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Two dimensional electron gases based on SrTiO3 are an intriguing platform for exploring meso-
scopic superconductivity combined with spin-orbit coupling, offering electrostatic tunability from
insulator to metal to superconductor within a single material. So far, however, quantum effects in
SrTiO3 nanostructures have been complicated by disorder. Here we introduce a facile approach to
achieving high mobility and patterning gate-tunable structures in SrTiO3, and use it to demonstrate
ballistic constrictions with clean normal state conductance quantization. Conductance plateaus show
two-fold degeneracy that persists to magnetic fields of at least 5 T – far beyond what one would ex-
pect from the g−factor extracted at high fields – a potential signature of electron pairing extending
outside the superconducting regime.

Advances in the cleanliness of low-dimensional electron12

systems are typically produced by painstaking optimiza-13

tion of material quality. But occasionally, simplification of14

fabrication flows or material synthesis can play a key role.15

One prominent example is the invention of the mechani-16

cal exfoliation method to isolate monolayer graphene [1], a17

non-resource-intensive technique that democratized access18

to high quality 2D systems rich with new physics. In the19

same spirit, here we present a widely accessible fabrication20

method for a clean, ballistic quantum system in SrTiO3,21

a material known for its rich physics [2–4]. We forgo the22

expensive and complex epitaxial growth techniques typ-23

ically used to achieve high mobility in dimensional elec-24

tron gases (2DEGs), using only commercially available sin-25

gle crystals, standard ionic liquid gating, electron beam26

lithography, and widely available, low-temperature deposi-27

tion techniques: sputtering and atomic layer deposition.28

Development of clean quantum systems is a central29

goal in condensed matter physics and materials science,30

driven in part by the promise of large-scale quantum com-31

puting. Architectures for solid-state quantum comput-32

ing [5, 6] often involve superconductivity and nanoscale33

patterning, and can benefit from electrostatic tunability34

(as in gatemons [7, 8].) For topological qubits [9, 10],35

these three elements are required, along with spin-orbit36

coupling. A challenge for all routes towards large-scale37

quantum computation is in mitigating disorder, dissipa-38

tion, and noise [5], which prevent high-fidelity quantum39

state control. Disorder-induced localized states are par-40

ticularly problematic for demonstrating topological qubits,41

as they can mimic the most easily detectable signatures of42

Majorana states [10, 11].43

The predominant approach for combining gate tunabil-44

ity and superconductivity is through proximitization of a45

high-mobility semiconductor (e.g. InAs, InSb) by a metal-46

lic superconductor (e.g. Al, Nb). Despite major progress47

in improving interfaces between such dissimilar materials,48

they remain major sources of the types of imperfections49

mentioned above [9].50

An alternative approach is to construct a monolithic51

quantum system from a single material that inherently pos-52

sesses the full collection of desired properties – supercon-53

ducting pairing, spin-orbit coupling, gate-tunable chemical54

potential, low dimensionality – obviating the need for cou-55

pling across interfaces between dissimilar materials. One56

such material is the oxide perovskite SrTiO3: a wide-band57

gap insulator in the undoped state, which transitions upon58

electron doping into an electrostatically-tunable supercon-59

ductor. At present, this route faces basic nanofabrication60

challenges: whereas 2D electron gases (2DEGs) with high61

electron mobility of order 104 cm2/Vs have been demon-62

strated in micron-scale SrTiO3-based Hall bars and unpat-63

terned samples [12–15], shaping them into nanostructures64

without degrading the system’s cleanliness has been diffi-65

cult.66

Several reports to date used nanopatterned split67

gates [16–21] or nanopatterned hard masking of68

LaAlO3 [22–25] to define a narrow constriction in a69

SrTiO3/LaAlO3 2DEG. Recently, we reported studies of70

a quasi-ballistic superconducting constriction in SrTiO3,71

formed by using nanopatterned split gates to locally screen72

surface doping by an ionic liquid (IL) [26]. Some of these73

efforts detected signs of quantization in constriction con-74

ductance [20, 22, 26] and/or critical supercurrent [26]. But75

like most studies of SrTiO3 2DEG-based devices reported76

to date [16–20, 22–26], these have been restricted to the77

quasi-ballistic regime (electron mean free path comparable78

to device length). A parallel approach is to use a voltage-79

biased scanning probe tip to “write” patterns by locally80

triggering a metal insulator transition in a SrTiO3/LaAlO381

heterostructure that is fine-tuned to the verge of this tran-82

sition [27]. This was successful in demonstrating feasibility83

of clean, quantized behavior in the normal state of SrTiO384

[28, 29]. To our knowledge, a comparable level of clean bal-85

listic transport has not been reproduced by other groups,86

likely due to the required fine tuning of material properties87

and writing process parameters.88

In this work, we report a small but transformative mod-89
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ification to the fabrication flow reported in [26] for a quan-90

tum constriction in SrTiO3. The mean free path in the91

adjacent electron reservoir is improved by an order of mag-92

nitude, bringing it into the clean ballistic regime. Working93

in the non-superconducting state, charge transport across94

the constriction shows unambiguous signatures of a dis-95

cretized electronic subband spectrum.96

The electronic cleanliness of both the constriction and97

the adjacent 2DEG allows for observation of intriguing98

interplay between mesoscopic device physics and the un-99

usual material properties of SrTiO3. We demonstrate that100

our device is in an unconventional regime of comparable101

vertical and lateral confinement, owing to electron mass102

anisotropy, resulting in an unusual sequence of subband103

degeneracies that are intermittent in magnetic field. Addi-104

tionally, we observe in the constriction subband spectrum105

striking persistence of two-fold (presumably spin) degener-106

acy to high magnetic field before it eventually splits. This107

phenomenology is consistent with that reported in scanned108

probe-written wires [28, 41], and with the theoretical expla-109

nation in terms of attractive electron-electron interaction110

supporting short-range superconducting correlations with-111

out long-range superconducting order [41, 42]. Finally, the112

increased cleanliness of these new structures coincides with113

a surprising absence of long-range superconducting order114

in both the leads and the constriction, whereas it is com-115

monly observed at the same carrier densities in very similar116

devices with more disorder [26]. The microscopic mecha-117
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FIG. 1. Clean and nanopatternable 2DEG in
SrTiO3. (a) Mean free path plotted against Hall density
in 2DEGs with nanopatterned constrictions or wires,
comparison with references [19–21, 26, 30–40]. (b)

