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Abstract
Drawing inspiration from a remarkable chiral force found in nature, we show that a static electric
field combined with an optical lin⊥lin polarization standing wave can exert a chiral optical force
on a small chiral molecule that is several orders of magnitude stronger than other chiral optical
forces proposed to date, being based on leading electric-dipole interactions rather than relying on
weak magnetic-dipole and electric-quadrupole interactions. Our chiral optical force applies to
most small chiral molecules, including isotopically chiral molecules, and does not require a specific
energy-level structure. Potential applications range from chiral molecular matter-wave
interferometry for precision metrology and tests of fundamental physics to the resolution of
enantiomers for use in chemistry and biology.

1. Introduction

Interest is growing in the possibility of an optical force that discriminates between the enantiomers of a
small1 chiral molecule [1–4]. Such a force could be used in a wealth of potential applications, including
chiral molecular matter-wave interferometry for precision metrology and tests of fundamental physics [5–7],
the distillation of chiral molecules in chiral optical lattices as a novel form of matter [8], and the resolution of
enantiomers for use in chemistry and biology [5, 9–14]; a task of particular importance [15, 16]. The chiral
optical forces proposed to date, however, are extremely weak, as they rely on magnetic-dipole and
electric-quadrupole interactions. To the best of our knowledge, no experimental observations of chiral
optical forces have been reported for small chiral molecules, although chiral optical forces have been
demonstrated for large chiral objects, including chiral liquid crystal microspheres [17–24], chiral cantilevers
[25], and chiral gold nanoparticles [26].

In this paper, we identify a way forward. Drawing inspiration from a remarkable chiral force found in
nature for the asymmetrical hydrozoan Velella velella [16, 27], we show that a static electric field combined
with an optical lin⊥lin polarization standing wave can exert a chiral optical force on a small chiral molecule
that is several orders of magnitude stronger than other chiral optical forces proposed to date, being based on
electric-dipole interactions at leading order. Our chiral optical force has the form

F≈ kEzEyEx(AαZYµ0X + BαXZµ0Y + CαYXµ0Z)cos(2kZ0)ẑ, (1)

which changes sign if either the electric field or the molecule is inverted, EzEyEx being a chirally sensitive
product due to the electric field and αZYµ0X, αXZµ0Y, and αYXµ0Z being chirally sensitive molecular
properties. Molecular anisotropy and rotation are accounted for in our theory, with orientational effects
playing a crucial role. Our chiral optical force applies to most small chiral molecules, including isotopically
chiral molecules (i.e. achiral molecules rendered chiral by isotopic substitution), and does not involve

1 In this paper, we consider a molecule to be ‘small’ if it has a mass ofM∼ 102Da or less.
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absorption or require a specific energy-level structure. Potential applications identified elsewhere for other
chiral optical forces [1–14] should be enormously more robust and easier to realise using our chiral optical
force instead.

Throughout, we work in vacuum in an inertial frame of reference with time t and position vector
r= xx̂+ yŷ+ zẑ, where x, y, and z are laboratory-fixed Cartesian coordinates and x̂, ŷ, and ẑ are the
associated unit vectors. SI units are used, c being the speed of light, h̄ being the reduced Planck constant, ϵ0
being the electric constant, and kB being Boltzmann’s constant. The Einstein summation convention is to be
understood with respect to lower-case Roman indices a,b, · · · ∈ {x,y,z} and uppercase Roman indices
A,B, · · · ∈ {X,Y,Z}, where X, Y, and Z are molecule-fixed Cartesian coordinates. Complex quantities are
decorated with tildes.

2. Origin of our chiral optical force

This paper was inspired by a remarkable chiral force found in nature. The asymmetrical hydrozoan Velella
velella lives on the surface of the ocean and has a sail that tilts either antidiagonally or diagonally with respect
to a quasi-rectangular base, giving two distinct mirror-image forms. Specimens found on the Japanese side of
the Pacific are predominantly of the antidiagonal form whereas those found on the North American side are
predominantly of the diagonal form, as illustrated in figure 1(a). It is believed that both forms arise in
roughly equal numbers in the center of the Pacific and are then separated by the wind [16, 27].

The origin of this chiral force can be understood as follows. A Vellela velella specimen is orientated by
gravity via the normal force. With its sail blown by the wind, the specimen deflects air molecules from the
initial air channel into a final air channel with an orthogonal component. The corresponding momentum
transfer gives rise to a force with a chiral component. A subtle but crucial ingredient is that the specimen has
preferred orientations relative to the wind, due to the quasi-rectangular shape of its base. If all possible
orientations were to occur with equal probability instead, the chiral force would vanish on average. The
normal force, initial air channel, and relevant component of the final air channel form either a left-handed or
a right-handed orthogonal triad embodying the chiral sensitivity of the force, as illustrated in figure 1(b).

