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Abstract— Chemical Species Tomography (CST) using 

Tunable Diode Laser Absorption Spectroscopy (TDLAS) is an 

in-situ technique to reconstruct the two-dimensional 

temperature distributions in combustion diagnosis. However, 

limited by the lack of projection data, traditionally 

computational tomographic algorithms are inherently rank-

deficient, causing artefacts and severe uncertainty in the 

retrieved images. Recently, data-driven approaches, such as 

deep learning algorithms, have been validated to be more 

accurate and stable for CST. However, most attempts modelled 

the phantoms using two-dimensional Gaussian profiles to 

construct the training set, enabling reconstruction of only simple 

and static temperature fields and can seldom retrieve the 

dynamic and instantaneous temperature imaging. To address 

this problem, we use Fire Dynamics Simulator (FDS) to simulate 

the dynamic and fire-driven reacting flows for training set 

construction. Based on this training set, a Convolutional Neural 

Network (CNN) is designed. This newly introduced method is 

validated by numerical simulation, indicating good accuracy 

and sensitivity in monitoring dynamic flames.  

Keywords—Dynamic, temperature imaging, Convolutional 

Neural Network (CNN), Tunable Diode Laser Absorption 

Spectroscopy (TDLAS), Chemical Species Tomography 

I. INTRODUCTION 

By solving the inversion of the line-of-sight and sparsely-
resolved Tunable Diode Laser Absorption Spectroscopy 
(TDLAS) measurements, Chemical Species Tomography 
(CST) has been developed as a powerful tool to quantitatively 
image the two-dimensional (2D) cross-sessional distributions 
of gas parameters, such as temperature [1], gas species 
concentrations [2], pressure [3] and velocity [4]. Concerning 
the influence of each parameter, effective inspection on the 
temperature is of significance as it strongly relates to the 
combustion process and directly determines gas composition 
within the combustion field [5]. A growing number of 
publications focus on exploring temperature imaging with 
high accuracy and reliability.  

However, limited by the insufficient number of line-of-
sight measurements, tomographic data inversion is inherently 
ill-posed and rank-deficient [6], which causes less accuracy 

and increased instability in the reconstructed images. 
Although various computational tomographic algorithms 
impose determined a priori for regularization [7-9], it is still 
challenging to eliminate the effects of artefacts. Instead of 
highly depending on the mathematical formulation, the deep 
learning technique provides an alternative approach to solve 
these ill-posed inverse problems [10].  

Convolutional Neural Networks (CNNs) [11] have been 
applied to CST for reactive field prediction [12-15]. Although 
these innovative algorithms have been confirmed by both 
numerical simulation and lab-scale experiments, most of them 
are only available to reconstruct static and simple temperature 
distributions, as the training set is simulated by only 
considering simplified 2D profiles, e.g. Gaussian 
distributions. For a supervised deep learning method, the 
training set is the key factor to determine the performance of 
the model. These simple training samples are inadequate to 
represent the real scenarios in industrial applications.  

Instead of reconstructing static temperature imaging where 
most studies are currently focusing on [14, 16, 17], the 
innovation of this proposed paper is the low-error 
reconstruction of dynamic flames.  We integrate a 
computational fluid dynamics model into the generation of 
reacting flow fields. Being capable of describing flames in 
complex geometries and incorporating a wide variety of 
physical phenomena [18] in the training set, the proposed 
neural network is trained to extract the characteristics of 
dynamic and instantaneous temperature distributions. In 
addition, to get densely spatial samples, a tomographic sensor 
system with 128 laser beams from 4 equiangular views is 
constructed to build the forward absorption model.  

II. METHODOLOGY

A. Mathematical formulation of CST

The formulation of CST is described in this section to 
enhance the understanding of the principles of image 
reconstruction. 

When a laser beam at frequency  [cm-1] penetrates a 
sensing region filled with absorbing gas species with a path 
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length L [cm], the intensity of the incident laser signal will be 
partially absorbed. Followed by Beer-Lambert relationship 
[19], the wavelength-dependent absorbance can be expressed 
as 

 () = ln
I0()

It()
 = ∫ P(l)X(l)S(T(l))ϕ(,l)dl

L

0
,                  (1) 

where I0() and It() are the incident and transmitted laser 
intensities, respectively. P(l) [atm] is the local pressure and 
X(l) denotes the molar fraction of targeted (absorbing) gas 
species. S(∙) [cm-2atm-1] is the temperature-dependent line 

strength. T(l) [K] is the local temperature. (∙) [cm] is the 
lineshape function. 