Schematic cross-section of the constriction region. (c,d)
Optical and (e) scanning electron microscopy images of

the devices. Arrows in (d) indicate the measured
potential differences between voltage probes. Scale bars in

(c,d,e) are 100, 10 and 1 µm, respectively.

nism of superconducting pairing in SrTiO3 is an impor-118

tant and difficult open question. Many non-BCS scenarios119

are being considered, including pairing by critical fluctu-120

ations from a nearby ferroelectric quantum critical point121

[4]. This work opens paths to test theoretical proposals us-122

ing mesoscale probes, controlled 2DEG confinement, and123

deliberate crossovers between dirty and clean limits.124

Patterning a clean 2DEG in SrTiO3125

The key enabler for this experiment is combining 1)126

nanoscale control of the channel width through nanopat-127

terned local dielectric gates and 2) an ultrathin barrier128

layer between the SrTiO3 2DEG channel and the ionic liq-129

uid. The latter dramatically reduces disorder levels in both130

unpatterned channels and narrow constrictions. Including131

a few-layer hexagonal boron nitride (hBN) barrier was pre-132

viously found to improve electron mobility by an order of133

magnitude in ionic liquid-gated SrTiO3 [14]. The likely134

causes are blocking electrochemical reactions and reducing135

scattering from charge disorder in the ionic liquid [14, 43].136

Large few-layer flakes of hBN are difficult to obtain137

by exfoliation, and fragile during subsequent fabrication.138

Here, we introduce ultrathin amorphous HfOx deposited139

by atomic layer deposition (ALD) as a more repeatable and140

robust alternative barrier layer, enabling integration with141

nanopatterned HfOx/Ti/Au split gates. These gates define142

the quantum constriction (Fig. 1) by selectively screening143

electric fields from the ionic liquid and thus spatially pat-144

terning electron accumulation in the SrTiO3. Initially, the145

device channel is completely insulating. But a large 2D146

electron density at the oxide surface can be accumulated147

and subsequently tuned by the voltage VGIL applied to the148

large side gate (Fig. 1c) above 220 K. Below this tempera-149

ture, the ionic liquid is frozen and so the charge density in150

the SrTiO3 is only weakly affected by adjustments in side151

gate voltage.152

The main device discussed in this report has been ther-153

mally cycled three times between near room temperature154

and 30 mK, with VGIL adjusted each time near room tem-155

perature to tune global 2D carrier density. At base tem-156

perature, the measured Hall densities in the unpatterned157

2DEG regions (Fig. 1d) were NH = 10.4, 3.0, and 4.6×1013158

cm−2, respectively. The Hall mobilities µH were near 104159

cm2/Vs for all three cooldowns, on par with the highest160

values reported for unpatterned SrTiO3/LaAlO3 2DEGs161

[12, 13, 15, 44], and ionic liquid-gated SrTiO3/hBN [14]. To162

enable these measurements, the constriction was tuned to163

an open (many-channel) state by applying split-gate volt-164

age VG12=0.8 V.165

A useful metric for disorder in mesoscopic devices is the166

comparison between device length L and the electron mean167

free path LMFP between scattering events. The latter can168

be estimated as a product of Fermi velocity and time be-169

tween scattering: LMFP = vFτ = µHe
−1ℏ

√
2πNH = 0.8-2170

µm in our measurements. This is an order of magnitude171

larger than the constriction, whose lithographic width is 40172

nm, a first indication that the constriction is in the clean173

ballistic regime (L ≪ LMFP).174

Figure 1 illustrates that this is an order of magnitude175

improvement from our previous report on quasi-ballistic176

(L ≈ LMFP) constrictions in ionic liquid-gated SrTiO3177

with LMFP = 55 nm. Similarly, in recent reports on gate-178
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FIG. 2. DC bias spectroscopy of the quantum
point contact. (a) Zero bias conductance trace with

split gate voltage VG12. (b,c) Conductance and
transconductance maps with VG12 and VDC. The numbers
of spin-degenerate ballistic modes indicated by G/(2e2/h)
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defined nanostructures in SrTiO3/LaAlO3 2DEGs, LMFP179

