interactions among feature maps. The updated neuron
importance weights for the target concept c in GradCAM++
are computed as follows [47]:

ωc
k =

∑
i

∑
j

αkc
ij ·ReLU

(
∂yc

∂Akij

)
, (4)

such that the partial derivatives w.r.t. Ak
ij are as follows:

αkc
ij =

∂2yc

(∂Aki,j)2

2 ∂2yc

(∂Aki,j)2

∑
a

∑
bA

k
ab

∂3yc

(∂Aki,j)3

. (5)

Where the final explanation map hc is computed as in
Eq. 3. Comparing with Eq. 2 and 3, GradCAM++ reduces
to GradCAM if ∀i, j, αkc

ij = 1
W×H . GradCAM++ has been

shown to produce higher quality and more precise visual
explanations compared to the GradCAM method, allowing for
better interpretation of CNN models [47].

3) Integrated Gradients (IG): IG [17] aims to generate
an explanation for a prediction of a target concept, via
counterfactual reasoning. Absence of a cause for a certain
prediction informs the generation of the importance features by
creating a single baseline value used to compare the outcomes.
Generally, the baseline is modeled as a space where predictions
are neutral. In computer vision, this would typically be a
black image, while in the case of time-series data this can
be represented as absence of the signal. Formally, explanation
map hc ∈ RW×H of width W and height H for a target
concept c, considering input x ∈ RW×H and baseline value
x̂ ∈ RW×H , is created by constructing a set of interpolations
along the ith dimension between x and x̂ [17]:
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Fig. 1. Visual outline of the proposed approach showcasing the mechanism for visualization of importance at two levels of specificity, leading to point-level
and sequence-level explanations for an input sequence of interest.

hci = (xi − x̂i)⊙
∫ 1

α=0

[∇f(x̂+ α · (x− x̂))]idα, (6)

which can be approximated by a finite summation of gradients
at small intervals along the path from x̂ to input x [17]:

hci ≈ (xi − x̂i)⊙
1

N

N∑
k=1

∇f(x̂+
k

N
· (x− x̂)). (7)

where N is the number of steps in the Riemann approximation
of the integral.

4) SmoothGrad: Driven by the premise that instability of
gradient-based explanation maps can be corrected by smooth-
ing of a gradient with a Gaussian kernel over a large number
of local perturbations, SmoothGrad calculates an average of
gradients w.r.t N alterations of the input, by adding a small
amount of random noise [18]. Given that the method com-
putes gradients with respect to input x, i.e., mc(x) = ∂yc

∂x ,
explanation map hc is calculated as [18]:

hc =
1

N

N∑
i=1

mc(x+N (0, σ2)), (8)

This technique aims to reduce the visual noise, and can be
combined with other methods to create smoother heatmaps.

5) Layer-wise relevance propagation (LRP): LRP [20]
computes the explanation heatmaps by using the layered
structure of the neural network to produce relevance scores
in an iterative manner. Given two consecutive layers, j and
k, propagation of a relevance score R from a higher to a
lower neuron is achieved by means of purposely designed local
propagation rules. For example, given an input activation aj

and weight wjk connecting neuron j to neuron k, LRP-ϵ rule
is defined as [20]:

Rj =
∑
k

ajωjk

ϵ+
∑

0,j ajωjk
Rk. (9)

ϵ is a regularization term - high ϵ values help stabilize the
relevance scores when contribution to the activation of neuron
k is weak or unclear, leading to less noisy explanation maps.

D. Evaluation of explainability

Traditionally, the quality of attribution-based explainability
has been evaluated by qualitative, subjective assessment. This
constitutes determining subjective levels of satisfaction with
the usefulness of explanation, which is evaluated by a devel-
oper or end-user of an AI system. However, driven by the need
for more rigorous and objective evaluation strategies, recent
advancements in the field have focused on the development
of quantitative metrics for assessing the degree of the quality
and trust of XAI methods.

A key challenge in evaluating XAI methods is the lack of
ground truth. Given that the information about how a model
generates a prediction can rarely be known a priori, efforts
in evaluating the quality of explanations tend to approach the
problem indirectly. Concretely, with the end goal of measuring
if explanations correspond to the predictive performance of the
model, [25], [39], [40] propose various methods for measuring
faithfulness, based on the notion that removing or obscuring
important input features should have a significant negative
effect on performance, or confidence of the prediction. The
degree of faithfulness is quantified by measuring the difference
between the probability scores of a classifier predicting on
perturbed and original input, where more faithful methods
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lead to larger differences in scores. Faithfulness has also been
referred to as sensitivity-n [22], selectivity [41], fidelity [42].

