
PHYSICAL REVIEW RESEARCH 5, 033148 (2023)

Determining the validity of cumulant expansions for central spin models
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For a model with many-to-one connectivity it is widely expected that mean-field theory captures the exact
many-particle N → ∞ limit, and that higher-order cumulant expansions of the Heisenberg equations converge
to this same limit whilst providing improved approximations at finite N . Here we show that this is in fact not
always the case. Instead, whether mean-field theory correctly describes the large-N limit depends on how the
model parameters scale with N , and the convergence of cumulant expansions may be nonuniform across even
and odd orders. Further, even when a higher-order cumulant expansion does recover the correct limit, the error
is not monotonic with N and may exceed that of mean-field theory.
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I. INTRODUCTION

Networks in which one site couples nonlocally to many
satellite sites occur in a wide range of many-body open
quantum systems. For example, models where a driven elec-
tronic spin interacts with a bath of nuclear spins are relevant
to nuclear magnetic resonance spectroscopy [1–4], quantum
sensing [5–7], and quantum information processing [8–14].
The network structure is also common in quantum optics
where it defines the interaction of a bosonic mode with an
ensemble of emitters [15], or equally a single emitter with
many electromagnetic modes [16]. In many such cases, the
large number of satellite sites precludes exact calculations,
particularly when accounting for nonunitary dynamics due to
incoherent processes. Consequently there is a need for approx-
imate methods capable of handling large, driven-dissipative
systems with many-to-one connectivity. We discuss below
how mean-field theory and cumulant expansions may provide
a suitable set of methods.

For models with finite connectivity, mean-field theory is
typically only accurate in high dimensions [17]. In contrast,
there are many reasons to believe it should recover the ex-
act behavior of many-to-one models in the thermodynamic
limit. First, given N identical satellites, monogamy of en-
tanglement [18] restricts the entanglement between any two
sites such that quantum correlations in the system vanish as
N → ∞. However, there is no similar restriction on classical
correlations which may certainly persist in this limit. Second,
in models with weak couplings to satellite sites, these may
be treated as a harmonic bath for the central site with a
linear response that becomes exact as N → ∞ [19]. Third,
for models with an interaction between a large number of
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emitters and a bosonic mode, the mean-field equations can
be justified via saddle-point analysis [20]. There are further
rigorous results regarding the exactness of mean-field theory
as N → ∞ within this class [21–23]. In spite of these results,
we present here a simple example where mean-field theory
does not always capture the N → ∞ limit of a many-to-one
model.

Even when mean-field theories correctly describe the exact
N → ∞ behavior, other methods may be required to capture
effects at finite N . Different forms of cumulant expansion
of the Heisenberg equations have been widely applied to
many-body systems [16,24–39] as a systematic approxima-
tion scheme in which increasing orders of correlations are
included; this is hoped to improve accuracy at the cost of
growing complexity. The power of this approach is the small
dimension of the resulting problem (independent of system
size N), and the ability of even low orders of expansion to
produce accurate results at intermediate N . Hence, they are a
tool to both capture behavior at N � 1 and to study finite-size
effects.

The difficulty of direct simulation at large N means that
cumulant expansions are rarely benchmarked against exact
methods much beyond N ∼ 30. Confidence in results may
then be based on the assumptions that evaluation at larger N
and higher orders of expansion provide more accurate approx-
imations. However, we show cases here where neither of these
assumptions are correct.

In this work we thoroughly explore the convergence of cu-
mulant expansions for a driven-dissipative central spin model.
We demonstrate how the ability of mean-field theory to cap-
ture the N → ∞ steady state of the full quantum model
depends on the scaling of parameters. Further, we show how
even when mean-field theory does capture the exact behavior
at N → ∞, convergence of higher-order cumulant expansions
to the same result is not guaranteed. We discuss how this
convergence behavior arises in light of correlations present in
the system and show that similar behavior may be observed
in models of light-matter interaction. Permutation symmetry
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FIG. 1. (a) Network of the model: a central site (index 0) couples
to N identical satellites (n = 1, . . . , N). (b) Each site is a two-level
system (spin 1/2) subject to decay (κ or �↓) and, in the case of the
satellites, pump �↑.

allows us to make comparisons to exact results for the central
spin model at relatively large N ∼ 150 whereby we show the
error in cumulant expansion approximations does not gen-
erally decrease monotonically with N , nor with the order of
expansion.