We construct our chiral optical force by analogy with the above. Instead of a Velella velella specimen, we
consider a chiral molecule. Instead of gravity, we consider a strong and homogeneous static electric field
E0 = E0(r, t) given by

E0 = Ezẑ, (2)

where Ez dictates the field’s strength and direction. The molecule is (partially) orientated by E0 via its
permanent electric-dipole moment. Instead of the wind, we consider an intense and far off-resonance optical
lin⊥lin polarization standing wave2 with complex electric field Ẽ= Ẽ(r, t) given by

Ẽ= (Eyŷeikz + iExx̂e−ikz)e−iωt, (3)

where Ey dictates the amplitude and phase of the y polarized wave, Ex dictates the amplitude and phase of the
x polarized wave, and ω is the angular frequency of the waves, k= ω/c being the associated angular
wavenumber. The molecule transfers photons from the y polarized wave to the x polarized wave or vice versa
[28]. The corresponding momentum transfer gives rise to our chiral optical force. To ensure that the
molecule has preferred orientations relative to the y (or x) polarized wave, we take its rotational angular
momentum to be quantized along the y (or x) axis3. If the angular momentum were quantized along the z
axis instead, our chiral optical force would vanish. The static electric field Ezẑ and the optical polarization
vectors Eyŷ and Exx̂ form either a left-handed (EzEyEx < 0) or a right-handed (EzEyEx > 0) orthogonal triad
embodying the chiral sensitivity of our force, as illustrated in figure 1(c).

3. Derivation of our chiral optical force

In this section, we derive equation (1) for our chiral optical force, considering the electromagnetic field
defined in section 2 applied to a small, polar, diamagnetic, chiral molecule in its vibronic ground state with
nuclear spins of 0 or 1/2 (see section 3.2).

We perform our derivation in two steps. First, we focus on the molecule’s vibronic degrees of freedom
and derive an expression for the cycle-averaged optical force with the molecule’s orientation frozen. This is

2 Lin⊥lin polarization standing waves are used routinely to laser cool atoms via the Sisyphus effect [28, 29]. There is little connection
with our chiral optical force.
3 In practice, this might be achieved using a static magnetic field, for example.
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Figure 1. The two distinct mirror-image forms of Velella velella are found on opposite sides of the Pacific (a), having been
separated by the wind (b). Our chiral optical force is constructed by analogy (c).

appropriate assuming the molecule rotates slowly relative to the optical frequency such that its orientation
changes little during an optical period, which will usually be the case. Second, we focus on the molecule’s
rotational degrees of freedom and average the force with respect to the molecule’s rotational state, giving our
chiral optical force. This two-step approach assumes adiabatic following and ignores rovibronic coupling,
which will usually be of little consequence in the vibronic ground state. Throughout, we take the molecule’s
center of mass position to be held fixed.

3
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3.1. Vibronic degrees of freedom
We take the instantaneous force f= f(t) exerted by the electromagnetic field on the molecule to be given by
the Lorentz force law

f=

˚
(ρE+ J×B)d3r, (4)

where ρ= ρ(r, t) is the molecule’s electric charge density, J= J(r, t) is the molecule’s electric current density,
E= E(r, t) = E0 +ℜẼ is the electric field, B= B(r, t) is the magnetic field, and the region of integration
extends over the entire molecule [30, 31].

As the molecule is electrically neutral, we have

ρ=−∇ ·P (5)

J=
∂P

∂t
+∇×M, (6)

where P= P(r, t) is the molecule’s polarization field andM=M(r, t) is the molecule’s magnetization field
[31]. Substituting equations (5) and (6) into equation (4) then making use of the triple product
(∇×M)×B= (B ·∇)M−Ma∇Ba, integration by parts, and the Faraday–Lenz law∇×E=−∂B/∂t, we
obtain

f=

˚
(Pa∇Ea +Ma∇Ba)d

3r+
d

dt

˚
P×Bd3r, (7)

which facilitates a multipolar expansion [5].
As the molecule is small, we consider only electric-dipole interactions explicitly, taking

P≈ µδ3(r−R0) (8)

M≈ 0, (9)

where µ= µ(t) is the molecule’s electric-dipole moment and R0 = X0x̂+Y0ŷ+Z0ẑ is the molecule’s center
of mass position, with X0, Y0, and Z0 being the Cartesian coordinates [32]. Substituting equations (8)
and (9) into equation (7), we obtain

f≈ µa∇R0Ea(R0)+
d

dt
[µ×B(R0)] , (10)

which is the well-established result for the Lorentz force experienced by an electric dipole [33, 34].
As the static electric field E0 is strong and the standing wave (with electric field ℜẼ) is intense, we seek an

expression for our chiral optical force valid to third order in field components. As equation (10) is already
linear in field components, it is sufficient to consider the electric-dipole moment µ to second order in field
components. Remembering that we are considering only electric-dipole interactions explicitly, we take

µ= µ0 +ℜµ̃ (11)

with

µ̃a ≈ α̃ab(0)E0b + [α̃ab(ω)+ α̃ab,c(ω)E0c]Ẽb

+
1

2
β̃abc(0;0,0)E0bE0c +

1

2
β̃abc(2ω;ω,ω)ẼbẼc +

1

2
β̃abc(0;ω,−ω)ẼbẼ∗c , (12)

where µ0 is the molecule’s permanent electric-dipole moment, µ̃= µ̃(t) is the molecule’s complex induced
electric-dipole moment, α̃ab = α̃ab(Ω) is the molecule’s complex vibronic polarizability, α̃ab,c = α̃ab,c(Ω)

4 is
a perturbative correction to α̃ab due to E0, and β̃abc = β̃abc(Ω+Ω ′;Ω,Ω ′) is the molecule’s complex vibronic
hyperpolarizability, Ω and Ω ′ being angular frequencies [35]. Equation (12) consists of a linear static
contribution, a linear optical contribution with a linear static correction, a second-order static contribution,
a second-order optical harmonic contribution, and a second-order optical rectification contribution, these
being all possible first-order and second-order contributions based on electric-dipole interactions.