Unreliability of backpropagation-based XAI methods has
long been an issue, as discussed in [22], where concerns
over the fact that XAI methods can lead to unstable and
unintelligible explanations are discussed. To mitigate the issue,
sanity checks are proposed [43], comprising a set of techniques
geared towards evaluating the trustworthiness of explainability
methods by comparing the results of applying them to trained
and randomly initialized models. Furthermore, with the aim
of addressing the aforementioned issues of unreliability, the
notion of the robustness of explainability methods has been
suggested [39]. Their findings suggest that slight changes in
the input, simulating adversarial noise, could lead to dra-
matic differences in generated explanations, while retaining
the same predictions. Driven by the need to formulate the
relationship between input data and reliability of XAI methods,
[39] evaluate robustness of explanation functions under slight
perturbations of the input, and derive measures for determining
their ability to deal with small modifications of the input. The
notion of robustness has been explored in other works and
referred to as sensitivity [42], continuity [39] and stability [41].

The end goal of explanations is to be understandable to
humans who are interpreting them. As a result, explanations
that deem all of the features as important, even if faithful,
have limited utility as their interpretation might be too difficult
for a human to understand. As a way of measuring the con-
ciseness of explanations, authors in [25] proposed a measure
of complexity. The low complexity of generated explanations
suggests that they highlight only the most relevant features
and that understanding them does not present a difficult task.
Complexity has also been presented as sparseness in [26].

III. NILM EXPLAINABILITY FRAMEWORK

The backbone of our proposed XAI framework for NILM is
the proposed visualization procedure, illustrated in Fig. 1, that
facilitates the generation of human-interpretable explanations
of NILM model outputs. Since the desired granularity of
explanations can vary, the visualization procedure offers an
ability to generate explanations for both sequential-level, as
well as point-level predictions. The sequence-level explana-
tions highlight the areas of the signal most responsible for
the prediction, while the point-level explanations display the
reasoning behind a prediction of a particular point in time.
These two layers of explainability can be used interchangeably
as they offer varying degrees of specificity. In the visualization
procedure, we utilize five distinct XAI techniques to formu-
late explanations. Subsequently, the created explanations are
subjected to a quantitative evaluation of quality. Taking into
consideration a diverse set of needs and possible deployment
scenarios, the quality of an explanation is defined as alignment
with three desirable properties of explanations, specifically:
faithfulness, robustness, and low complexity.

A. Visualization via heatmaps

We demonstrate how to integrate XAI in the popular
seq2point DL-NILM implementation of [35] trained for load

disaggregation of various appliances, via regression, on two
popular datasets: UK-DALE [9] and REFIT [8]. The full
procedure is illustrated in Fig. 1. First, to account for the nature
of the seq2point algorithm, sliding windows are used to split
the input signal into small, overlapping segments, and generate
the point output predictions. Then, for a seq2point model with
input size δ, for each generated point along the sliding window,
a point explanation heatmap of size δ is created via GradCAM,
LRP, SmoothGrad, or IG, as per Sec. II-C. If a step size of 1
is used, and the length of activation window of interest is ω,
the total number of generated heatmaps is:

N = ω − δ + 1. (10)

Following this procedure, we observe that a single time step
along the activation window ω can receive up to δ importance
scores. However, this does not hold for all points in ω, in
particular the ones at the edges of the window. For example,
two points at the far edge (left and right) of the activation
window receive only one computed importance score. To
ensure that each point along ω captures δ importance scores,
we expand the activation window by δ−1 on both sides. Thus,
we create a window of size:

ω′ = ω + 2 ∗ (δ − 1). (11)

Given that the size of activation window of interest, ω, is
larger than the model input size, δ, to map the N resulting
heatmaps to a single, sequence-level heatmap of size ω,
which corresponds to the activation of interest, we need to
transform the results into a new representation. To create a
heatmap of size ω, we first generate a zero matrix of size
ω′ × (N + 2 ∗ (δ − 1)). Each generated heatmap is added
to the matrix based on its position relative to the activation
of interest. For example, the first row of the matrix contains
the first heatmap that is followed by zero values, acting as
padding, until reaching ω′ samples. The first element in the
second row is set to zero, followed by the second heatmap,
and finally zero values afterward until reaching ω′ samples.
This procedure is repeated until the last row.