is typically 20-70 nm [19–21]. State of the art III-V semi-180

conductor heterostructures can support gate-patternable181

2DEGs with LMFP of hundreds of µm in GaAs [38–40],182

and tens of µm in InAs [35–37]. However, if we aspire to183

achieve superconducting pairing in a III-V material, the184

2DEG must be brought close to the heterostructure sur-185

face to allow proximitization by a superconducting metal.186

Scattering dramatically increases as a result: InAs-based187

epitaxially proximitized 2DEGs (with the superconductor188

subsequently removed) typically have LMFP = 200-800 nm189

[30–34].190

Based on comparison of disorder metrics from unpat-191

terned normal state 2DEG transport, our devices are com-192

petitive with state-of-the-art InAs heterostructures de-193

signed for proximitization. To our knowledge, this work194

is a first realization of a ballistic constriction in a SrTiO3195

2DEG that is clean enough to exhibit quantum oscillations,196

see Methods section and Extended Data Fig. 1a197

Quantum transport across the constriction198

Fig. 2 presents evidence for clean, ballistic quantum point199

contact (QPC) behavior in the gate-defined constriction.200

Fig. 2a shows constriction conductance G as a function201

of voltage VG12 on the split gates, at T = 32 mK, and202

in magnetic field B = 5 T normal to the 2DEG plane.203

The zero-bias G trace shows plateaus at integer multiples204

(n = 1, 2, 3) of the conductance quantum δG = 2e2/h.205

This is a hallmark of a ballistic constriction with a dis-206

cretized transverse momentum spectrum. Transitions be-207

tween plateaus in G indicate the chemical potential cross-208

ing discrete subbands, corresponding to individual spin-209

degenerate ballistic modes. Subband onsets are signaled210

by peaks in transconductance dG/dVG12.211

Fig. 2b and 2c show a “diamond” pattern in either G or212

dG/dVG12 as a function of gate voltage and DC bias VDC213

added to the small AC excitation. Increasing the asymme-214

try of chemical potential between the left and right contact215

to the constriction eventually results in uneven occupation216

of ballistic subbands on the two sides. As a function of217

VDC, measured G alternates between adjacent integer (0,218

1, 2, ...) and half-integer (0.5, 1.5, 2.5, ...) multiples of219

2e2/h. Clean definition of such higher order plateaus is220

an indication of high quality and adiabaticity of the QPC221

[37, 40, 45].222

Several sequences of higher order plateaus are clearly223

observable in the diamond pattern of G or dG/dVG12224

(Fig. 2b,c), and in the crowding of line traces near inte-225

ger multiples of e2/h (Fig. 2d). For the first three sub-226

bands (up to 6e2/h), the pattern is regular and free of227

fluctuations typically present in the quasi-ballistic regime228

[19, 20, 26, 46]. Qualitatively, the diamond pattern defini-229

tion seen here matches that of state of the art III-V QPC’s230

[37], except some on deeply buried GaAs 2DEGs with hun-231

dreds of micron LMFP [40].232

There are, however, two unusual features in Fig. 2: first,233

the observed subbands are doubly degenerate (the G in-234

crement is 2e2/h), despite a field B = 5 T that would235

typically spin polarize subbands (each associated with an236

e2/h increment in G). Second, some plateaus appear to be237

skipped, e.g. G = 8 and 12e2/h at zero bias, implying an238

even higher level of degeneracy.239

Both of these irregularities are clarified by considering an240

orthogonal cut in the parameter space shown in Fig. 3: the241

map ofG dependence on B and VG12 at zero bias. Through-242

out this figure, VG12 is converted into chemical potential243

µ using the height of transconductance diamonds in VDC244

to quantify the split gate lever arms (see supplementary245

section S2A for details). Examination of the first conduc-246

tance step in line traces of G (Fig. 3a) or maps of dG/dµ247

(Fig. 3b-d) shows that the two-fold degeneracy of the first248

conductance steps persists up to B ≈ 7 T. At higher B,249

the two-fold degeneracy is broken and the first few con-250

ductance step sizes become e2/h. Separately, two distinct251

flavors of subbands are distinguishable at low B: those fast-252

and slow-moving in B. The slow-moving set of subbands253

become the lowest subbands for B above a few Tesla, and254

are responsible for the well-defined QPC behavior in Fig. 2.255

The fast-moving subbands cross the slow-moving ones, pro-256

ducing intermittent quadruple degeneracies, such as those257

at G = 8 and 12e2/h in Fig. 2.258

The physics of the different subband flavors can be cap-259

tured by an extension of the classic 2D saddle potential260

model of a QPC [47] to a three-dimensional confinement261

potential [28, 48]. The 3D saddle potential is quadratic262

in the longitudinal (x), transverse (y), and vertical (z)263

directions (Fig. 4a) with polarity Px = −1, Py,z = 1.264

At zero magnetic field, this leads to characteristic energy265

ϵu(B=0) = ℏωu = ℏ2/(m∗
ul

2
u) for each direction u, where lu266

is the natural length scale andm∗
u is the electron mass along267

that direction. The momentum operators are −iℏ∂/∂u.268

The resulting Hamiltonian is269

H =
∑

u=x,y,z

(
− ℏ2

2m∗
u

· ∂2

∂u2
+ Pu

m∗
uϵ

2
uu

2

2ℏ2

)
+ EZσz, (1)
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FIG. 3. Subband evolution in magnetic field. (a) zero-bias conductance G as a function of gate voltage VG12

(converted to chemical potential µ), with magnetic field B tuned between 0 and 14 T. Same data is shown as maps of
(b) G and (c) transconductance dG/dµ with with µ and B. (d) The parametric map of dG/dµ with B and G

emphasizes persistence of robust 2e2/h quantization up to B of at least 5 T. (e,f) Simulation using a non-interacting
model (equations 1 and 2) of (e) G and (f) dG/dµ matched to data in (b,c). Lines in (b,e) are |ny, nz, s⟩ subband

energies from the model after fitting. Number of spin degenerate ballistic modes is labeled on G plateau regions in (c,f).

where EZ = gµBsB is the Zeeman energy, s is the spin,270

and σz is the Pauli matrix.271

For a non-zero magnetic field oriented along the z di-272

rection, the cyclotron frequency ℏωc = eB/m∗ renormal-273

izes the x − y plane confinement [47, 48]: ϵx = ℏωx/(1 +274

ω2
c/ω

2
y)

1/2, ϵy = ℏ(ω2
y + ω2

c )
1/2, without affecting ϵz. The275

Hamiltonian in equation (1) is separable into y−z subband276

wavefunctions discretized according to quantum numbers277

|ny, nz, s⟩, and an x wavefunction component that broad-278

ens these subbands. Integers ny,z ≥ 0 and s = ±1/2 give279

the subband energy spectrum:280

ϵyz = ϵy

(
ny +

1

2

)
+ ϵz

(
nz +

1

2

)
+ EZ(B, s), (2)

where the standard description of the Zeeman effect is281

EZ(B, s) = gµBsB, resulting in spin splitting at any fi-282

nite B. To account for the observed persistence of two-fold283

degeneracy, we empirically modify the Zeeman energy as284

EZ(B, s) = gµBs(B − BP) for B ≥ BP and EZ(B, s) = 0285

for B < BP, where BP is a phenomenological field scale.286

Given subband energy ϵyz, the subband contributes con-287

ductance G(µ) = e2/h for µ ≫ ϵyz, and no conductance for288

µ ≪ ϵyz. The width of the transition is ϵx. Fig. 3e,f show289

the conductance modeled in this way. Simulation param-290

eters were extracted by individually fitting the position of291

lowest-lying subbands, giving m∗
y = 0.8-1.1me, ℏωx,y,z =292

0.11, 0.16, 0.13-0.21 meV, respectively, g = 0.22-0.37, and293

BP increasing from 5 T to above 14 T for higher lying sub-294

bands. For extensive discussion of the analysis procedure,295

including similar data from a different cooldown (3.0×1013296

cm−2) with BP ranging from 4 T to above 14 T, see sup-297

plementary section S2C.298

The model both captures and clarifies the essential fea-299

tures of the experimental data: the subbands that are300

slow-moving in B belong to the |ny=0, nz, s=± 1/2⟩ se-301

ries, while all bands with ny > 0 are fast-moving in B due302

to renormalization of ϵy by the cyclotron frequency ℏωc.303

Our device is in an unusual regime with comparable lat-304

eral and vertical confinement (ωy ≈ ωz), and B of a few305

Tesla isolates the subbands generated by ωz as lowest ly-306

ing. This contrasts with most conventional realizations of307

QPCs, where ωz ≫ ωy and only lateral confinement is rele-308

vant for the description of lowest subbands [47]. In our case309

the spacing between split gates (40 nm) is not dramatically310

larger than the finite vertical extent of the 2DEG (usually311

estimated in the 1-15 nm range depending on carrier den-312

sity [49, 50]), and the anisotropic mass m∗
z > m∗

y enhances313

ωy relative to ωz.314

The second unusual aspect of our device is the persis-315

tence of two-fold degeneracy up to BP ≥ 5 T. Fig. 4b il-316

lustrates the difference from the conventional pattern of317

spin splitting. The shape of the subband splitting is a “Y”318
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Shading shows broadening from both single and double

peak fitting (added together in the latter case).