The structure of the paper is as follows. In Sec. II we give
an overview of the central spin model and the permutation
symmetric method that may be used to solve it at finite N .
In Sec. III we explain the cumulant expansion method and
its application to the model at mean field and second order.
Section IV then compares the results for these approximations
up to third order to exact data under two different choices
for scaling of parameters as N → ∞. Finally, in Sec. V we
present the results for higher-order expansions in both the cen-
tral spin and the Tavis-Cummings models before summarizing
our findings and the scope for future work in Sec. VI.

II. MODEL

We consider a single spin 1/2 (Pauli matrices σα
0 ) interact-

ing with N spin-1/2 satellites (Pauli matrices σα
n ) according

to

H = ω

2
σ z

0 +
N∑

n=1

[
ε

2
σ z

n + g(σ+
0 σ−

n + σ−
0 σ+

n )

]
. (1)

Here ω and ε are on-site energies for the central and a satellite
spin, and g the interaction strength. In addition we consider
dissipation with rate κ from the central site as well as incoher-
ent pump �↑ and loss �↓ for each satellite. These are included
as Markovian terms in the master equation for the total density
operator ρ,

∂tρ = −i[H, ρ] + κL[σ−
0 ] +

N∑
n=1

(�↑L[σ+
n ] + �↓L[σ−

n ]),

(2)
with L[x] = xρx† − {x†x, ρ}/2. Schematics for the system
and these processes are given in Figs. 1(a) and 1(b).

The anisotropic interactions in Eq. (1) arise, for exam-
ple, between the nitrogen-vacancy center and the 13C nuclear
spins in diamond [40]. This system has been extensively
studied for its potential role in emerging quantum technolo-
gies including spectroscopy [2–4], quantum sensing [5–7],

and computing [12,13]. For our purpose the model serves
a minimal formulation of the open many-to-one problem to
investigate mean-field theory and cumulant expansions. In
certain cases, such as the absence of dissipation, or when
the satellite dissipation is collective, there exist analytical
or efficient numerical methods capable of accessing large-N
behavior of central spin models [41–46]. However, for the
case we consider with individual dephasing these methods do
not apply.

The model Eq. (2) has cumulant equations that are ana-
lytically tractable up to third order whilst also allowing exact
calculations for relatively large system sizes. Below, to com-
pare approximations, we analyze the central-site population,
p↑

0 , in the steady state. This relates to the polarization, 〈σ z
0 〉,

via p↑
0 ≡ (1 + 〈σ z

0 〉)/2 and increases from zero as the ratio
�↑/�T (�T = �↑ + �↓) is increased.

The invariance of the model under the interchange of satel-
lite spins allows one to work in a permutation-symmetric basis
when performing exact calculations [47–52]. This provides a
combinatoric reduction in the size of the Liouvillian L. In our
case this allows finding the eigenvector of L with eigenvalue
0, i.e., the steady state, up to N = 150. No information is lost
by working in this basis. In particular, all correlations can
be computed exactly and compared to the prediction of the
cumulant expansions.

III. MEAN-FIELD AND CUMULANT EXPANSIONS

We now explain the cumulant expansion method and its
application to the central spin model at mean field and second
order. Expressions for third-order cumulant equations are also
provided in Appendix A.

From the master equation, Eq. (2), one can derive equa-
tions of motion for single-site expectations:

∂t
〈
σ z

0

〉 = −κ
(〈
σ z

0

〉 + 1
) + 4gNIm[〈σ+

0 σ−
n 〉], (3)

∂t
〈
σ z

n

〉 = −�T
〈
σ z

n

〉 + �
 − 4gIm[〈σ+
0 σ−

n 〉], (4)

∂t 〈σ+
0 〉 =

(
iω − κ

2

)
〈σ+

0 〉 − igN
〈
σ z

0σ+
n

〉
, (5)

∂t 〈σ+
n 〉 =

(
iε − �T

2

)
〈σ+

n 〉 − ig
〈
σ+

0 σ z
n

〉
, (6)

where �
 = �↑ − �↓ and �T = �↑ + �↓. This set of equa-
tions is not closed since, for example, ∂t 〈σ z

0 〉 depends on
〈σ+

0 σ−
n 〉. The equation for 〈σ+

0 σ−
n 〉 will in turn depend on

expectations of operators from three different sites, and so
on, resulting in an exponential number of equations involving
operators on all sites.