Before populating the matrix, we apply a weight function
to mitigate the presence of noise and promote smoothness of
heatmaps. Given that the temporal dimension of the middle
point of the input corresponds to the output point of prediction,
and is highly influential to the prediction, we apply a triangular
weight function to the heatmap defined as:

ψ(x) =

{
x
m (pmax − pmin) + pmin if 0 ≤ x ≤ m
x−m
m (pmin − pmax) + pmax if m < x ≤ 2m

(12)
where m represents the middle point value, and pmin and

pmax are the lowest and highest weight values, respectively.
The maximum value pmax is placed at the middle point, while
the values drop linearly in both directions when moving away
from the middle point, with the lowest value pmin at points
0 and 2m. For the purpose of this work, the weight function
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Fig. 2. Explanations generated for positive activation of dishwasher in UK-DALE dataset. We can observe unreliable results from GradCAM, while other
methods offer more accurate and concise explanations.

holds the maximum value of 1 at the middle point, with the
two furthest points holding a weight of 0.8.

To further reduce the noise, we aggregate the results by
first sorting the matrix column-wise in descending order,
corresponding to the time step in the window of interest, and
then creating a vector of size ω′ by computing the non-zero
mean value of the top 40% of values per each column of the
matrix. In the last step, we transform the window to size ω by
clipping the generated vector by δ−1 on both sides. Following
this procedure, the importance heatmap of the target window
of interest is obtained, containing the cumulative importance
for each of the predicted points of the signal.

B. Property of Faithfulness

The proposed faithfulness evaluation strategy quantifies the
extent to which explanations attest to the predictive per-
formance of a model. In other words, faithfulness aims to
determine if the feature importance scores, generated by the
visualization procedure, are indicative of importance w.r.t.

prediction. Given that a ground truth explanation can rarely be
known, faithfulness is measured indirectly, by observing the
impact of a feature removal on the generated prediction. To
measure the faithfulness of an XAI-enabled NILM approach,
the following steps are taken:

1) Generate a sequence-level feature importance map of an
input signal of interest, as in Sec. IIIA.

2) Partition the sequence-level maps into sorted, non-
overlapping segments based on the sum of importance
scores over a certain period, to determine the most
important areas of the input signal.

3) Evaluate the faithfulness of the derived explanations
by performing an iterative perturbation of features by
changing the input signal values in the segments of inter-
est, starting with the segments of highest relevance. The
perturbation of input segment is performed by replacing
the power level of the initial signal by the signature
of low consuming appliances (e.g., a combination of
TV, Lights and Fridge, equaling around 250W). This
perturbation ensures that the activation signal is atten-
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uated, while keeping the input data distribution within
the space that the model has learned on, as opposed to
setting the power level to zero, which would constitute
an unfavorable case of an out-of-distribution scenario.

4) To establish whether there is a significant impact on
the predictive performance, after each perturbation of
features we measure the difference between the per-
formance metrics calculated on predictions of non-
perturbed and perturbed signals.

5) To convey the degradation of performance, we consider
both classification and regression-based performance
metrics. As a way of capturing the classification per-
formance, we convert the regression output to a step
function and calculate the F1 score as:

F1 =
TP

TP + 1
2 (FP + FN)

, (13)

where TP stands for True Positives, FP for False
Positives, and FN for False Negatives. To quantify the
disaggregation performance, we utilize mean absolute
error (MAE) between the true (Ei) and predicted (Êi)
consumed energy of the appliance of interest where
MAE is calculated as follows:

MAE =
1

T
·

T∑
i=1

|Êi − Ei|. (14)

6) After each perturbation step, compute the difference
between performance metrics of altered and original
input. The faithfulness score is the resulting area under
curve (AUC) after a set number of iterations, where more
faithful XAI methods correspond to a higher AUC score.
The classification faithfulness showcases the difference
in F1 score values, while regression faithfulness depicts
the difference in MAE values. Iterative perturbation of
features that leads to a sharper increase in the difference
between the F1 and/or MAE scores (and thus higher
faithfulness score) suggests that the feature importance
scores generated by the XAI method successfully assign
scores to the highly relevant input features and are in-
deed indicative of predictive performance of the model.