4 We have simplified the notation used in [35] by writing α̃
(µ)
ab,c → α̃ab,c.

4
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Substituting equations (11) and (12) into equation (10) then taking an average over one optical period, we
find that the cycle-averaged optical force f is

f=
ω

2π

ˆ 2π/ω

0
fdt

≈ 1

2
ℜ{[α̃ab(ω)+ α̃ab,c(ω)E0c]Ẽb(R0)∇R0 Ẽ

∗
a (R0)}. (13)

Note that β̃abc does not contribute to equation (13).
The polarizabilities α̃ab and α̃ab,c can be partitioned as

α̃ab = αab( f)+ iαab(g)− i[α ′
ab( f)+ iα ′

ab(g)] (14)

α̃ab,c = αab,c( f)+ iαab,c(g)− i[α ′
ab,c( f)+ iα ′

ab,c(g)], (15)

where αab( f) = αba( f) and αab,c( f) = αba,c( f) are the time-even, dispersive contributions; αab(g) = αba(g)
and αab,c(g) = αba,c(g) are the time-even, absorptive contributions; α ′

ab( f) =−α ′
ba( f) and

α ′
ab,c( f) =−α ′

ba,c( f) are the time-odd, dispersive contributions; α ′
ab(g) =−α ′

ba(g) and α
′
ab,c(g) =−α ′

ba,c(g)
are the time-odd, dispersive contributions; f = fΩ indicates a dispersive lineshape, and g= gΩ indicates an
absorptive lineshape [35]. Substituting equations (2), (3), (14) and (15) into equation (13), we obtain

f≈ f( fω)+ f(gω)+ f
′
( fω)+ f

′
(gω) (16)

with

f( fω)≈ k[αyx( fω)+αyx,z( fω)Ez]EyEx cos(2kZ0)ẑ, (17)

f(gω)≈
1

2
k{[αyy(gω)+αyy,z(gω)Ez]E2

y − [αxx(gω)+αxx,z(gω)Ez]E2
x }ẑ, (18)

f
′
( fω)≈−k[α ′

yx( fω)+α ′
yx,z( fω)Ez]EyEx sin(2kZ0)ẑ, (19)

f
′
(gω)≈ 0, (20)

where f( fω) is the time-even, dispersive contribution; f(gω) is the time-even, absorptive contribution; f
′
( fω)

is the time-odd, dispersive contribution, and f
′
(gω) is the time-odd, absorptive contribution.

As the standing wave is far off-resonance, we neglect absorptive contributions. As the molecule is
diamagnetic and thus time-even, we neglect time-odd contributions. Equations (16)–(20) reduce
accordingly to

f≈ k[αyx( fω)+αyx,z( fω)Ez]EyEx cos(2kZ0)ẑ. (21)

Equation (21) is our final expression for the cycle-averaged optical force with the molecule’s orientation
frozen.

3.2. Rotational degrees of freedom
As the molecule’s nuclear spins are 0 or 1/2, we assume that they can be decoupled from the molecule’s
rotational degrees of freedom using a static magnetic field, for example, and neglect them. Viable isotopes in
this regard include 1H, 12C, 13C, 15N, 16O, 18O, and 19F. If the molecule had nuclear spins of 1 or higher, they
would strongly couple to the molecule’s rotational degrees of freedom via electric-quadrupolar interactions
[36–38], necessitating explicit consideration.

We take the molecule’s rotational state |ψ⟩= |ψ(t)⟩ to be governed by the Schrödinger equation

ih̄
d|ψ⟩
dt

= (H(0) +V)|ψ⟩,

where H(0) is the molecule’s unperturbed rotational Hamiltonian and V is the molecule’s rotational
interaction Hamiltonian [39]. H(0) describes the molecule’s rotational degrees of freedom in the absence of
the electromagnetic field and V accounts for the orientational dependence of the molecule’s interaction with
the electromagnetic field. We assume that H(0) ≫ |V| and treat the interaction perturbatively.

5
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According to basic perturbation theory, the molecule’s rotational energy eigenstates |r⟩ and associated
energy eigenvalues Er are given by

|r⟩= |r⟩(0) +
∑
q̸=r

(0)⟨q|V|r⟩(0)

E(0)r − E(0)q

|q⟩(0) + . . . (22)

Er = E(0)r + (0)⟨r|V|r⟩(0) + . . . , (23)

where the |r⟩(0) are the molecule’s unperturbed rotational energy eigenstates, the E(0)r are the associated
energy eigenvalues, and we assume that the rotational interaction Hamiltonian V is diagonal in degenerate
blocks, with no accidental near degeneracies of importance [39]. The molecule’s rotational state |ψ⟩ can be
expanded in terms of the |r⟩ and the Er as

|ψ ⟩=
∑
r

ãr|ψr⟩ (24)

with

|ψr⟩= exp(−iErt/h̄)|r⟩, (25)

where the |ψr⟩= |ψr(t)⟩ are the molecule’s stationary rotational states and the ãr are the associated
probability amplitudes [39].