To obtain a manageable number of equations, in the
Mth-order cumulant expansion moments of order M + 1
are rewritten as nonlinear combinations of lower-order mo-
ments by setting the corresponding cumulant [24,53] to zero.
Such an approximation corresponds to making an ansatz for
the many-body state ρ that involves correlations between
at most M sites. We stress here the distinction is between
sites (or Hilbert spaces) of the many-body system, not op-
erators in themselves (as, e.g., used in Ref. [28]). This is
natural for two-level systems, where one easily identifies
〈σ+

0 σ−
0 σ z

n 〉 = (〈σ z
0σ z

n 〉 + 〈σ z
n 〉)/2, but for bosonic operators,
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FIG. 2. (a) Mean-field reduction to a two-body problem where
expectations of a satellite evolve according to expectations of the
central site (⇀) which in turn evolve according to N copies of the
satellite expectations (↽). (b) In the second-order cumulant expan-
sion central-satellite and satellite-satellite expectations couple into
the system [Eqs. (10) and (11)].

e.g., a, it is common to see factorizations such as 〈a†aσ z〉 ≈
〈a†〉〈a〉〈σ z〉 + · · · whose validity depends on additional as-
sumptions of Gaussianity [54].

A. Mean-field equations

At first order, that is mean-field theory, second-order mo-
ments factorize into products (〈σα

0 σβ
n 〉 ≈ 〈σα

0 〉〈σβ
n 〉) and an

effective two-body problem results [Fig. 2(a)]. Solving for the
steady state one finds 〈σ z

0 〉 = −1 for �↑/�T below a critical
pump ratio Rc ≡ (1 + �T κ/4g2N )/2, while for �↑/�T > Rc,

〈
σ z

0

〉 = − 1

2

(
1 − �
N

κ

)
− 1

2

√(
1 − �
N

κ

)2

+ �2
T

g2
, (7)

〈
σ z

n

〉 = − κ�T

4g2N
〈
σ z

0

〉 , 〈σ+
n 〉 = iκ

2gN
〈
σ z

0

〉 〈σ+
0 〉, (8)

where the magnitude of 〈σ+
0 〉 is fixed by

|〈σ+
0 〉|2 = −〈

σ z
0

〉(
1 + 〈

σ z
0

〉)/
2. (9)

For simplicity we took ω = ε above but have checked our
conclusions do not change off resonance.

Although the model has U(1) symmetry, i.e., Eq. (2) is
invariant under σ± → σ±e±iθ , it is necessary to retain the
symmetry-breaking terms 〈σ+

0 〉 and 〈σ+
n 〉 when performing

the mean-field approximation in order to obtain a nontrivial
solution: the state 〈σ z

0 〉 = −1 is always a solution to the mean-
field equations that only becomes unstable when �↑/�T > Rc.

B. Second-order cumulant equations

Breaking symmetry is not necessary at second order where
〈σ+

0 σ−
n 〉 can be nonzero whilst respecting the symmetry. The

required equations for second moments are [Fig. 2(b)]

∂t 〈σ+
0 σ−

n 〉 =
(

i(ω − ε) − κ + �T

2

)
〈σ+

0 σ−
n 〉 + ig

2

〈
σ z

n

〉
− ig

2

〈
σ z

0

〉 − ig(N − 1)
〈
σ z

0

〉〈σ+
n σ−

m 〉, (10)

∂t 〈σ+
n σ−

m 〉 = −�T 〈σ+
n σ−

m 〉 + 2gIm[〈σ+
0 σ−

n 〉]〈σ z
n

〉
, (11)

with n �= m. Here we set third cumulants to zero and
use the U(1) symmetry to write 〈σ z

0σ+
n σ−

m 〉 ≈ 〈σ z
0 〉〈σ+

n σ−
m 〉,

〈σ+
0 σ−

n σ z
m〉 ≈ 〈σ+

0 σ−
n 〉〈σ z

n 〉. Equations (3), (4), (10), and (11)

FIG. 3. (a) Central-site population, p↑
0 = [1 + 〈σ z

0 〉]/2, in mean-
field (MF) and second-order cumulant (C2) approximations when
g
√

N = 3 is fixed and κ = 1 in units of ω. Exact data (blue dots)
is included up to N = 150. The horizontal scale 1/N is such that
N → ∞ to the left. (b) MF, C2, and exact results when κ/N = 1/16
is fixed and g = 3/4. The gray vertical line at N = 50 indicates points
equivalent to those along the corresponding line in (c). (c) p↑

0 vs
�↑/�T (�T = �↑ + �↓) at fixed κ/N = 1/16, g = 3/4, and N = 50
(the low cost of the exact calculation allowed a continuous line
to be plotted). The mean-field transition at �↑/�T = Rc ≈ 0.53 is
analogous to that in a driven-dissipative Tavis-Cummings model [15]
and other models of lasing [37,55]. (d) Error in MF and C2 results
from (b). Other parameters used in these panels were ε = ω = 1,
�T = 2, and [except (c)] �↑ = 3/2.

can also be solved exactly, albeit not explicitly, to find p↑
0 =

[1 + 〈σ z
0 〉]/2.