C. Property of Robustness

The growing body of literature in deep learning theory [48]
suggests that robustness of neural networks is closely related
to the value of its local Lipschitz constant. Intuitively, a Lips-
chitz constant represents the value by which neural network’s
output is allowed to change relative to its input. It has been
used as a hard constraint to enable adversarial robustness,
better generalization and training of generative adversarial
networks. Moreover, it has been suggested as a technique
for evaluating the robustness of explanations [39]. Given a
slight modification of input, and consequently negligibly small
effect on the prediction, a robust explanation should not differ
drastically compared to those created from the unmodified
input. We aim to investigate the (in)stability of existing XAI
methods w.r.t. slight modifications of household aggregated

consumption signal. Given an explanation function h(·) and
input aggregate signal x, we expose the signal to zero-mean
Gaussian noise with controlled standard deviation σ to create
modified input aggregate signal, x̂. We define local Lipschitz
constant estimate as [39]:

L̂ =
∥h(x)− h(x̂)∥
∥x− x̂∥+ µ

, (15)

where µ represents a small value added for numerical stability
(µ = 1e−6). For validity, we repeat this procedure n times
and report the averaged robustness score (RS). Methods with
low Lipschitz value scores display a characteristic of being
stable under the presence of noise and should be favoured. In
the context of NILM-like data it is important to note that we
assume bounded input space, i.e., that maximum change in
the function value is finite, which can be assumed for NILM
signals as the magnitude of the aggregate power signal is
bounded.

D. Property of Complexity

One of the core principles of XAI is to provide human
understandable explanations. Previous studies in the area of
research focusing on applying XAI in the energy sector have
reported mixed results when applying XAI tools to real-world
energy data [49]. Yet, none of these studies have delved
into the evaluation of explainability methods, particularly the
complexity of explanations. We argue that this property is
one of the most desirable ones, as it quantifies the entropy
of the XAI output. If most of the input features are deemed
important, it does not provide an adequate level of clarity
and lowers the human interpretability of explanation. To
measure the conciseness of explanation output, we measure
the statistical dispersion of the output map. The output map
is first sorted in ascending order, and indices of the sorted
values are determined. Finally, the conciseness of explanation
is formulated as a Gini index computation [26]:

Gini =

∑ω
a=1(2a− ω − 1) · ha
κ+ ω ·

∑ω
a=1 ha

, (16)

where ha is the a-th point in the sorted XAI output of length
of ω, i is the rank of values in the ascending order, and
κ = 1e−8 is a small value added for numerical stability. A
Gini coefficient takes values in the range of [0 − 1], with
coefficient of 0 expressing equal contribution of all features,
and 1 expressing that only one feature contributes to the
resulting heatmap.

Evaluation of explainability is in general a two-step process,
where at first an explanation result is generated using an XAI
method considering the input of the model and the model
itself, followed by the measurement of the desirable property
of explanation result. In this sense, explanation sparseness
points to the dispersion of the distribution of the output of the
XAI method (i.e., the complexity of explanation). However,
it disregards information about the complexity of the input
variable. We argue that this is highly important for systems
that include time-varying data, as the presence of noise is a
common phenomenon, and the system’s ability to deal with it
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TABLE I
COMPARISON OF EXPLAINABILITY AND PREDICTIVE PERFORMANCE OF SEQ2POINT MODEL FOR UK-DALE DATASET.

Appliance XAI Method R. Faithfulness C. Faithfulness Robustness Gini Eff. Complexity

Washing Machine

GradCAM 1413.384 19.800 0.485 ±0.308 0.485 0.833
GradCAM++ 1908.446 17.183 0.602 ±0.161 0.189 0.325
LRP 2466.142 23.560 0.113 ±0.113 0.880 1.510
IG 1888.325 20.253 0.393 ±0.168 0.412 0.708
SG 1889.292 19.454 0.306 ±0.119 0.500 0.859

Dishwasher

GradCAM 37.942 5.934 1.606 ± 0.734 0.486 0.658
GradCAM++ 2014.717 20.704 0.617 ± 0.216 0.342 0.462
LRP 3186.500 26.973 0.517 ± 0.289 0.784 1.061
IG 2375.636 12.329 0.699 ± 0.433 0.592 0.801
SG 3262.523 19.823 0.459 ± 0.175 0.662 0.897

Kettle

GradCAM 1721.840 1.699 0.062 ±0.060 0.421 0.476
GradCAM++ 1653.429 1.667 0.034 ±0.034 0.432 0.488
LRP 1386.882 1.478 0.225 ±0.140 0.692 0.782
IG 1235.617 1.205 0.309 ±0.159 0.490 0.554
SG 516.182 0.394 0.129 ±0.081 0.428 0.484