Because the lineshape function (∙) is normalized thus it 

can be integrated as ∫ ϕ(,l)d
+∞

- ∞
=1 . The path-integral 

absorption A of this transition, which is also defined as the 
area underneath this lineshape function, can be described as 

Aν= ∫ ανd = ∫ [P(l)∙S(T)∙X(l)]dl
L

0
= ∫ αν(l)dl

L

0

+∞

-∞
,                 (2) 

where αν is the local absorbance density of the path integral. 

For CST, the sensing region is discretized into J pixels, as 
shown in Fig. 1. In each pixel, temperature T, gas 
concentration X, as well as pressure P are assumed to be 
constant. Therefore, Equation (2) can be simplified as  

A = Lα,                                                                               (3) 

where A is the vector of path-integral absorption obtained 

from TDLAS measurements and its element A,i represents the 

path-integral absorption of the i-th laser beam. L  ℝI×J is the 
sensitivity matrix where its component Li, j denotes the length 

of laser path segment of i-th laser beam within j-th pixel. i  

{1, 2,…, I} and j  {1, 2,…, J} are the indices of the laser 

beams and pixels, respectively. α  ℝJ×1 is the vector of 

absorption density with its element α,j = Pj Xj S(Tj) for j-th 
pixel. 

     

Fig. 1. The simplified numerical representation of the octagonal sensing 

region 

 

Fig. 2. One unit extracted from the pixelized sensing region 

B. Priori information 

Instead of training the proposed neural network that only 
relies on the dataset, some a priori information for the 
reconstruction of dynamic temperature is helpful to regularize 
and accelerate the process of model training.  

In this work, two pieces of prior knowledge are imposed 
into the model to promote the learning ability of the CNN. 
First, the temperature is smoothly distributed. Regarding each 
local 9-pixel square in the sensing region as one unit, as shown 
in Fig. 2, the temperature in the central pixel Tx,y obeys 

Tx,y − 
1

4
 (Tx−1,y + Tx+1,y + Tx,y−1 + Tx,y+1) ,                       (4)  

where  is the threshold. 

Second, as the optical paths of the lasers from the same 
angular view are similar, the theoretical measurements of 
adjacent laser beams will represent strong smoothness and 
correlation. As CNN is trained on the basis of receptive field 
filtered by a kernel, reshaping the correlated laser 
measurements to align with the size of the kernel facilitates 
the extraction of smoothness features from absorption 
spectroscopic imaging.  

C. Model Architecture 

As shown in Fig. 3, the proposed CNN-aid model consists 
of two main parts: convolutional layers and fully-connected 
layers. By integrating the model with a priori information 
from smoothness, which has been mentioned before, the 

measurements A1
  ℝI×1 and A2

  ℝI×1 from two absorption 

transitions are reshaped to generate the input feature maps C1
 

 ℝH×W and C2
  ℝH×W, respectively. Then, the stacked {C1

, 

C2
} is constructed to find the mapping relationship to the 

unknown temperature vector T  ℝJ×1
. This model contains 

two convolutional layers Conv1 and Conv2, four fully-
connected layers FC1, FC2, FC3 and FC4. The involved 
mathematical operations will be detailed as follows: 

1) Convolutional layers 
       The convolutional layers can be mathematically 
expressed as  

O = (W*I + b),                                                                      (5)  

where I  ℝHI×WI×CI is the input or intermediate feature maps, 

O  ℝHO×WO×CO the output feature map, W  ℝHW×WW×CW the 

kernel matrix, b  ℝCb×1 the bias vector. * is the operand for 

2D convolution, (∙) the activation function. Furthermore, HI 
(HO), WI (WO) and CI (CO) are the height, width and the 
number of channels of I (O). HW, WW and CW are the filter 
height, filter width and the number of filters, respectively. Cb 
is the number of elements in b. The convolutional operation 
aims to extract the local connectivity of input feature maps so 
that the extracted characteristics can be further trained in the 
following fully-connected layers. 

2) Fully-connected layers 
The forward propagation within fully-connected layers 

can be described as 

O = g(WI + b),                                                                         (6) 

where I  ℝNI×1, O  ℝNO×1, W  ℝNO×NI and b  ℝNO×1 are 
input vector, output vector, weight matrix and bias vector, 
respectively. g(∙) represents the activation function. The fully-
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connected layer provides a convenient way to learn the non-
linear combinations of extracted features and to change the 
flatten vector to the desired dimension. 