IV. RESULTS AT MEAN-FIELD AND
SECOND-ORDER CUMULANTS

In the following we compare the mean-field result, Eq. (7),
and the solution to the second-order equations, Eqs. (3), (4),
(10), and (11), to the exact steady state. We do this this un-
der two possible choices for scaling parameters in the model
as N → ∞.

A. Fixed g
√

N

Figure 3(a) shows p↑
0 vs 1/N when fixing g

√
N . This scal-

ing is often relevant in the context of light-matter coupling,
where coupling strength g is inversely proportional to the
square root of mode volume: as the system becomes larger,
both N and mode volume grow, but g

√
N remains fixed. Here

we see there is no agreement between the exact and approx-
imate results, each taking different N → ∞ limits. This is
in marked contrast to the Tavis-Cummings or Dicke models
[51], where both mean-field and second-order cumulant ap-
proximations converge to the exact steady-state as N → ∞
for this scaling. Below we explain how the convergence of
second-order cumulants to mean-field theory is precluded by
g ∝ 1/

√
N for the central spin model.
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B. Fixed κ/N

If instead the ratio κ/N is kept fixed [Fig. 3(b)], mean-
field and second-order cumulants have a common limit that
captures the exact behavior. Note Fig. 3(b) is plotted for
parameters where nonzero p↑

0 is expected [see Fig. 3(c) for
a phase diagram]. This scaling may be understood to realize
the limit of strong continuous measurement of the central site
[56]. It has the feature, seen in Eqs. (7)–(9), that expecta-
tions of satellite and central-site quantities are of the same
order, O(1), as N → ∞. In Appendix B we show this holds
for higher-order correlations as well. One then observes the
asymptotic form of Eq. (10) (κ ∼ N),

∂t 〈σ+
0 σ−

n 〉 = N

(
− κ

2N
〈σ+

0 σ−
n 〉 − ig

〈
σ z

0

〉〈σ+
n σ−

m 〉
)

+ O(1),

(12)

matches that predicted by mean-field theory,

∂t (〈σ+
0 〉〈σ−

n 〉) = N

(
− κ

2N
〈σ+

0 〉〈σ−
n 〉 − ig

〈
σ z

0

〉〈σ+
n 〉〈σ−

m 〉
)

+ O(1). (13)

The same is true for Eq. (11) and its mean-field analog,
hence the second-order and mean-field equations have iden-
tical structures as N → ∞ at fixed κ/N .

In contrast, at fixed g
√

N the correlations 〈σ+
n σ−

m 〉 do not
remain finite as N → ∞ but decay faster than 1/

√
N (Ap-

pendix B). Consequently the terms ∼g〈σ z
0 〉, g〈σ z

n 〉 in Eq. (10),
which are not present in mean-field theory, cannot be dis-
counted as N → ∞. This difference leads to distinct limits in
Fig. 3(a). Note equations for higher-order moments involving
the central site will contain additional terms inconsistent with
mean-field theory. Thus, while higher-order expansions may
provide an improved approximation of the exact results, they
will generally have distinct limits. This result also illustrates
how knowledge that certain correlations vanish at large N
is not sufficient to determine if they become irrelevant as
N → ∞. Instead, the scaling with N of parameters multiply-
ing these correlations must also be taken into account.

Figure 3(d) shows further how with κ/N fixed the error
at second order is not monotonic with N and even exceeds
that of mean-field theory for N � 80. The nonmonotonicty
is inevitable given this approach captures the exact N → ∞
limit and must also be exact at N = 2, when all correlations
are fully captured. As such, the second-order expansion pro-
vides an approximation that is only asymptotically matched
to the exact result at the two limits, and care must be taken in
between.