Microwave

GradCAM 598.240 4.298 0.155 ± 0.150 0.478 0.74
GradCAM++ 602.853 4.456 0.055 ± 0.045 0.490 0.759
LRP 479.337 3.810 0.127 ± 0.085 0.798 1.236
IG 547.137 4.450 0.148 ± 0.085 0.756 1.171
SG 435.108 3.983 0.128 ± 0.081 0.775 1.200

TABLE II
COMPARISON OF EXPLAINABILITY AND PREDICTIVE PERFORMANCE OF SEQ2POINT MODEL FOR REFIT DATASET

Appliance XAI Method R. Faithfulness C. Faithfulness Robustness Gini Eff. Complexity

Washing Machine

GradCAM 517.966 0.454 1.070 ± 0.667 0.405 1.257
GradCAM++ 339.881 0.213 0.532 ± 0.240 0.165 0.514
LRP 1794.590 4.751 0.434 ± 0.357 0.661 2.052
IG 1381.301 2.561 0.847 ± 0.296 0.394 1.224
SG 1098.127 2.001 0.700 ± 0.301 0.461 1.431

Dishwasher

GradCAM 2773.987 9.538 1.323 ± 1.017 0.539 1.242
GradCAM++ 2934.133 10.385 0.940 ± 0.942 0.276 0.635
LRP 4312.670 14.862 0.367 ± 0.235 0.683 1.572
IG 6530.439 26.035 0.764 ± 0.369 0.577 1.329
SG 5469.436 17.727 0.804 ± 0.451 0.575 1.324

Kettle

GradCAM 1158.721 2.161 0.188 ± 0.234 0.472 0.671
GradCAM++ 1325.057 2.415 0.059 ± 0.049 0.355 0.503
LRP 1160.369 2.073 0.205 ± 0.170 0.608 0.862
IG 1011.075 1.667 0.197 ± 0.099 0.598 0.849
SG 910.304 1.637 0.172 ± 0.081 0.562 0.797

Microwave

GradCAM 628.539 3.520 0.296 ± 0.239 0.512 0.754
GradCAM++ 720.156 4.069 0.116 ± 0.140 0.443 0.666
LRP 672.775 3.712 0.229 ± 0.124 0.785 1.180
IG 677.663 3.857 0.272 ± 0.132 0.528 0.794
SG 634.402 3.363 0.282 ± 0.195 0.482 0.724

is of particular interest. Consequently, explanation sparseness
in the context of NILM does not reflect one of the most
common challenges of working with time-series. One of the
existing measures that capture the percentage of noise in data
sample, noise-aggregate measure (NAR) [50], is defined as:

NAR =

∑T
i=1 |y(t)−

∑N
i=1 xi(t)|∑T

t=1 y(t)
. (17)

We adapt the formula to measure the noisiness of one
particular window and appliance i of interest defined as:

NAR(i) =
T∑

i=1

∣∣∣1− xi(t)

y(t)

∣∣∣. (18)

We observe that the explanation complexity is often similar
for inputs with varying degrees of noise. To establish the

relationship between the complexity of an input variable and
the complexity of explanation, we introduce an additional term
to the explanation complexity that reflects the “noisiness” of
the input. Thus, to quantify the complexity of explanation in
the context of NILM, we define the “effective complexity”
measure as:

EC(i) =
Gini

1−NAR(i)
. (19)

IV. EXPERIMENTAL RESULTS: QUALITATIVE AND
QUANTITATIVE EXPLAINABILITY

A. Experimental setup: Datasets and model training

For transparency, we used the most widely used [2] and well
documented REFIT [8] and UK-DALE [9] public datasets.
These datasets contain real-world active power measurements
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obtained from residential buildings, exhibiting a realistic spec-
trum of appliance ownership and usage patterns. To evaluate
explainability across appliance activations with different levels
of power and activation periods, we focus our attention on pop-
ular multi-state and single-state appliances, namely: Washing
Machine, Dishwasher, Microwave, and Kettle. The aggregate
data were pre-processed using normalization with mean and
standard deviation values computed from the training set.
All models were trained and evaluated by reproducing the
procedure outlined in [35]. Houses were chosen based on the
condition that they must contain measurements of all four
aforementioned appliances. For UK-DALE, we use houses 1,
3, 4, and 5 for training, while house 2 is used for testing. In
the case of REFIT, houses 2, 3, 6, 11, 13, and 15 were used
for training, while the test set contains data from house 5.