in µ − B space, in contrast to the “V” shape of standard319

Zeeman splitting (corresponding to BP = 0). For small320

g-factors subband broadening can complicate distinguish-321

ing between a “Y” shape and a “V” shape. For example,322

apparent spin degeneracy up to B ≈ 9 T has been ob-323

served in quantum wires based on hole-doped GaAs, where324

spin-orbit coupling creates a strong anisotropy in g [51].325

Qualitatively, our data appear much more consistent with326

a “Y” rather than a “V” shape, with s = ±1/2 subbands327

sticking together until BP. Quantitative fitting of dG/dµ328

at fixed B to single and double peak shapes (Fig. 4c) fur-329

ther corroborates our interpretation that BP > 0 is not an330

artifact of subband broadening. In supplementary section331

S2C, we detail two separate approaches to quantify BP:332

fitting two peaks to dG/dµ at each field, then finding the333

field at which extracted peak spacing extrapolates to zero334

(markers in Fig. 4c); and fitting a single peak to dG/dµ335

at each field, then finding the field at which this width336

is minimized (blue shaded region in Fig. 4c). These two337

approaches yield consistent results.338

Similar “Y” shapes have been reported in other contexts339

in SrTiO3/LaAlO3-based nanostructures: in the Coulomb340

blockade levels of quantum dot wires written by biased341

atomic force microscope (AFM) tips [41], and in acciden-342

tal quantum dots in split-gate QPCs [21, 46]. Double de-343

generacy of subbands in high fields has also recently been344

reported in AFM-written ballistic wires [28, 52]. Our data345

appear even clearer, and show that the phenomenology is346

not specific to SrTiO3/LaAlO3.347

A compelling explanation for these observations invokes348

a phenomenological attractive (“negative-U”) interaction349

between electrons, conceptually analogous to pairing inter-350

actions responsible for superconductivity [41, 42, 46]. In351

Fig. 4b and c, red circle symbols show G plateau bound-352

aries in a mean-field model [42] for a 1D wire with an attrac-353

tive interaction. The “Y” shape was closely reproduced by354

adjusting U and fixing ωy,z, my,z, g to values from the non-355

interacting model fits (see supplementary section S2E for356

simulation details). In this picture, BP is the field at which357

the pairing interaction (favoring spin singlets) is balanced358

by Zeeman energy (favoring alignment of spins). The criti-359

cal field and temperature scales in our experiment and sev-360

eral previous reports [28, 41, 46] are higher than any plau-361

sible upper bounds for globally coherent superconductivity362

in the 2DEG. This may reflect pre-formed pairs which then363

condense at a lower temperature, or pairing that is locally364

enhanced at ferroelastic domain walls or valence-skipping365

defects [46, 53].366

The observed splitting of the “Y” above BP gives g-factor367

values of 0.18-0.36 across all cooldowns, lower than other368

values reported in SrTiO3 [21, 28, 41]. Experiments sugges-369

tive of pairing in ballistic wires yielded some of the lowest370

previous g-factor values in SrTiO3, g ≈ 0.6 [28]. A likely371

explanation is that strongly reduced g emerges in presence372

of significant atomic spin-orbit coupling, and comparable373

confinement in both z and y directions (see supplementary374

section S2D). Rashba spin-orbit coupling can also affect375

and possibly reduce EZ through avoided crossings between376

closely-spaced subbands [54, 55].377

When energy scales for confinement in the y and z di-378

rections are comparable, eq. (2) naturally leads to near-379

degenerate clustering of subbands with common n = ny +380

nz. The number of ways to partition between ny and nz,381

and hence the number of subbands in a cluster, grows with382

n. A corresponding “Pascal series” quantization pattern383

G/(e2/h) = 0, 1, 3, 6, 10, . . . was observed in AFM-written384

SrTiO3 nanowires [29]. In most of the devices studied,385

the mode spacing differed by 50 to 90% between the y386

and z directions, but at specific values of magnetic field387

normal to the sample surface a combination of Zeeman388

splitting and field-enhanced y confinement produced equal389

mode spacing. To explain apparent persistence of the Pas-390

cal conductance series over a finite field range the authors391

invoked interaction-driven subband locking. In our case,392

ωy ≈ ωz, explaining Pascal-like quantization seen at B = 0393

with additional two-fold degeneracy since Zeeman splitting394

is absent: G/(2e2/h) = 0, 1, 3, 6, 10, . . . (see model output395

in Fig. 3f, data in Extended Data Fig. 3 (a B = 0 line-396

cut through Fig. 3c), and supplementary sections S2B,C).397

Though our model has phenomenological pairing interac-398

tions as noted above, these do not influence the modeled399

conductance at B = 0.400

Conclusion401

Quantized plateaus in Figs. 2 and 3 present unambigu-402
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ous evidence of clean ballistic transport through a nano-403