V. HIGHER-ORDER CUMULANT EXPANSIONS

A. Central spin model

Having established a well-defined limit up to second or-
der at fixed κ/N , we now investigate higher-order cumulant
expansions for this scaling. We use the QuantumCumulants.jl
Julia framework [35] to obtain fourth- and fifth-order results
in addition to the solution to the third-order equations pre-
sented in Appendix A. Surprisingly, we see in Fig. 4(a)
that whilst the fourth-order expansion provides an improved
approximation on the entire range of N , the third-order

FIG. 4. (a) Central-site population p↑
0 in mean-field (MF) and cu-

mulant approximations up to fifth order (C2-5) at fixed κ/N = 1/16
[parameters and exact data as in Fig. 3(b)]. Results at fourth and
fifth order were derived using QuantumCumulants.jl [35]. Inset: the
fifth-order solution has numerical noise beyond N � 2, 500, but is
approaching a value distinct from the third-order limit. (b) Mean-
field and cumulant results for the scaled photon number 〈a†a〉/N in
the driven-dissipative Tavis-Cummings model using QuantumCumu-
lants.jl. Exact results following a Fock-space truncation are included
up to N = 20 (Nphot. = 20 levels were sufficient to achieve conver-
gence). Here the parameters were g

√
N = 9/10, ε = ω = κ = 1,

�T = 1/2, and �↑ = 3�T /4. The fifth-order solution became unsta-
ble for N � 100.

expansion does not. Instead it converges to a limit far sep-
arated from the true result, hence there is some N beyond
which the second-order (and mean-field) result provides a
better approximation. Similarly the fifth-order result, despite
being exact up to N = 5 and the best approximation at very
small N , fails to capture the exact N → ∞ limit.

To understand the dependence of convergence on order
parity, the previous argument for the asymptotic reduction
of the second-order equations to mean field as N → ∞ can
be extended to all even orders. First, note that before any
factorization is made the equations for moments involving
satellite sites only match mean-field theory in structure since
H [Eq. (1)] is linear in these sites. When the central site is
involved, this is no longer the case. However, the terms that
survive as N → ∞ at fixed κ/N are those that arise from
the commutator of a central operator with σ+

0 σ−
n or σ−

0 σ+
n

followed by a sum ∼N over the satellites. These terms have
the same structure for both the cumulant equations and mean-
field theory. Second, there is a key point about the coefficients
associated with the cumulant expansion of a given term. As
discussed further in Appendix C, by definition, the sum of
coefficients of the cumulant expansion of any given term
should sum to 1. However, when some terms are eliminated
because they do not respect the symmetries of the model,
this statement may or may not remain true. When moments
are factorized at even orders of expansion, the number of
nonvanishing terms under U(1) symmetry does sum to 1 [57].
As this matches the mean-field prediction for the number of
terms, the asymptotic structure of even-order equations are
compatible with mean-field theory.

On the other hand, closing the equations at odd orders
requires factorizing moments 〈σ+

0 σ−
n σ+

m σ−
k . . .〉 involving

raising and lowering operators only. These produce a set
of terms with coefficients that do not sum to 1. For exam-
ple, when constructing the third-order equations setting the
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cumulant 〈〈σ+
0 σ−

n σ+
m σ−

k 〉〉 to zero gives

〈σ+
0 σ−

n σ+
m σ−

k 〉 ≈ 2〈σ+
0 σ−

n 〉〈σ+
m σ−

k 〉, (14)

having excluded terms that vanish on account of the U(1)
symmetry. It is the factor of 2 occurring here that is incongru-
ent with mean-field theory. The number of terms produced by
these type of factorizations varies with successive odd orders
(2,−3, 34,−455 . . .), so each can be expected to converge on
its own limiting value at N → ∞, as observed in Fig. 4(a) for
third and fifth orders.

A consequence of these observations is that symmetry-
broken versions of the odd-order equations, for which no
terms of the approximation for 〈σ+

0 σ−
n σ+

m σ−
k . . .〉 vanish, can

produce the correct limit. In Appendix C we show this is
indeed the case for our model. However, we note that at finite
N the exact solution never shows symmetry breaking, and
that the symmetry-broken approximation is not necessarily a
reliable improvement.

B. Tavis-Cummings model

Finally we observe similar convergence behavior between
even and odd orders in models of light-matter interaction.
Figure 4(b) includes results for the driven-dissipative Tavis-
Cummings model up to fifth order of the cumulant expansion
[58]. The Tavis-Cummings Hamiltonian [59] is frequently
used in cavity QED to describe an ensemble of noninter-
acting emitters coupled to a common cavity mode and may
be obtained from Eq. (1) by replacing the central spin with
a bosonic operator a [15]. Note for this model g

√
N fixed

provides matching exact and mean-field N → ∞ limits for
the steady state [51].