III. MODEL TRAINING AND TESTING 

A. Simulation Setup 

To test the designed algorithm, the optical layout with 128 
laser beams is first developed in this section. As shown in Fig. 
4, 128 beams are divided into four groups and arranged in four 
equiangular projection angles at 0˚, 45˚, 90˚ and 135˚, each 
angle with 32 equispaced parallel beams. The distance 
between the adjacent beams is 0.63 cm, which makes the 
octagonal sensing region with a side length of 48.7 cm. To 
achieve high spatial resolution of the reconstructed gas image 
as well as considering the limited laser beams, this sensing 
region is determined to be uniformly discretized into 7,674 
pixels. The central area with the densest beam arrangement, 

named Region of Interest (ROI), has 40  40 pixels with a side 
length of 20.2 cm. Water vapour (H2O) is a significant product 
of combustion with strong near-infrared absorption 
spectrums. Hence it is chosen as the desired target absorption 
species to evaluate the performance of the proposed model. 

Two absorbing transitions at 
1
 = 7185.6 cm-1 and 

2
 = 

7444.36 cm-1 are selected [20]. Along with the projection data 

from the 128-beam tomographic sensor, the measurements A1
 

 ℝ128×1 and A2
  ℝ128×1 will be obtained at 

1 
and 

2
, 

respectively. Table I shows the empirically determined hyper-
parameters for model implementation.  

B. Dataset Construction 

Instead of simulating 2D distributions of temperature and 
species concentration by simple Gaussian profile, we use Fire 
Dynamics Simulator (FDS), which is developed by National 
Institute of Standards and Technology (NIST), to simulate 
heat transport of fire dynamics [21]. By solving a form of 
Navier-Stokes equations [22], FDS is capable of mimicking 
the temperature distributions within a dynamic field to the 
greatest extent. In this paper, a circular burner is modelled. To 
realize the reactive flow field of this burner model, we 

established an open 3D space with a 96  96  96 Cartesian 

mesh corresponding to 48.7 cm  48.7 cm  48.7 cm domain 
with open boundaries. The burner locates at the center of the 
lower boundary. Thus, a simple upwind boundary condition is 
built, which has little effect on the development of the burner 
within this computational domain [21]. Propane is chosen as 

the fuel. To improve the generalization of the model, the 
training set is established by simulating and recording the 
whole burning process. 

After visualizing the output of FDS by Smokeview, the cross-

sectional images of temperature and gas concentration at 6 

cm above the burner outlet are saved with automatically 

adjusted time step, which obeys Courant-Friedrichs-Lewy 

condition [21]. The obtained dataset contains 11,714 samples 

from 10 different simulations by varying the mass fraction of 

the propane, flame duration and the spread rate of the flame. 

The sensitivity matrix L has been determined by the optical 

layout of the tomography system. Therefore, after generating 

the phantoms of 2D distributions of temperature and gas 

concentration, the path-integral absorption for each transition 

A1
 and A2

 can be calculated by following equation (2). It is 

then randomly divided into a training set with 11,125 samples 

and a test set with 589 samples. 

Standardization can feature scaling to accelerate the 
convergence of the training process and improve the stability 

of the model. Thus, the simulated A,i is rescaled to A
 s by:  

A
s =

Aν,i − A,i

Aν,i

,                                                                          (7) 

where A,i
 is the mean value of the path-integrated absorption 

for i-th laser beam in the training set, A,i 
the standard 

deviation. To align the test data with the trained model, A,i 

within the test set will follow the same calculation for 

rescaling. Finally, the stacked A1 
 s , A2 

 s  and corresponding 

temperature distribution T  ℝ7674×1 will be deployed into the 
model for training and testing. 

TABLE I.  EMPIRICAL-DETERMINED HYPER-PARAMETERS OF THE MODEL  

 Layers 

Name of 

the layer 
Input dim. Output dim. 

Weight 

matrix 
Stride  

Conv1 8  16  2 7  8  8 2  2 (1,2) 

Conv2 7  8  8 6  7  32 2  2 (1,1) 

FC1 1344 2048 -- -- 

FC2 2048 4096 -- -- 

FC3 4096 4096 -- -- 

FC4 4096 7674 -- -- 

Fig. 3. The architecture of the established model. 
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Fig. 4. The proposed beam arrangement for CST image reconstruction 

C. Loss Function 

 The proposed algorithm is trained by a customized loss 
function after considering the a priori smoothness 
information, being demonstrated in session II. B, as well as 
the importance of temperature reconstruction in the ROI and 
the background. The loss function can be expressed as   

Total Loss =   ×
1

B
∑ ‖Tb

rec,ROI − Tb
tru,ROI‖

2

B
b=1 +  

1

B
∑ ‖Tb

rec,BG
 − Tb

tru,BG‖
2

B
b=1 +  

1

B
∑ ‖Tb

rec,ROI(x,y)
 −  Tb

rec,smooth‖
2

B
b=1 ,                   (8) 

where B represents the batch size, equalling 128. Tb
rec,ROI

  

ℝ
1600×1 

and Tb
tru,ROI

  ℝ
1600×1 

are the reconstructed and the true 
image vectors of b-th training sample within ROI, 
respectively.   is a training-determined hyper-parameter, 
equalling 1.5.  This term strengthens the reconstructed image 

error sourced from ROI. Tb
rec,BG

 ℝ
6074×1 

and Tb
tru,BG

  ℝ
6074×1 

are the reconstructed and the true image vectors of b-th 

training sample in the background, respectively. Tb
rec,smooth

 
equals to 

 
1

4
(Tb

rec,ROI(x−1,y)
+Tb

rec,ROI(x+1,y)
+Tb

rec,ROI(x,y−1)
+Tb

rec,ROI(x,y+1)
). 