patterned region of a clean SrTiO3-based 2DEG. The re-404

sulting quantum point contact behavior is unusual in two405

ways. A two-fold (presumably spin) degeneracy persists in406

magnetic field up to BP ≥ 5 T. Competition between com-407

parable lateral and vertical confinement within the con-408

striction results in higher order subband crossings that are409

intermittent in magnetic field.410

The clean observation of these effects is enabled by ad-411

vances in fabrication, without major material or process op-412

timization. Our process is entirely based on commercially413

available single crystals and widely-available cleanroom-414

based fabrication and deposition tools (ALD and sputter-415

ing). In contrast to other approaches to nanodevice fab-416

rication in SrTiO3 [16, 17, 19–21, 23–25, 28, 41, 46], our417

method does not require specialized epitaxial deposition418

at high temperature and/or in ultra high vacuum, such as419

pulsed laser deposition of LaAlO3 on SrTiO3. Such steps420

are a bottleneck for device fabrication, and a source of421

device-to-device variability. The most specialized aspect422

of our approach is the use of ionic liquid gating, a cost-423

effective technique that has been successfully implemented424

in many research groups to tune carrier density in a wide425

variety of materials [56].426

We have shown initial, exploratory steps in the devel-427

opment of this material as a clean mesoscopic platform.428

A huge parameter space remains to be explored, notably429

in aiming to recover a globally coherent superconducting430

order parameter. Replacing HfOx with an epitaxial wide-431

band-gap perovskite may further improve device cleanli-432

ness. The choice of barrier layer material could also add or433

adjust functionalities such as magnetic spin order or spin-434

orbit coupling. For the channel layer, tailoring the vertical435

confinement through heterostructuring and band engineer-436

ing is an important direction to explore. We also antic-437

ipate that our approach can be implemented in KTaO3438

(111)-based 2DEGs, where electrostatically tunable super-439

conductivity with Tc up to ≈ 2 K has recently been discov-440

ered [57, 58].441
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A. Barthélémy, C. Ulysse, D. Stornaiuolo, M. Salluzzo,532