VI. DISCUSSION

In this paper we examined the convergence of mean-field
and cumulant expansions at N → ∞ as well as their accuracy
at intermediate N . We considered the class of all-to-one mod-
els for which mean-field theory may be expected to be robust.
Yet for our central spin model we demonstrated that whether
mean-field theory captures the exact steady state as N → ∞
depends on the scaling of parameters in the model. Further,
even when mean-field theory does capture exact N → ∞

behavior, higher-order cumulant expansions may not converge
to the same result. Comparison to exact results up to N = 150
allowed us to verify the large-N behavior and show the error
of cumulant expansions is not monotonic with N .

The model considered here has been directly applied to
study defect centers in diamond [2,3,60] and quantum dot
systems [60,61], but our reasoning may be applied quite gen-
erally to central spin models including, for example, other
anisotropic or isotropic couplings [62–65] or coherent drive
[55,66,67]. We have also seen that our results are relevant
to models of collective light-matter coupling where cumulant
expansions are an increasingly popular choice for analyzing
both small and large systems [16,30–37].

While we focused on steady-state properties, future work
may use the cumulant expansions to examine the dynam-
ics of open central spin models [65,68–72] for which the
scope of mean-field theory to capture exact N → ∞ behavior
has recently been studied [23,73]. Similarly, one may look
to apply our reasoning to models with all-to-all connectiv-
ity considering studies [29,33,36,39,74] of the limitations of
mean-field approximations in this class. Our results highlight
the need to assess the validity of cumulant expansions in such
applications, and prompt further exploration of how reliable
higher-order expansions can be found.

Note added. Recently, another work studying this same
problem has appeared [73].

The research data supporting this publication can be ac-
cessed at Ref. [75].
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APPENDIX A: THIRD-ORDER CUMULANT EQUATIONS

In this Appendix we provide the third-order cumulant
equations for the central spin model with U(1) symmetry. In
the following, n, m, and k label distinct satellite sites.

∂t
〈
σ z

0

〉 = −κ
(〈
σ z

0

〉 + 1
) + 4gNIm[〈σ+

0 σ−
n 〉], (A1)

∂t
〈
σ z

n

〉 = −�T
〈
σ z

n

〉 + �
 − 4gIm[〈σ+
0 σ−

n 〉], (A2)

∂t 〈σ+
0 σ−

n 〉 =
(

i(ω − ε) − κ + �T

2

)
〈σ+

0 σ−
n 〉 + ig

2

〈
σ z

n

〉 − ig

2

〈
σ z

0

〉 − ig(N − 1)
〈
σ z

0σ+
n σ−

m

〉
, (A3)

∂t 〈σ+
n σ−

m 〉 = −�T 〈σ+
n σ−

m 〉 + 2gIm
[〈
σ+

0 σ−
n σ z

m

〉]
, (A4)

∂t
〈
σ z

0σ+
n σ−

m

〉 = −(κ + �T )
〈
σ z

0σ+
n σ−

m

〉 − κ〈σ+
n σ−

m 〉 + 2gIm[〈σ+
0 σ−

n 〉] + 8g(N − 2)Im[〈σ+
0 σ−

n 〉]〈σ+
n σ−

m 〉, (A5)

∂t
〈
σ+

0 σ−
n σ z

m

〉 =
(

i(ω − ε) − κ + 3�T

2

)〈
σ+

0 σ−
n σ z

m

〉 + �
〈σ+
0 σ−

n 〉 − ig〈σ+
n σ−

m 〉 + ig

2

〈
σ z

nσ z
m

〉 − ig

2

〈
σ z

0σ z
n

〉
− ig(N − 2)

(〈
σ z

0σ+
n σ−

m

〉〈
σ z

n

〉 + 〈
σ z

0

〉〈
σ z

nσ+
m σ−

k

〉 + 〈
σ z

0σ z
n

〉〈σ+
n σ−

m 〉 − 2
〈
σ z

0

〉〈
σ z

n

〉〈σ+
n σ−

m 〉), (A6)

∂t
〈
σ z

nσ+
m σ−

k

〉 = −2�T
〈
σ z

nσ+
m σ−

k

〉 + �
〈σ+
n σ−

m 〉 − 8gIm[〈σ+
0 σ−

n 〉]〈σ+
n σ−

m 〉
+ 2g

(
Im[〈σ+

0 σ−
n 〉]〈σ z

nσ z
m

〉 − 2Im[〈σ+
0 σ−

n 〉]〈σ z
n

〉2 + 2Im
[〈
σ+

0 σ−
n σ z

m

〉]〈
σ z

n

〉)
, (A7)
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∂t
〈
σ z

nσ z
m

〉 = −2�T
〈
σ z

nσ z
m

〉 + 2�


〈
σ z

n

〉 − 8gIm
[〈
σ+

0 σ−
n σ z

m

〉]
, (A8)