Taking the expectation value of equation (21) with respect to equations (24) and (25) using
equations (22) and (23), we find that the cycle-averaged, rotationally averaged optical force ⟨f⟩= ⟨f⟩ψ is

⟨f⟩= ⟨ψ|f|ψ⟩
≈ k⟨αyx( fω)+αyx,z( fω)Ez⟩EyEx cos(2kZ0)ẑ (26)

with

⟨αyx( fω)+αyx,z( fω)Ez⟩ ≈
∑
r

∑
s

ã∗r ãse
i(E(0)r −E(0)s +(0)⟨r|V|r⟩(0)−(0)⟨s|V|s⟩(0)+...)t/h̄

×

[
(0)⟨r|αyx( fω)+αyx,z( fω)Ez|s⟩

(0)

+
∑
q̸=r

(0)⟨r|V|q⟩(0)(0)⟨q|αyx( fω)|s⟩(0)

E(0)r − E(0)q

+
∑
q̸=s

(0)⟨r|αyx( fω)|q⟩(0)(0)⟨q|V|s⟩(0)

E(0)s − E(0)q

+ . . .

]
. (27)

The first contribution inside the square brackets in equation (27) describes the force that would be obtained
if the molecule rotated freely and the remaining contributions describe perturbative corrections due to the
orientational dependence of the molecule’s interaction with the electromagnetic field. To evaluate
equations (26) and (27), we need an explicit model of the molecule’s rotational degrees of freedom.

As the molecule is small, chiral, and in its vibronic ground state, we treat it simply as an asymmetric rigid
rotor quantized along the y axis5, the laboratory-fixed components µ0a, αab( fω), and αab,c( fω) being related
to the corresponding molecule-fixed components µ0A, αAB( fω), and αAB,C( fω) via

µ0a = ℓaAµ0A, (28)

αab( fω) = ℓaAℓbBαAB( fω), (29)

αab,c( fω) = ℓaAℓbBℓcCαAB,C( fω), (30)

where the ℓaA are direction cosines, as described in appendix A.

5 Quantization along the x axis instead sees our chiral optical force change sign. Quantization along the z axis sees our chiral optical force
vanish.

6
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Figure 2. For a given configuration of the electric field, our chiral optical force has opposite signs for opposite enantiomers in the
same rotational state; compare (a) with (b) and (c) with (d). For a given enantiomer in a given rotational state, our chiral optical
force has opposite signs depending on whether the electric field is in left-handed or a right-handed configuration; compare
(a) with (c) and (b) with (d).

Recall that we we seek an expression for our chiral optical force valid to third order in field components.
As equation (26) is already second order in field components at leading order, it is sufficient to consider the
rotational interaction Hamiltonian V to first order in field components. Remembering once more that we
are considering only electric-dipole interactions explicitly, we take

V≈−µ0 ·E0, (31)

which is the potential energy of the molecule’s permanent electric-dipole moment µ0 in the static electric
field E0. This form of V is trivially degenerate in diagonal blocks, as the linear Stark effect vanishes for an
asymmetric rigid rotor. We have tacitly assumed here that | −µ0 ·E0| ≫ |−αab( f0)E0aE0b/2−αab( fω)
ẼaẼ∗b/4|, where−αab( f0)E0aE0b/2−αab( fω)ẼaẼ

∗
b/4 accounts for the orientational dependence of the

molecule’s polarisable Stark interactions with the electric field to leading order.
Let us suppose now that the molecule’s rotational state has the stationary6 form

|ψ⟩= |ψJτ ,m⟩, (32)

6 When the Stark interaction terms −αab( f0)E0aE0b/2−αab( fω)ẼaẼ
∗
b /4 are included in the rotational interaction Hamiltonian V, we

find that rotational states quantized along the y (or x) axis are not necessarily stationary. This limits the validity of our treatment to suitably
short interaction times.

7
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where J andm are rotational quantum numbers and τ is an energy label, as described in appendix A.
Substituting equations (28)–(32) into equations (26) and (27) with equation (27) considered to first order in
V then making use of basic symmetry arguments to disregard vanishing contributions, we obtain

⟨f⟩ ≈ kEzEyEx[aαZY,X( fω)+ bαXZ,Y( fω)+ cαYX,Z( fω)

+ AαZY( fω)µ0X + BαXZ( fω)µ0Y + CαYX( fω)µ0Z]cos(2kZ0)ẑ, (33)

where a, b, c, A, B, and C are coefficients that depend on the molecule’s rotational state, as described in
appendix B. The a, b, and c contributions are due to perturbation of the molecule’s vibronic degrees of
freedom by the static electric field E0 whereas the A, B, and C contributions are due to perturbation of the
molecule’s rotational degrees of freedom. Note that ⟨αyx( fω)⟩ does not contribute to equation (33) at our
current level of description. The molecular properties αZY( fω)µ0X, αXZ( fω)µ0Y, αYX( fω)µ0Z, αZY,X( fω),
αXZ,Y( fω), and αYX,Z( fω) are chirally sensitive, having opposite signs for opposite enantiomers.

As the vibronic excitations of a molecule are usually much more energetic than the rotational excitations,
we assume that the a, b, and c contributions are much smaller than the A, B, and C contributions and neglect
them. Equation (33) reduces accordingly to

F≈ kEzEyEx(AαZYµ0X + BαXZµ0Y + CαYXµ0Z)cos(2kZ0)ẑ,

where we have simplified our notation by writing ⟨f⟩ → F= FJτ ,m and αAB( fω)→ αAB. This is our chiral
optical force, as seen in equation (1).