S. Hurand, J. Lesueur, C. Feuillet-Palma, and N. Bergeal,533

Quantized conductance in a one-dimensional ballistic oxide534

nanodevice, Nature Electronics 3, 201 (2020).535

[21] A. V. Bjørlig, D. J. Carrad, G. E. D. K. Prawiroatmodjo,536

M. Von Soosten, Y. Gan, Y. Chen, N. Pryds, J. Paaske,537

and T. S. Jespersen, g-factors in LaAlO3/SrTiO3 quantum538

dots, Physical Review Materials 4, 122001 (2020).539

[22] A. Ron and Y. Dagan, One-dimensional quantum540

wire formed at the boundary between two insulating541

LaAlO3/SrTiO3 interfaces, Physical Review Letters 112,542

136801 (2014).543

[23] E. Maniv, A. Ron, M. Goldstein, A. Palevski, and Y. Da-544

gan, Tunneling into a quantum confinement created by a545

single-step nanolithography of conducting oxide interfaces,546

Physical Review B 94, 045120 (2016).547

[24] D. Stornaiuolo, D. Massarotti, R. Di Capua, P. Lucignano,548

G. P. Pepe, M. Salluzzo, and F. Tafuri, Signatures of un-549

conventional superconductivity in the LaAlO3/SrTiO3 two-550

dimensional system, Physical Review B 95, 140502 (2017).551

[25] M. Boselli, G. Scheerer, M. Filippone, W. Luo, A. Waelchli,552

A. B. Kuzmenko, S. Gariglio, T. Giamarchi, and J.-M.553

Triscone, Electronic transport in submicrometric channels554

at the LaAlO3/SrTiO3 interface, Physical Review B 103,555

075431 (2021).556

[26] E. Mikheev, I. T. Rosen, and D. Goldhaber-Gordon, Quan-557

tized critical supercurrent in SrTiO3-based quantum point558

contacts, Science Advances 7, eabi6520 (2021).559

[27] C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. An-560

dersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nanoscale561

control of an interfacial metal–insulator transition at room562

temperature, Nature Materials 7, 298 (2008).563

[28] A. Annadi, G. Cheng, H. Lee, J.-W. Lee, S. Lu, A. Tylan-564

Tyler, M. Briggeman, M. Tomczyk, M. Huang, D. Pekker,565

C.-B. Eom, and J. Irvin, P.and Levy, Quantized ballistic566

transport of electrons and electron pairs in LaAlO3/SrTiO3567

nanowires, Nano Letters 18, 4473 (2018).568

[29] M. Briggeman, M. Tomczyk, B. Tian, H. Lee, J.-W. Lee,569

Y. He, A. Tylan-Tyler, M. Huang, C.-B. Eom, D. Pekker,570

R. S. K. Mong, P. Irvin, and J. Levy, Pascal conductance se-571

ries in ballistic one-dimensional LaAlO3/SrTiO3 channels,572

Science 367, 769 (2020).573

[30] M. Kjærgaard, F. Nichele, H. Suominen, M. Nowak,574

M. Wimmer, A. R. Akhmerov, J. A. Folk, K. Flens-575

berg, J. Shabani, C. J. Palmstrøm, and C. M. Marcus,576

Quantized conductance doubling and hard gap in a two-577

dimensional semiconductor–superconductor heterostruc-578

ture, Nature Communications 7, 12841 (2016).579

[31] M. Kjærgaard, H. J. Suominen, M. P. Nowak, A. R.580

Akhmerov, J. Shabani, C. J. Palmstrøm, F. Nichele, and581

C. M. Marcus, Transparent semiconductor-superconductor582

interface and induced gap in an epitaxial heterostructure583

Josephson junction, Physical Review Applied 7, 034029584

(2017).585

[32] A. C. C. Drachmann, H. J. Suominen, M. Kjaergaard,586

B. Shojaei, C. J. Palmstrøm, C. M. Marcus, and F. Nichele,587

Proximity effect transfer from NbTi into a semiconductor588

heterostructure via epitaxial aluminum, Nano Letters 17,589

1200 (2017).590

[33] A. Fornieri, A. M. Whiticar, F. Setiawan, E. Portolés,591

A. C. Drachmann, A. Keselman, S. Gronin, C. Thomas,592

T. Wang, R. Kallaher, G. C. Gardner, E. Berg, M. J.593

Manfra, A. Stern, C. M. Marcus, and F. Nichele, Evidence594

of topological superconductivity in planar Josephson junc-595

tions, Nature 569, 89 (2019).596

[34] J. S. Lee, B. Shojaei, M. Pendharkar, A. P. McFadden,597

Y. Kim, H. J. Suominen, M. Kjaergaard, F. Nichele,598

H. Zhang, C. M. Marcus, and C. J. Palmstrøm, Trans-599

port studies of Epi-Al/InAs two-dimensional electron gas600

systems for required building-blocks in topological super-601

conductor networks, Nano Letters 19, 3083 (2019).602

[35] J. Shabani, A. McFadden, B. Shojaei, and C. Palmstrøm,603

Gating of high-mobility InAs metamorphic heterostruc-604

tures, Applied Physics Letters 105, 262105 (2014).605

[36] S. Matsuo, H. Kamata, S. Baba, R. S. Deacon, J. Shabani,606

C. J. Palmstrøm, and S. Tarucha, Magnetic field induc-607

ing Zeeman splitting and anomalous conductance reduction608

of half-integer quantized plateaus in InAs quantum wires,609

Physical Review B 96, 201404 (2017).610

[37] C. Mittag, M. Karalic, Z. Lei, C. Thomas, A. Tuaz, A. T.611

Hatke, G. C. Gardner, M. J. Manfra, T. Ihn, and K. En-612

sslin, Gate-defined quantum point contact in an InAs two-613

dimensional electron gas, Physical Review B 100, 075422614

(2019).615

[38] M. Dolev, M. Heiblum, V. Umansky, A. Stern, and D. Ma-616

halu, Observation of a quarter of an electron charge at the617

ν = 5/2 quantum Hall state, Nature 452, 829 (2008).618

[39] I. P. Radu, J. B. Miller, C. M. Marcus, M. A. Kastner, L. N.619

Pfeiffer, and K. W. West, Quasi-particle properties from620

tunneling in the ν = 5/2 fractional quantum Hall state,621

Science 320, 899 (2008).622
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Methods791

Device Fabrication.792

Fabrication is based on commercial (001)-oriented SrTiO3793

single crystal substrates, purchased from MTI. To obtain a794

Ti-terminated surface with terrace step morphology, these795

substrates were soaked in heated deionized water for 20796

minutes and annealed at 1000 ◦C for 2 hours in flowing Ar797

and O2 in a tube furnace.798

The HfOx barrier layer was deposited by atomic layer799

deposition (ALD), with only 4 alternated cycles of Hf pre-800

cursor and water. Extrapolating from measured thickness801

of many-cycle growths, we estimate this barrier at 0.6 nm.802

The deposition stage temperature was 85 ◦C.803

Subsequent fabrication follows the method described in804

[26]. All patterning was performed with lift-off processes805

using e-beam patterned PMMA 950K, 4% in anisole for the806

first step, 8% for all subsequent steps. The first step is the807

local split-gate pattern, written on a 100 kV e-beam lithog-808

raphy system. ALD was then used to deposit 15 nm HfOx809

(100 cycles) at 85 ◦C. The 5 nm Ti / 50 nm Au gate con-810

tact was deposited by e-beam evaporation. Lift-off of both811

HfOx and Ti/Au layers was performed by soaking in heated812

NMP, followed by ultrasonication in acetone. Imaging by813

scanning electron microscopy was performed on reference814

structures on the same chip as the measured device. The815

remaining patterning was performed with a 50 kV e-beam816

lithography system. The second step is the contact line to817

the split gate, using lift-off of 40 nm Ti / 100 nm Au in ace-818

tone. The third step is the ohmic contact deposition, which819

requires exposing the pattern to Ar+ ion milling prior to820

e-beam evaporation of 10 nm Ti / 80 nm Au, followed by821

lift-off in acetone. The fourth patterning step is the mesa822

insulation, deposited by magnetron sputtering 80 nm SiO2,823

followed by lift-off in acetone.824

The finished device was annealed for 50 minutes at825

130 ◦C in air. Immediately after depositing a drop826

of ionic liquid Diethylmethyl(2-methoxyethyl)ammonium827

bis(trifluoromethylsulfonyl)imide (DEME-TFSI) to cover828

both the device and the surrounding side gate, the sam-829

ple was loaded into the dilution refrigerator system, then830

vacuum pumped overnight to minimize contamination of831

the ionic liquid by water from exposure to air.832

Unless explicitly stated otherwise, all presented measure-833

ments are in a 4-probe configuration shown in Fig.1d: nom-834

inal DC and AC voltage excitations (V *
DC and V *

AC = 10835

or 20 µV) are sourced through the constriction. IDC and836

IAC are the measured DC and AC currents through the837

drain. Voltage probes are used to measure the DC and AC838

voltage difference across the constriction (VDC and VQPC,839

respectively) and the AC longitudinal (Vxx) and Hall (VH)840

voltages outside the constriction. The constriction conduc-841

tance is given by G = IAC/VQPC, the 2DEG resistance by842

Rxx = Vxx/IAC, and the Hall density by NH = IACB/eVH.843

No series resistance subtraction was made for G. Split gate844

voltage VG12 was applied on both arms of the QPC. In the845

supplementary material, data with unequal voltages on the846

two arms (VG1 and VG2) are also shown.847

Supplementary material to this report presents extensive848

additional data and background. Section S1 discusses the849

tuning of the Hall bar channel by VGIL near room temper-850
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Extended Data Fig. 1. Quantum oscillations in
the 2DEG. (a) Temperature dependence of

Shubnikov-de Haas oscillations. Same data are shown as
background-subtracted resistance and its second

derivative with B. Markers indicate indexed maxima and
minima. (b) Landau level index nLL plotted against peak

positions in 1/B. (c) Spacing between individual
oscillations, converted to local frequency and implied

carrier density. Solid line in (b,c) is a constant-frequency
fit for B > 7 T. Dotted line in (c) is half of fitted value.
(d) Temperature dependence of oscillation amplitude at

B = 7.9 and 8.9 T, dashed lines are fits to
Lifshitz-Kosevich model with m∗ = 3.