∂t
〈
σ z

0σ z
n

〉 = −(κ + �T )
〈
σ z

0σ z
n

〉 − κ
〈
σ z

n

〉 + �


〈
σ z

0

〉 + 4g(N − 1)Im
[〈
σ+

0 σ−
n σ z

m

〉]
. (A9)

In writing Eqs. (A5)–(A7) fourth-order moments were approximated by setting the fourth-order cumulants to zero:

〈〈σ+
0 σ−

n σ+
m σ−

k 〉〉 = 0, 〈〈σ z
0σ z

nσ+
m σ−

k 〉〉 = 0, 〈〈σ+
0 σ−

n σ z
mσ z

k 〉〉 = 0, (A10)

where 〈〈
σα

a σ
β
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c σ δ
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〉〉
:= 〈

σα
a σ

β

b σγ
c σ δ

d

〉 − 〈
σα

a σ
β

b

〉〈
σγ

c σ δ
d

〉 − 〈
σα

a σγ
c

〉〈
σ

β

b σ δ
d

〉 − 〈
σα

a σ δ
d

〉〈
σ

β

b σγ
c

〉
− 〈

σα
a

〉〈
σ

β

b σγ
c σ δ

d

〉 − 〈
σ

β

b

〉〈
σα

a σγ
c σ δ

d

〉 − 〈
σα

a σ
β

b σ δ
d

〉〈
σγ

c

〉 − 〈
σα

a σ
β

b σγ
c

〉〈
σ δ

d

〉
+ 2

〈
σα

a

〉〈
σ

β

b

〉〈
σγ

c σ δ
d

〉 + 2
〈
σα

a

〉〈
σ

β

b σγ
c

〉〈
σ δ

d

〉 + 2
〈
σα

a

〉〈
σ

β

b σ δ
d

〉〈
σγ

c

〉
+ 2

〈
σα

a σ
β

b

〉〈
σγ

c

〉〈
σ δ

d

〉 + 2
〈
σα

a σγ
c

〉〈
σ

β

b

〉〈
σ δ

d

〉 + 2
〈
σα

a σ δ
d

〉〈
σ

β

b

〉〈
σγ

c

〉 − 6
〈
σα

a

〉〈
σ

β

b

〉〈
σγ

c

〉〈
σ δ

d

〉
. (A11)

Note that many of these terms vanish for the model with U(1)
symmetry.

APPENDIX B: BEHAVIOR OF CORRELATIONS AS N → ∞
In this Appendix we show the behavior of pairwise corre-

lations as N → ∞ for the central spin model. These results
support the arguments for convergence made in Sec. IV B.

Figures 5(a) and 5(b) show satellite-satellite 〈σ+
n σ−

m 〉 and
central-satellite 〈σ+

0 σ−
n 〉 correlations against 1/

√
N for the

model at fixed g
√

N . We show exact results up to N =

FIG. 5. (a) Satellite-satellite and (b) central-satellite correlations
in the steady state of the model with scaling g

√
N fixed and param-

eters as in Fig. 3(a) (g
√

N = 3, κ = 1). Exact data (blue dots) up
to N = 150 and second-order (C2) results for the correlations are
included, as well as the mean-field (MF) approximations 〈σ+

n σ−
m 〉 ≈

|〈σ+
n 〉|2 and 〈σ+

0 σ−
n 〉 ≈ 〈σ+

0 〉〈σ−
n 〉. Note the use of 1/

√
N on the hori-

zontal axis: for this scaling 〈σ+
n σ−

m 〉 = o (1/
√

N ) and Im [〈σ+
0 σ−

n 〉] =
O(1/

√
N ) as N → ∞ (the real part of 〈σ+

0 σ−
n 〉 vanishes at reso-

nance). (c), (d) Same correlations when instead κ/N is fixed with
parameters as in Fig. 3(b) (κ/N = 1/16, g = 3/4). In this case both
pairs of correlations remain finite for all N .