Our chiral optical force depends on the chirality of the electric field E through the product EzEyEx and on
the chirality of the molecule through the molecular properties αZYµ0X, αXZµ0Y, and αYXµ0Z, as illustrated in
figure 2. To distinguish it from other forces proposed to date, our chiral optical force might be referred to as a
‘chiral optical force from EzEyEx’ or ‘COFFEEE’.

4. Numerical results

In this section, we present numerical results for our chiral optical force. We focus on a right-handed electric
field configuration (EzEyEx > 0) and single enantiomers, remembering that our chiral optical force changes
sign if either the electric field or the molecule is inverted.

For the static electric field, we consider a field strength of Ez = 10.0Vmm−1, readily achievable using a
high voltage source. For the standing wave, we consider field strengths of Ey = Ex = 3.16kVmm−1 (intensity
I= ϵ0cEyEx = 2.65× 106W cm−2) and a near-infrared wavelength of 2π/k= 1.064µm, readily achievable
using a Nd:YAG laser. Much stronger fields are possible, giving rise to even stronger chiral optical forces than
those described below. To calculate these forces reliably, however, a non-perturbative treatment of our chiral
optical force is required, which is beyond the scope of this paper.

For the molecule, we calculate the rotational constants A, B, and C and the chirally sensitive properties
αZYµ0X, αXZµ0Y, and αYXµ0Z using Gaussian 09, optimizing the molecule’s geometry at the DFT
B3LYP/6-311++G(d,p) level of theory then employing the DFT B3LYP method with the AUG-cc-pVDZ
basis set. Using these values of A, B, and C, we calculate the molecule’s unperturbed rotational spectrum as
described in appendix A. Using this spectrum, we calculate the coefficients A, B, and C as described in
appendix B.

Equation (1) for our chiral optical force can be recast as

F≈−∇∇∇R0U

with

U=−1

2
∆U sin(2kZ0)

∆U= EzEyEx(AαZYµ0X + BαXZµ0Y + CαYXµ0Z),

where U= UJτ ,m(R0) is an effective potential energy surface with depth and sign dictated by∆U=∆UJτ ,m.
The ‘temperature’∆U/kB serves as a convenient measure of the strength and sign of our chiral optical force.

The reader will note below that the unweighted average of our chiral optical force over rotational states
vanishes, in accord with the principle of spectroscopic stability [40]. This does not render our chiral optical
force trivial, however, as no individual molecule experiences this average force and there are different
numbers of rotational states with Fz < 0 and Fz > 0, giving an (enantioselective) bias in terms of the number

8
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Figure 3. A scatter plot depicting the strength and sign of our chiral optical force for the rotational states of (1S,4S)-
norbornenone in the J ∈ {0, . . . ,10}manifolds. Each circle corresponds to a rotational state withm= 0 and each cross
corresponds to a pair of rotational states withm=±|m| ̸= 0.

of molecules that would be pushed in the∓z directions for e.g. a thermal distribution of rotational states7. To
enhance the enantioselectivity, one could selectively populate rotational state(s) with either Fz < 0 or Fz > 0
for a given enantiomer (and thus either Fz > 0 or Fz < 0 for the opposite enantiomer).

4.1. Norbornenone
Let us first consider (1S,4S)-norbornenone with isotopic constitution 12C7

1H8
16O. We take the rotational

constants to be A/2πh̄= 3.65GHz, B/2πh̄= 2.21GHz, and C/2πh̄= 1.99GHz and the chirally sensitive
molecular properties to be αZYµ0X = 2.76× 10−70C3m3 J−1, αXZµ0Y = 8.72× 10−71C3m3 J−1, and
αYXµ0Z =−4.85× 10−71C3m3 J−1.

Figure 3 is a scatter plot depicting the strength and sign of our chiral optical force for rotational states in
the J ∈ {0, . . . ,10}manifolds, expressed in terms of the ‘temperature’∆U/kB. The strongest force is found
for the |ψ10,0⟩ rotational state, giving

∆U

kB
=−4.16µK (k∆U=−3.39× 10−22N).

7 Consideration of rotational states in the J ∈ {0, . . . ,10} manifolds should be sufficient for experiments using supersonic expansion
beams with rotational temperatures around 1K.
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Figure 4. A scatter plot depicting the strength and sign of our chiral optical force for the rotational states of an isotopically chiral
form of difluorocyclohexane in the J ∈ {0, . . . ,10}manifolds. Each circle corresponds to a rotational state withm= 0 and each
cross corresponds to a pair of rotational states withm=±|m| ̸= 0.

There are 908 rotational states with Fz < 0 and only 862 rotational states with Fz > 0, giving an overall
preference for Fz < 0. We emphasise here than for a given configuration of the electric field, our chiral optical
force has opposite signs for opposite enantiomers in the same rotational state.

4.2. Isotopically chiral difluorocyclohexane
Let us now consider the isotopically chiral form of difluorocyclohexane constructed by taking the achiral
molecule (1R,2S)-1,2-difluorocyclohexane with isotopic constitution 12C6

1H10
19F2 and substituting 13C at

positions 1, 5, and 6. We take the rotational constants to be A/2πh̄= 2.76GHz, B/2πh̄= 1.88GHz, and
C/2πh̄= 1.39GHz and the chirally sensitive molecular properties to be αZYµ0X = 3.75× 10−70C3m3 J−1,
αXZµ0Y = 1.53× 10−71C3m3 J−1, and αYXµ0Z = 2.87× 10−71C3m3 J−1.