ature, the equivalence between back-gating and adjusting851

VGIL at cryogenic temperatures, absence of globally coher-852

ent superconductivity, and Shubnikov-De Haas oscillations.853

Section S2 presents split gate lever arm analysis, the 3D854

confined constriction Hamiltonian, and the extended anal-855

ysis of QPC subbands in B. Section S3 presents extensive856

data on stability of conductance quantization with respect857

to VGIL, and asymmetrically swept split gate voltages. Sec-858

tion S4 presents images of devices during the fabrication859

process, and transport data from additional devices.860

Quantum oscillations861

Extended Data Fig. 1a shows background-subtracted mag-862

netoresistance δRxx of an unpatterned 2DEG section di-863

rectly adjacent to the constriction. Its second derivative864

d2δRxx/dB
2 is also shown.865

Shubnikov-de Haas (SdH) type oscillatory behavior is866

clearly present when the data are plotted against 1/B. But867

its periodicity is uneven, leading to failure of standard anal-868

ysis with fast Fourier transforms. Instead, we adopt the869

“Landau plot” procedure by indexing the minimum and870

maximum locations of individual oscillations (Extended871

Data Fig. 1b). From the linear-slope region at B > 7T, we872

extract an oscillation frequency fSdH = 74 T. The corre-873
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sponding carrier density NSdH = fSdHνse/h for spin degen-874

eracy νs = 1 is 3.6×1012 cm−2. The spacing between oscil-875

lation peaks is also converted into local, B-dependent fSdH876

and NSdH in Extended Data Fig. 1c. The factor of ≈ 10877

discrepancy between NSdH and the Hall density (4.6×1013878

cm−2) is a ubiquitous and poorly-understood feature of879

quantum oscillations in SrTiO3 (see e.g. [15, 59, 60])880

The temperature dependence of the oscillation ampli-881

tude encodes information on the effective electron mass.882

Extended Data Fig. 1d shows a fit of peak-to-peak am-883

plitude to the thermal suppression factor in the Lifschitz-884

Kosevich model (see e.g. [15]): δRxx ∼ αT/ sinh(αT ), with885

α = 2π2kB/ℏωc and the cyclotron frequency ℏωc = eB/m∗
e.886

Reflecting the sharp reduction of oscillation amplitude by887

a factor of ≈ 3 between 40 mK and 600 mK, this anal-888

ysis gives m∗
e = 3me, higher than m∗ = 1-2me reported889

in most experiments on quantum oscillations in SrTiO3890

[13, 15, 44, 59, 60]. In most SrTiO3/LaAlO3 2DEGs, the891

light-in-plane-mass m∗ = 1-2me dxy band is lowest-lying,892

followed by the heavier dyz band. However, an inversion of893

this band order has recently been reported in high mobility894

SrTiO3/γ-Al2O3 2DEGs [61], and a similar effect may be895

occurring in our 2DEG. In contrast, the field evolution of896

quantum subbands in our constriction gives m∗ = 0.8-1.1,897

suggesting that the confinement potential favors the lighter898

dxy or dzx as the lowest band.899

Below 7 T, oscillation frequency in δRxx is approximately900

halved, consistent with a spin-degenerate state (νs = 2).901

Analysis using d2δRxx/dB
2 at low temperature can resolve902

faint high-frequency peaks even at lower fields. Though903

one expects the spin degeneracy to be broken at any non-904

zero B, apparent spin degeneracy can persist in large B if905

the Zeeman and cyclotron energy scales are comparable,906

leading to overlap between adjacent spin-polarized Landau907

levels. This situation has been reported for other SrTiO3-908

based 2DEGs [13, 44, 60]. As discussed further in supple-909

mentary section S1C, this is likely applicable in our case.910

Therein we also consider an alternative explanation that911

pairing occurs in the 2D bulk, not just in the constric-912

tion. This is motivated by the rough match between two913

field scales: the field at which bulk SdH oscillation fre-914

quency doubles, and BP at which two-fold degeneracy in915

the constriction subbands is broken. Without conclusively916

discriminating between these two possibilities, we conclude917

that the conventional explanation based on overlap be-918

tween broadened Landau levels is more likely.919

Absence of long range superconducting order.920

A surprising aspect of this experiment is the absence of su-921

perconductivity in all 4-terminal measurements of both the922

2DEG and the constriction. Current-voltage non-linearity923

is only seen in 2-terminal measurements, indicating that su-924

perconductivity is only present in a region near the ohmic925

contacts (fabricated by ion milling into SrTiO3 to locally926

induce a high density of oxygen vacancies and thus a high927

local carrier density).928

Extended Data Fig. 2 illustrates that the explored Hall929

carrier densities correspond to the near-optimal and over-930

doped regions of the superconducting dome in similar de-931

vices without the HfOx barrier (and much lower mobility932

[26]) and SrTiO3/LaAlO3 [62–64], in which Tc peaks at933

350 mK near 2-3×1013 cm−2. In high-mobility ionic liquid934

gated SrTiO3 with hBN barrier layers, a narrower super-935

conducting dome appears with reduced Tc = 200 mK and936

at higher density of 6-8×1013 cm−2. These comparisons937

point to an overall trend of suppression of a globally co-938

herent superconducting order parameter in clean SrTiO3939

2DEGs.940

More investigations are needed to elucidate the micro-941

scopic underpinnings of this trend, but at this stage we942

can outline several likely relevant factors. (1) The pairing943

mechanism is defect-mediated. Several recent studies sug-944

gest that extended defects such as tetragonal domain walls945

and dislocations favor superconductivity in SrTiO3 [65, 66].946

In our case, however, the disorder reduction is likely driven947

by reduced scattering from charge disorder near the sur-948

face. It is not clear that structural defects should be sup-949

pressed by adding a thin HfOx layer. (2) Rearrangement950

of electronic structure and/or t2g band order due to the951

lowest-lying band changing from dxy (in SrTiO3/IL and952

SrTiO3/LaAlO3) to dxz,yz (in SrTiO3/HfOx+IL), as sug-953

gested by the increased in-plane cyclotron mass in our954

2DEG. (3) Crossover from dirty to clean limit BCS. Super-955

conducting 2DEGs in SrTiO3 are usually in the dirty limit:956

π∆τ/ℏ ≪ 1 (τ is the scattering rate and ∆ the supercon-957

ducting gap), and superfluid density NS is correspondingly958

a fraction of the total carrier density N [67]. In uniformly959

doped SrTiO3, a crossover to the clean limit (π∆τ/ℏ ⪆ 1,960

NS ≈ N) has been observed at low N [68]. The decreased961

disorder in our case would put the system into the clean962

limit if the superconducting Tc remained near typical values963

0.1-0.4 K. A possible interpretation is thus that supercon-964

ducting order is unstable in the 2D clean limit. Moreover,965

comparison between this work and Refs. [14, 26, 64] sug-966

gests an overall trend of decreasing critical field Bc at low967

disorder (see supplementary section S1B). The correspond-968

ing increase of superconducting coherence length and its969

interplay with lateral 2DEG inhomogeneity are likely im-970

portant pieces of the puzzle.971
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Extended Data Fig. 2. Absence of long range
superconducting order. Connected symbols show

superconducting Tc for the same device with Hall density
tuned by ionic liquid gate voltage. Lateral shading for