The explainability dataset is created by randomly sampling
30 days when appliances of interest are running and selecting
a window of size ω samples centered around the appliance
activation window from each chosen day. Given a dataset with
granularity of 8 seconds, ω is determined from the typical
operation time of the appliance of interest. For appliances
with lengthy duration, i.e., Washing Machine (WM) and
Dishwasher (DW), activation length ω = 1024 is chosen, which
represents roughly 2 hours and 15 minutes of measurements,
in line with the average length of a duty cycle of most
WM and DW devices. For the Microwave (MW), activation
length ω = 80 was chosen, which corresponds to around 10
minutes. Finally, Kettle (KT) activation length ω is set at 40,
corresponding to around 5 minutes. If the total length of the
activation length of interest is larger than ω, the first ω data
samples are selected.

B. Interpretation of Faithfulness, Robustness and Complexity
Scores

Faithfulness is of particular importance to an algorithm
designer, as it facilitates understanding of how feature impor-
tance scores influence the prediction. Conversely, robustness
provides an indication of the change in prediction if the input
to the DL model changed slightly (e.g., due to appliance model
fluctuations, appliance settings and influence of unknown
appliances), which is a crucial indicator of scalability. Finally,
complexity reflects the human comprehensibility of the visu-
alization. The relative significance of each score is determined
by the use-case, i.e., which property is most desirable to an
algorithm designer, system developer, consumer or technology
enthusiast. Explainability scores (see Subsec. III B, C, D)
obtained for four different appliances are presented in Tables I
and II, for the UK-DALE and REFIT datasets, respectively.
Regression (R) and Classification (C) scores are calculated as
the AUC for MAE and F1 scores, as described in Sec. III-B.
For long duration appliances (WM and DW), we perform
75 perturbation steps, while for MW and KT we perform
10 and 5 steps, respectively. To calculate the sorted, non-
overlapping segments of importance (as per III-B-2), for
appliances with a long activation period, we choose segments
containing 40s of measurements, while other appliances con-
tain 24s of measurement. High faithfulness score indicates

that the explainability method is able to correctly identify
the important features of the input signal, thus leading to
a large drop in prediction accuracy after perturbation. The
Robustness score is calculated as mean and standard deviation
of n = 35 computations of Lipschitz constant estimate,
defined in Eq. 15, where µ and σ values of Gaussian noise
are 0 and 0.1, respectively. Low robustness score indicates
the ability of the explainability method to deal with noise.
The Effective complexity is calculated as per Eq. 19. High
effective complexity suggests that the explainability method
is able to generate explanations that are concise and human
understandable.

Tables I and II suggest that LRP-ϵ achieved the most success
across the proposed properties that explainable NILM systems
based on sequence-to-point learning should satisfy. This can
largely be attributed to the ability to deal with gradient noise
as the relevance is propagated through the layers of the
network. We report a strong relationship between the choice
of parameter ϵ and the results in performance metrics, where
ϵ value should be guided by the noisiness of the dataset. As
the REFIT dataset is known to be significantly noisier than
UK-DALE, we set the parameter ϵ to be a large value (ϵ = 1)
compared to UK-DALE (ϵ = 0.1). Contrary to previous studies
in the energy sector that recommended GradCAM as the best
XAI method [49], our analysis indicates that GradCAM is not
the ideal XAI approach for time-series NILM applications em-
ploying sequence-to-point architectures. Notably, GradCAM’s
faithfulness scores for dishwashers were significantly lower
compared to other methods, implying an inability to identify
crucial signal features. This observation is further supported by
Fig. 2 and the results for the noisier REFIT dataset in Table II,
where faithfulness scores for both washing machines (WM)
and dishwashers (DW) were unsatisfactory. In an attempt to
improve the score, we explored guided gradient technique used
for GradCAM, but our findings point to further degradation
of performance. On the other hand, our findings reveal that
GradCAM++ method does outperform the original GradCAM,
achieving better faithfulness and robustness. However, while
the results demonstrate significant enhancements of Grad-
CAM++ over GradCAM in these two aspects, the complexity
of explanations generated by Grad-CAM++ is observed to be
less than ideal. This finding suggests that the enhancements
in faithfulness and robustness of GradCAM++ may come at
the cost of increased complexity. Intriguingly, IG exhibited
excellent performance for the complex signals (i.e., WM and
DW) within the REFIT dataset. This implies that a zero signal
is an appropriate choice for the baseline value of the IG
algorithm for NILM-like data. Meanwhile, SmoothGrad (SG)
produced robust results across most scenarios due the nature
of the algorithm.