Figure 4 is a scatter plot depicting the strength and sign of our chiral optical force for rotational states in
the J ∈ {0, . . . ,10}manifolds. The strongest force is again found for the |ψ10,0⟩ rotational state, giving

∆U

kB
=−2.64µK (k∆U=−2.15× 10−22N).

There are 951 rotational states with Fz < 0 and only 819 rotational states with Fz > 0, giving an overall
preference for Fz < 0.
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4.3. Comparison with other chiral optical forces
It is instructive to compare the results above for our chiral optical force with the corresponding results for
other chiral optical forces proposed to date.

In [5], for example, we showed that an optical helicity lattice can exert a chiral optical force on a small
chiral molecule of the form

F≈ 1

c
2k sinϑE∥E⊥ cos2ϑG ′ cos(2k sinϑZ0)ẑ, (34)

where 2ϑ is the angular separation of the waves comprising the lattice, E∥ dictates the amplitude and phase of
the parallel polarized wave, E⊥ dictates the amplitude and phase of the perpendicularly polarized wave, and
G′ is the imaginary part of the molecule’s vibronic optical activity polarizability pseudoscalar [35]. To
compare the strength of our chiral optical force with the strength of this helicity-based force, we consider a
dimensionless ratioR=RJτ ,m given by

R=

∣∣∣∣kEzEyEx(AαZYµ0X + BαXZµ0Y + CαYXµ0Z)

2k sinϑE∥E⊥ cos2ϑG′/c

∣∣∣∣ ,
where the numerator follows from equation (1) and the denominator follows from equation (34).

For the helicity lattice, we consider an angular separation of 2ϑ= 60.0◦ and field strengths of
E∥ = E⊥ = 3.16kV mm−1, matching the field strengths Ey = Ex = 3.16kV mm−1 of the standing wave to
give a fair comparison.

For (1S,4S)-norbornenone, we estimate the optical activity polarizability to be
G ′ = 3× 10−36mkg−1 s3A2 from vapour-phase measurements [41] together with an appropriate frequency
scaling [6]. Norbornenone is exceptionally well suited to the helicity-based force, as G′ is around two orders
of magnitude larger than for comparably sized organic molecules [41]. Even so, we find that our chiral
optical force can be several orders of magnitude larger than the helicity-based force. For the |ψ10,0⟩ rotational
state, we obtain a ratio of

R∼ 103.

For other molecules with more typical values of G′, ratios of

R∼ 105

or higher are possible. That is to say, a disparity in strength of five orders of magnitude or more. Even higher
ratios can be found at lower frequencies, asR∝ 1/ω far off resonance.

Isotopically chiral molecules are poorly suited to the helicity-based force, as the optical activity
pseudoscalar G

′
is usually very small, its electronic contributions formally vanishing in the

Born–Oppenheimer approximation [42]. Isotopically chiral molecules are nevertheless amenable to our
chiral optical force, as shown above for an isotopically chiral form of difluorocyclohexane.

Such comparisons demonstrate that potential applications identified elsewhere for other chiral optical
forces [1–14] should be enormously more robust and easier to implement using our chiral optical force
instead, as claimed in section 1.

4.4. Relation to other chiroptical phenomena
Most chiroptical phenomena rely on weak magnetic-dipole and electric-quadrupole interactions [15, 35].
We emphasise here that our chiral optical force can be orders of magnitude stronger than other chiral optical
forces proposed to date because it is based instead on electric-dipole interactions at leading order.

Other chiroptical phenomena based on electric-dipole interactions at leading order include second-order
nonlinear sum- and difference-frequency generation [43, 44] and extensions thereof using a static electric
field [45, 46], photoelectron circular dichroism [47, 48], second-harmonic generation circular dichroism
from chiral surfaces [49, 50], Rayleigh and Raman optical activity from chiral surfaces [51],
Coulomb-explosion imaging [52–54], chiral microwave three-wave mixing [55–57], photoexcitation circular
dichroism and photoexcitation-induced electron circular dichroism [58], chiral high harmonic generation in
the electric-dipole approximation [59, 60], ultrafast optical rotation [61], and anomalous circularly
polarized light emission [62]. Our chiral optical force has elements in common with many of these, in
particular its crucial dependence on orientational effects and its nonlinear character. For an incisive
perspective on the current ‘electric-dipole revolution in chiral measurements’, see [63].
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5. Summary and outlook

Taking our lead from nature, we have identified a chiral optical force for small chiral molecules that can be
several orders of magnitude stronger than other chiral optical forces proposed to date. Our chiral optical
force should render potential applications enormously more robust and easier to implement than previously
thought possible.

There is much still to be done. For a more accurate description of our chiral optical force, the molecule’s
nuclear spins should be considered explicitly. A perturbative treatment of our chiral optical force like the one
presented in this paper should be sufficient for chiral molecular matter-wave interferometry [5–7] and the
distillation of chiral molecules in chiral optical lattices [8], for example. It remains for us to develop a
non-perturbative treatment for more demanding potential applications, including the resolution of
enantiomers [5, 9–14].