150 as well as the prediction of second-order cumulants
and mean-field theory. Notice in particular that 〈σ+

n σ−
m 〉 de-

cays faster than 1/
√

N as N → ∞ [vanishing gradient at
1/

√
N → 0 in Fig. 5(a)]. As such, at large N , the terms

∼g〈σ z
0 〉,∼g〈σ z

n 〉 present in the second-order equation, Eq. (10)

FIG. 6. (a) Exact, mean-field (MF), and third-order (C3) results
for the steady-state central-site population p↑

0 = [1 + 〈σ z
0 〉]/2 of the

central spin model at fixed κ/N [parameters as in Fig. 3(b): κ/N =
1/16, g = 3/4]. Third-order results retaining symmetry-breaking
terms in the equations are indicated with a dotted black line. (b) At
N = 26 symmetry breaking 〈σ+

0 〉 �= 0 occurs in the steady state of
these equations corresponding to the turning point of the dotted
line in (a). (c) Central population versus �↑/�T (�T = �↑ + �↓) at
N = 50 as in Fig. 3(c) (κ/N = 1/16, g = 3/4), now including third-
order results with and without symmetry-breaking terms. The gray
vertical line indicates data from (a). (d) Exact, mean-field (MF), and
third-order (C3) results for the scaled photon number in the Tavis-
Cummings model with parameters as in Fig. 4(b) (g

√
N = 9/10,

�↑ = 3�T /4).
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(but not mean-field theory), are dominant compared to the
final term ∼g〈σ z

0 〉〈σ+
n σ−

m 〉 occurring there.
When instead considering the correlations at fixed κ/N ,

shown in Figs. 5(c) and 5(d), we see that both tend to finite
limits, allowing for the reduction of the second-order cumu-
lant equations to mean-field theory when N → ∞ as argued
in the main text.

Thus we have both a case where correlations vanish as
N → ∞ but mean-field and second-order cumulants do not
have a well-defined limit [Fig. 3(a)], and a case where they
remain finite yet the two approaches have a common limit cap-
turing the exact behavior [Fig. 3(b)]. This makes evident the
fact that knowledge of the behavior of correlations as N → ∞
is not sufficient to conclude the correctness of mean-field the-
ory or the convergence of higher-order cumulant expansions
in this limit.

APPENDIX C: THIRD-ORDER CUMULANT EQUATIONS
WITH SYMMETRY BREAKING

In this appendix we provide the results of third-order
cumulant expansions with symmetry-breaking terms for the
central spin and Tavis-Cummings models.

Retaining moments, e.g., 〈σ+
0 σ+

n 〉, in the equations of
motion that would otherwise vanish under U(1) symmetry
significantly increases the number of equations required to
form a complete set at any given order. We used the Quan-
tumCumulants.jl Julia package [35] to derive the third-order
equations in each case. Using an initial state that breaks the
symmetry, these equations were evolved to long times to ob-
tain a numerical approximation of the steady state.

Since the coefficients of terms in the definition of a cu-
mulant always sum to zero [cf. Eq. (A11)], when one sets a
cumulant to zero to obtain an approximation for a high-order
moment, the number of terms in the approximation for that
moment, accounting for their signs, is 1. That is, provided no
terms in the cumulant vanish due to symmetry considerations.
As a result, in the presence of symmetry breaking there is
no longer disparity between the asymptotic form of odd-order
cumulant equations and mean-field theory as N → ∞ due to
the factorization of moments 〈σ+

0 σ−
n σ+

m σ−
k . . .〉.

In line with the above, Fig. 6(a) shows a common N → ∞
limit for the third-order equations with symmetry breaking
(dotted line) and mean-field theory. Note, however, there is a
range of N [N � 26 in Fig. 6(a)] for which symmetry breaking
is not present in the obtained steady state [Fig. 6(b)] and the
original third-order results are followed by the dotted line.
Further, even with symmetry breaking the third-order results
cannot be relied upon to provide a better approximation than
a second-order expansion. This is clearly seen in Fig. 6(c),
which shows p↑

0 against �↑/�↓ at N = 50. We point out
the agreement of all cumulant expansions at pump strengths
well below the mean-field threshold, where p↑

0 must vanish as
N → ∞. Note also the crossing of the third-order (symmetry-
preserving) and mean-field curves which marks the transition
to the symmetry-broken steady state; this is inevitable at large
N , where the third-order result is below the mean-field predic-
tion.

Finally, in Fig. 6(d) we observe similar behavior with the
third-order equations with symmetry-breaking terms for the
Tavis-Cummings model, although in this case the mean-field
limit is approached from below.
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