We acknowledge certain limitations in our work that neces-
sitate further exploration. A primary constraint of the proposed
evaluation framework is its inability to present specific steps
for enhancing the effectiveness of explainability techniques.
Nonetheless, our approach facilitates the comparison of var-
ious XAI methods, which remains valuable for identifying
their strengths and weaknesses and guiding future research and
development efforts. Furthermore, a crucial aspect involves
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Fig. 3. Visual outline of the proposed approach showcasing an example of false positive prediction of washing machine for UK-DALE dataset, and the
derived explanations using LRP. Two levels of explainability provide general, sequence-level (top image), and specific, point-level explanations (a and b),
under a test scenario of signal incorrectly predicted as a washing machine.

examining the relationship and trade-offs between faithfulness,
robustness, and complexity in XAI for NILM systems. Striking
a balance among these metrics is vital for ensuring the utility,
transparency, and, ultimately, trust in XAI NILM systems.
Additionally, a key assumption in the context of XAI methods
that were used in this work are that the proposed methods
assume feature independence, which is a well-known issue
in the field of XAI. To mitigate this, a new field of causal
discovery has emerged; however the field is in infancy and
its practical usefulness is still limited. Another assumption is
related to robustness measure where we assume continuity,
i.e., that small changes in the input (through introduction
of Gaussian noise) will lead to small changes in the output
explanation. Furthermore, to calculate the robustness score,
we assume bounded input space, i.e., that maximum change
in the explanation function is finite, which can be assumed for
NILM signals as the aggregate function is bounded.

C. Visualisation via heatmaps
The proposed approach enables two levels of explainability.

On one hand, point-level explainability provides visual un-
derstanding of how a prediction of a single time step was
made. It is specific to a point of reference. On the other
hand, the visualization algorithm generates another, sequence-
level explanation, showcasing the aggregate importance of the
input signal for the prediction of the output, and acting as
a more general representation of the importance. Point-level
explanation is preferred to illuminate the features that have
contributed to an individual point of the prediction especially if
that point prediction is an outlier. Sequence-level explanations
are more appropriate if trying to comprehend the decision on

inference of a complete appliance duty cycle, such as why a
time-series sequence was predicted as a Washing Machine.