We note here that many different electromagnetic fields can give rise to chiral optical forces based on
electric-dipole interactions at leading order. A key ingredient is the use of three mutually orthogonal electric
field components, which can be arranged in either a left-handed or a right-handed configuration. These
chiral optical forces might be referred to as different ‘blends’ of COFFEEE, the chiral optical force identified
in this paper being the ‘static/lin⊥lin blend’. Synthetic chiral light [59] and chiral topological light [64] might
offer additional possibilities for chiral optical forces based on electric-dipole interactions.

We will return to these and related ideas elsewhere.
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Appendix A. Asymmetric rigid rotor

The quantum-mechanical description of the asymmetric rigid rotor has been covered extensively elsewhere
[38, 42, 65, 66]. We use the conventions below, which are slightly unusual as we consider quantization along
the y axis rather than the z axis.

We take the molecule-fixed coordinates X, Y, and Z to be arranged in a IIIr configuration with direction
cosines ℓaA given by

ℓxX = cosθ cosϕcosχ− sinϕ sinχ,

ℓxY =−cosθ cosϕ sinχ− sinϕcosχ,

ℓxZ = sinθ cosϕ,

ℓyX =− sinθ cosχ,

ℓyY = sinθ sinχ,

ℓyZ = cosθ,

ℓzX =−cosθ sinϕcosχ− cosϕ sinχ,

ℓzY = cosθ sinϕ sinχ− cosϕcosχ,

ℓzZ =− sinθ sinϕ,

12
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where 0⩽ θ ⩽ π, 0⩽ ϕ < 2π, and 0⩽ χ < 2π are Euler angles relating X, Y, and Z to the laboratory-fixed
coordinates x, y, and z. The unperturbed rotational Hamiltonian is thus

H(0) =
1

h̄2
(AJ2X +BJ2Y +CJ2Z)

with

JX =−ih̄

(
sinχ

∂

∂θ
− cscθ cosχ

∂

∂ϕ
+ cotθ cosχ

∂

∂χ

)
,

JY =−ih̄

(
cosχ

∂

∂θ
+ cscθ sinχ

∂

∂ϕ
− cotθ sinχ

∂

∂χ

)
,

JZ =−ih̄
∂

∂χ
,

where A> B> C are the molecule’s equilibrium rotational constants and J is the molecule’s rotational
angular momentum.

We take the unperturbed rotational energy eigenstates |Jτ ,m⟩(0) and associated energy eigenvalues E(0)Jτ ,m

to satisfy

H(0)|Jτ ,m⟩(0) = E(0)Jτ ,m|Jτ ,m⟩(0),

(J2X + J2Y + J2Z)|Jτ ,m⟩(0) = h̄2J(J+ 1)|Jτ ,m⟩(0),

Jy|Jτ ,m⟩(0) = h̄m|Jτ ,m⟩(0)

with

Jx =−ih̄

(
− sinϕ

∂

∂θ
− cotθ cosϕ

∂

∂ϕ
+ cscθ cosϕ

∂

∂χ

)
,

Jy =−ih̄
∂

∂ϕ
,

Jz =−ih̄

(
−cosϕ

∂

∂θ
+ cotθ sinϕ

∂

∂ϕ
− cscθ sinϕ

∂

∂χ

)
,

where J ∈ {0,1, . . .} is the rotational angular momentum quantum number, τ ∈ {−J, . . . , J} is a label that
increases with increasing energy, andm ∈ {−J, . . . , J} is the laboratory-fixed rotational angular momentum
projection quantum number.

To help us identify the unperturbed rotational energy eigenstates |Jτ ,m⟩(0) and associated energy

eigenvalues E(0)Jτ ,m explicitly, we work in a basis of unperturbed symmetric rigid rotor states |J,κ,m⟩(0)
satisfying

(J2X + J2Y + J2Z)|J,κ,m⟩(0) = h̄2J(J+ 1)|J,κ,m⟩(0),

JZ|J,κ,m⟩(0) = h̄κ|J,κ,m⟩(0),

Jy|J,κ,m⟩(0) = h̄m|J,κ,m⟩(0),

where κ ∈ {−J, . . . , J} is the molecule-fixed rotational angular momentum projection quantum number, the
corresponding wavefunctions ⟨θ,ϕ,χ|J,κ,m⟩(0) being given by

⟨θ,ϕ,χ|J,κ,m⟩(0) =
√

(J+m)!(J−m)!(J+κ)!(J−κ)!(2J+ 1)

8π2

×
min(J−m,J+κ)∑
σ=max(0,κ−m)

(−1)σ
(cos 1

2θ)
2J+κ−m−2σ(− sin 1

2θ)
m−κ+2σ

σ!(J−m−σ)!(m−κ+σ)!(J+κ−σ)!
eimϕeiκχ.

The |J,κ,m⟩(0) render the unperturbed rotational Hamiltonian H(0) block diagonal in J, as

13
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(0)⟨J,κ,m|H(0)|J′,κ′,m′⟩(0) = δJJ′δmm′

(
1

2
(A+B)J(J+ 1)δκκ′ +

[
C− 1

2
(A+B)

]
k2δκκ′ +

1

4
(A−B)

×
{√

[J(J+ 1)− (κ+ 1)κ][J(J+ 1)− (κ+ 2)(κ+ 1)]δκκ′−2

+
√
[J(J+ 1)− (κ− 1)κ][J(J+ 1)− (κ− 2)(κ− 1)]δκκ′+2

})
.