                                                                                              (9)  

The third term of the loss function imposes smoothness 
regularization.  

D. Other Training Details 

ReLU is chosen as the activation function. L2 regularization 
is deployed into the loss function to avoid overfitting with a 

penalty factor 2 10
-6

. Adam optimizer is implemented with a 

learning rate of 2 10
-4

. The number of epochs is 400 to allow 
the model to fully converge in an NVIDIA Tesla P100 GPU 
on Google Colab.  

E. Test Results 

Besides the original test set, which is split from the FDS 
simulation dataset without additional noise contamination, 
three more test sets are generated to validate the proposed 
model in complicated dynamic flow fields by adding different 

levels of white noise on path-integral absorption, following 
this formulation: 

An,i  = A,i + nA,i
,                                                                   (10)                            

where An,i is the contaminated path-integral absorption of i-th 

beam and nA,i
 is the white noise. Then, four test sets with no 

noise, 20 dB noise, 30 dB noise and 40 dB noise are fed into 

the well-trained model, respectively. Image error (IE) 

evaluates the overall quality of the reconstructed image by 

considering each pixel's error, thus can represent the ability 

of the model on dynamic flow field retrieval. It is defined as 

IE=
1

Q
∑

‖Tq
rec −  Tq

tru‖
2

‖Tq
tru‖

2

Q

q=1 ,                                                          (11)        

where Q and q are the total numbers of test samples and the 

sample index, respectively.  Tq
tru  and Tq

rec denote the 

temperature vectors of the ground truth and the reconstruction 
for q-th test sample, respectively. ‖∙‖2 is a Euclidean norm of 
the vector. 

Fig. 5 depicts the dependency of IEs on different noise 
levels for the optimally trained model. It can be seen obviously 
that IE decreases as SNR increases. More specifically, IEs 
remain the small values and increase only by 0.5% when SNR 
varies from 0 to 20 dB. It indicates the reliability and 
robustness of the proposed algorithm in terms of strong noise 
tolerance and good accuracy for dynamic flow field 
reconstruction. 

Regarding the practical SNR of 30 dB in physical 
experimental situations, the reconstructed results of the two 
selected phantoms from the test set with 30 dB noise are 
visualized in Fig. 6. In the first column, phantom (a) and (c) 
are the original temperature distributions, whereas phantom 
(b) and (d) in the second column are the corresponding 
reconstructions. Although it introduces much more 
complexity to the training model when trying to reconstruct 
dynamic flames, the proposed network can indicate the edge 
of the heat zone and specify the correct position of the peak 
temperature. In addition, the proposed algorithm eliminates 
image artefacts effectively. As a result, the reconstructed 
temperature images have better spatial resolution and 
accuracy.  

IV. CONCLUSION 

In this paper, an FDS-CNN hybrid algorithm is proposed 
to achieve dynamic temperature imaging. Coupled with the 
application of FDS, a mid-fidelity tool for reactive flow 
simulation, a circular burner is modelled and a training set is 
built by recording its whole combustion process. This new 
development captures dynamic features of the flame and 
builds an end-to-end mapping between the forward laser 
absorption and its temperature distribution. It reliably predicts 
each working state of the burner with fewer artefacts and 
higher image resolution, under the condition of limited 
projection data.  

Quantified by IE in a wide range of SNRs, it is proved that 
this algorithm can effectively and stably capture the physical 
features from absorption data and have strong tolerance with 
noise-contaminated data. In summary, this physics-involved 
CNN-aid model investigates the dynamic evolution of the 
flames and reconstructs temperature imaging with good 
accuracy and robustness. In the future, it will be further 
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verified by experiment data and enhanced by incorporating 
temporal information for the prediction of gas parameters. 

 

Fig. 5. The change of  IEs when reconstructing the dynamic gas temperature 

images with different SNRs  

 
                     (a)                                                           (b) 

 
                     (c)                                                           (d) 

 

Fig. 6. Reconstruction of dynamic temperature images for the simulated 

circular burner phantoms when SNR is 30 dB. Phantom (a) and (c)  
are the ground-truth images from different time steps. (b) and (d) 

show the corresponding reconstructed temperature images.   
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