Our visualization approach offers several advantages over
the previously proposed methods. We tackle the more chal-
lenging regression scenario for the NILM problem compared
to earlier work, which utilized a multi-class CNN for the sim-
pler task of detecting appliance presence without recognizing
on/off states [14]. Moreover, our method has been rigorously
validated on numerous real-world datasets, demonstrating its
adaptability and generalizability across diverse contexts. Un-
like previous work that relied on a single dataset, our approach
handles varied energy consumption patterns and appliance
configurations, ensuring its practicality and resilience. In com-
parison to the regression-based XAI visualization method in
NILM [13], our approach is more computationally efficient,
as gradient-based methods require fewer iterations and calcu-
lations than occlusion sensitivity, making them well-suited for
real-time applications and large-scale datasets. Additionally,
our approach avoids the introduction of out-of-distribution
scenarios caused by setting parts of the input signal to zero,
ensuring that the generated explanations are more faithful
to the model’s behavior. A key strength of our method lies
in its ability to provide multi-temporal explanations, offer-
ing insights into both local and global patterns at various
levels of granularity, such as point-level and sequence-level
explanations. This enhanced interpretability facilitates a better
understanding of the NILM model’s decision-making process
and allows users to make more informed decisions based
on the model’s output. Furthermore, the gradient-based XAI
methods can be applied to a wider range of DL-based NILM
algorithms.
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Fig. 2 provides an example of point explanations for a
Dishwasher signal prediction from the UK-DALE dataset. This
is a true positive prediction where the primary features con-
tributing to the prediction of the middle point (marked with a
blue pentagon) are displayed in a form of heatmap. We observe
that most XAI methods highlight the true positive part of the
input signal. However, different XAI methods produce varying
heatmap visualizations, underscoring the necessity for their
quantitative quality evaluation. Comparing the results in Fig. 2
with the results displayed in Table I, LRP and SmoothGrad
indeed showcase the best performance. We observe that both
heatmaps highlight the truly important parts of the signal,
suggesting high faithfulness, and that explanations are concise,
pointing to low complexity. On the other hand, GradCAM
shows the lowest faithfulness score, which can be observed
from Fig. 2 as the GradCAM visualised explanation highlights
an area that is not related to high activity of the dishwasher
signal, suggesting a case of instability. To a smaller extent,
this phenomenon is also observed in the case of IG. While
the localization of feature importance scores in GradCAM++
improved compared to GradCAM, we observe a higher com-
plexity of generated explanation. Comparing to LRP and
SmoothGrad, we observe that the explanation heatmaps of
GradCAM, GradCAM++, and IG cover a larger area of the
input signal, and are of noticeably higher complexity, which
is a finding that is reinforced by the complexity evaluation
scores. Another scenario showcasing the mechanism behind a
false positive prediction of a NILM DL model is presented in
Fig. 3. In this example, a DW signature is incorrectly predicted
as WM. We observe that the general explanation (on the top)
enables us to assign the importance scores to the areas of the
signal that the network deemed as indicative of a WM duty
cycle. Looking further, the point-level explanations (a and b)
enable us to understand that the DL model recognizes that
there may be multiple cycles in a typical WM signature, which
is supported by high importance score assigned to past signal
spikes that look similar to a WM duty cycle. This can help the
algorithm designer to improve the training and tuning process
or adopt a multi-classification approach to better distinguish
these multistate appliances with similar power level, duty cycle
and duration.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a methodology for determining the
explainability of a time-series deep neural network regression
non-intrusive load monitoring (NILM) problem. Specifically,
we propose visualization via heatmaps approach by integrating
XAI methods into the DL NILM and quantify explainability
via faithfulness, robustness and complexity scores. As a way
of overcoming the problem of transparency inherent to DL
algorithms, the proposed approach provides a dual mode of
explainability, one at a general, sequence level, and other at
a specific, point level. Both levels of explainability can be
used interchangeably based on the use case, as they provide
varying degrees of specificity, i.e., they can deal with different
scenarios when the decisions of NILM systems are unclear
or difficult to explain. We show that this can be achieved

without changing the architecture of the model. Furthermore,
we define the core properties that should be considered when
designing explainable NILM systems, and provide a strategy
for quantitative evaluation of their explainability. We show
that XAI methods, such as LRP, that have an inherent ability
of dealing with noise, can lead to explanations that satisfy
properties of being faithful to the performance of the model,
robust to slight changes of input, and offer unambiguous
interpretation of resulting heatmaps. The choice of the most
appropriate methods should be guided by the target user of
explanation, be it a domain expert, researcher, or customer,
considering the trade-off between the aforementioned proper-
ties. By using the proposed method, the diverse set of needs of
various users of the system can be satisfied, while maintaining
the predictive performance and facilitating trust in the NILM
system deployed in a real-world scenario.

In future work, it is important to extensively explore the
relationship and trade-offs between the properties of faithful-
ness, robustness and complexity in XAI NILM approaches.
For example, a highly faithful explanation that closely reflects
the model’s behavior may be more complex and harder to
understand. Conversely, a simpler explanation may be more
accessible but less faithful to the model’s true decision-making
process. Similarly, there may be cases where faithful explana-
tions are sensitive to small changes in input data, resulting in
a trade-off between faithfulness and robustness. Thus, striking
the right balance between the metrics of explanation quality
is crucial to ensure the usefulness of the XAI system. Our
research focused on applying XAI to a CNN NILM algorithm.
Future studies can extend this work to other NILM algorithms,
including other deep learning-based approaches, to better
understand the impact on the explainability performance and
the generalisability of our findings. Another possible area of
research could be combining different XAI techniques to cre-
ate hybrid explanations, which may offer more comprehensive
insights into NILM model behavior. Additionally, as one of
the challenges in deploying NILM systems is the need for
real-time processing and interpretation of energy consumption
data, investigating the feasibility of real-time XAI methods
for NILM applications would be a valuable contribution to the
field, enabling more practical and actionable insights for users.
Further work might also explore the relationship between visu-
alizations and explainability performance for multi-appliance
classification and regression. Finally, this framework can be
extended to other applications in the energy sector to further
promote reliable and safe integration of XAI in the smart grid.
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