The diagonalization of H(0) can completed analytically for J ∈ {0, . . . ,5}, giving

|00,0⟩(0) = |0,0,0⟩(0),

|1−1,m⟩(0) = 1√
2
(|1,1,m⟩(0) − |1,−1,m⟩(0)),

|10,m⟩(0) = 1√
2
(|1,1,m⟩(0) + |1,−1,m⟩(0)),

|11,m⟩(0) = |1,0,m⟩(0)

with

E(0)00,m = 0,

E(0)1−1,m = B+C,

E(0)10,m = A+C,

E(0)11,m = A+B,

for example. The diagonalization of H(0) must be completed numerically for J ∈ {6, . . .}.

Appendix B. Coefficients

The coefficients a= aJτ ,m, b= bJτ ,m, c= cJτ ,m, A= AJτ ,m, B= BJτ ,m, and C= CJτ ,m are given by

a= (0)⟨Jτ ,m|
(
ℓyZℓxYℓzX + ℓyYℓxZℓzX

)
|Jτ ,m⟩(0), (35)

b= (0)⟨Jτ ,m|
(
ℓyXℓxZℓzY + ℓyZℓxXℓzY

)
|Jτ ,m⟩(0), (36)

c= (0)⟨Jτ ,m|
(
ℓyYℓxXℓzZ + ℓyXℓxYℓzZ

)
|Jτ ,m⟩(0), (37)

A=
∞∑

J ′=0

J ′∑
τ ′=−J ′

J ′∑
m ′=−J ′

2

E(0)J ′
τ ′ ,m

′ − E(0)Jτ ,m

×ℜ
[
(0)⟨Jτ ,m|(ℓyZℓxY + ℓyYℓxZ)|J ′τ ′ ,m ′⟩(0)(0)⟨J ′τ ′ ,m ′|ℓzX|Jτ ,m⟩(0)

]
, (38)

B=
∞∑

J ′=0

J ′∑
τ ′=−J ′

J ′∑
m ′=−J ′

2

E(0)J ′
τ ′ ,m

′ − E(0)Jτ ,m

×ℜ
[
(0)⟨Jτ ,m|(ℓyXℓxZ + ℓyZℓxX)|J ′τ ′ ,m ′⟩(0)(0)⟨J ′τ ′ ,m ′|ℓzY|Jτ ,m⟩(0)

]
, (39)

C=
∞∑

J ′=0

J ′∑
τ ′=−J ′

J ′∑
m ′=−J ′

2

E(0)J ′
τ ′ ,m

′ − E(0)Jτ ,m

×ℜ
[
(0)⟨Jτ ,m|(ℓyYℓxX + ℓyXℓxY)|J ′τ ′ ,m ′⟩(0)(0)⟨J ′τ ′ ,m ′|ℓzZ|Jτ ,m⟩(0)

]
, (40)

where terms with |J ′τ ′ ,m ′⟩(0) = |Jτ ,m⟩(0) are to be excluded from the summations. Equations (35)–(37) can
be evaluated in closed form for rotational states in the J ∈ {0,1,2,3,4}manifolds, as the unperturbed

rotational energy eigenstates |J ′τ ′ ,m ′⟩(0) and associated energy eigenvalues E(0)J ′
τ ′ ,m

′ of importance can be

found analytically. For J= 0, we obtain a= b= c= A= B= C= 0, which is unsurprising given that
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Table 1. The coefficients a, b, c, A, B, and C for rotational states in the J= 1 manifold.

|ψ1−1,m⟩ |ψ10,m⟩ |ψ11,m⟩

a 0 (3|m|−2)
10

(2−3|m|)
10

b
(2−3|m|)

10 0 (3|m|−2)
10

c
(3|m|−2)

10
(2−3|m|)

10 0

A
(2−3|m|)(B−C)

5[3(B−C)2−8A(B+C)]
(3|m|−2)

20

[
3

(B−C) +
1

(B+3C)

]
(2−3|m|)

20

[
3

(C−B) +
1

(C+3B)

]
B

(2−3|m|)
20

[
3

(A−C) +
1

(A+3C)

]
(2−3|m|)(C−A)

5[3(C−A)2−8B(A+C)]
(3|m|−2)

20

[
3

(C−A) +
1

(C+3A)

]
C

(3|m|−2)
20

[
3

(A−B) +
1

(A+3B)

]
(2−3|m|)

20

[
3

(B−A) +
1

(B+3A)

]
(2−3|m|)(A−B)

5[3(A−B)2−8C(A+B)]

|00,0⟩(0) has isotropic character whereas our chiral optical force depends crucially on orientational effects.
For J= 1, we obtain the results presented in table 1, where it can be seen that a, b, c, A, B, and C depend on
the magnitude but not the sign ofm and that they satisfy relationships like

J∑
m=−J

AJτ ,m = 0,

in accord with the principle of spectroscopic stability [40]. Equations (35)–(37) cannot be evaluated in

closed form for rotational states in the J ∈ {5, . . .}manifolds, as some or all of the |J ′τ ′ ,m ′⟩(0) and E(0)J ′
τ ′ ,m

′

of importance need to be found numerically.
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