SrTiO3/HfOx+IL data represents the NH region explored
by VGIL modulation with frozen ionic liquid. SrTiO3+IL
data are from [26], SrTiO3/hBN+IL data are from [14],
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SrTiO3/LaAlO3 is drawn consistent with [62, 63].
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details.
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S2

S1. UNPATTERNED 2DEG TRANSPORT

A. Gate tuning of the Hall bar channel

In this section, the details of global carrier density tuning in the Hall bar channel are presented. The control knob
used for this purpose in this work is the ionic liquid gate voltage VGIL. We note a departure from the procedure in
our previous work [S1], in which VGIL was set near room temperature, remained unchanged throughout the cooldown,
and the back gate voltage applied to the bottom of the SrTiO3 was used to modulate the vertical extent of the 2DEG.
In this work, VGIL was used for both of these purposes and no back gate contact was made. In our testing of the main
QPC device and control Hall bar devices, we found that at low temperatures, the functionality of adjusting VGIL is
very similar to the one of a back gate voltage. The low temperature is required to freeze the ionic liquid (below 220
K) and to maximize the dielectric constant of SrTiO3 (which increases up to ≈ 104 in the few Kelvin range [S2]).
Consequently, there are two relevant values of VGIL for each device state: the voltage used above 220 K to coarsely
set the global 2DEG carrier density, and the voltage used near base temperature for finer modulation of the 2DEG.
Throughout the manuscript, cited values of VGIL refer to its low temperature state.

For the near room temperature values of VGIL, the Hall density measured at base temperature is used as a proxy.
VGIL was first set to 3.5 V at room temperature prior to the first cooldown of the main device, yielding a Hall density
NH = 10.4× 1013 cm−2 at base temperature. For the second and third cooldowns, VGIL was set to 1 and 3.9 V at 280
K, yielding NH = 3.0 and 4.6 ×1013 cm−2, respectively.
In comparison to our previous work on ionic liquid-gated SrTiO3 devices without HfOx barriers [S1], there was a

notable difference in the time scale required for device state stabilization after adjusting VGIL near room temperature.
For devices described in [S1], this time scale was on the order of tens of seconds to several minutes (depending on
temperature). In this work, stabilization on the scale of tens of minutes was necessary even for small adjustments
on the order of 0.1 V. This explains why large VGIL swings described above were needed to obtain desired carrier
densities. Qualitatively, these observations are consistent with presence of a dielectric capacitor (HfOx barrier layer)
between the polarized ionic liquid molecules and the channel, resulting in slower charging of the system under voltage
difference.

Fig. S1 shows the effect of VGIL at base temperature on the 4-probe measurements of 2DEG Hall density NH, its
sheet resistance Rxx, and Hall mobility µH = (eNHRxx)

−1. Measurements from 20×20 µm squares on both sides of
the constriction are shown. The constriction in the middle is tuned into an open (many-channel) state by setting
VG12=0.8 V. Small non-linearity of the Hall effect in B (less than 15% between 0 and 14 T for all cooldowns) was
neglected. For all cooldowns, tuning by VGIL with frozen ionic liquid is marginal. Its direction is consistent with
the back-gating mechanism described in [S1, S3]: higher back gate voltage or VGIL increases the vertical extent of
the 2DEG, moving it away from surface disorder and thus increasing µH. This effect is overlayed with a similarly
marginal capacitive modulation of NH. Similarly to back gating in [S1], the available range of VGIL at low temperature
is restricted by: 1) degradation of ohmic contacts at VGIL below a certain threshold, 2) hysteretic saturation of the
modulation at high VGIL, similarly to [S1, S4].
Modulation by VGIL has a more pronounced effect on the adjacent constriction. In particular, it allowed us to tune

the constriction pinch-off point (see section S3), and avoid the regime of negative split gate voltage VG12 where ohnic
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Fig. S1. 2DEG tuning by VGIL with frozen ionic liquid. (a) Hall density at B = 14 T for cooldowns 1 and 3,
5T for cooldown 2. (b) 2DEG sheet resistance at B = 0.2, 0, 0.5 T for cooldowns 1, 2, 3 respectively. (c) Hall

mobility. (d) Mean free path.
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Fig. S2. Non linearity in two-terminal measurements. (a) Temperature dependence of the AC two-terminal
resistance R2T, and 4 terminal measurements of the constriction and 2DEG resistances. Data from the 4.6× 1013

cm−2 cooldown. (b) Drained DC current - nominal DC voltage curve at base T , and different split gate voltages. (c)
Corresponding 2-terminal DC resistance, showing jumps at same DC current. Data in (b,c) are from the 3.0× 1013

cm−2 cooldown, same measurement is also shown in Fig. S7d.

contacts are also prone to damage. VGIL values used for detailed characterization of the constriction were 7 and 10 V
for the 3.0 ×1013 cm−2 cooldown and 12 V for the 4.6 ×1013 cm−2 cooldown. The NH values used throughout the
manuscript to identify the 3.0, 4.6, and 10.4 ×1013 cm−2 cooldowns are for VGIL = 10, 12, and 16 V, respectively,
averaged between the 2DEG sections on the left and right of the constriction.

B. Absence of superconductivity

A noteworthy surprise discussed in the main text is the absence of superconductivity in 4-terminal measurements
of the 2DEG resistance. Fig. S2a illustrates that the temperature dependence of Rxx is flat down to the base
temperature (37 mK here). The same is true for the resistance of the constriction (RQPC) tuned into an open state by
VG12. However, a strong superconductor-like down turn is clearly seen between 130 and 200 mK in the two-terminal
resistance R2T = VAC/Id, where VAC is the nominal source voltage excitation and Id is the measured drain current.
Since the measurement configuration involves sourcing a voltage across the constriction, R2T is approximately a series
sum of 2Rxx, 1/G (constriction resistance), 2DEG-to-metal ohmic contact resistances, two sets of metallic lines on
the device and dilution refrigerator lines, including cryogenic filtering setups (with 2-3 kΩ DC resistance per line).
Of these contributions, the most likely candidate for the location of the observed drop in R2T is the 2DEG-to-metal
ohmic contact, which was fabricated by patterned ion milling of SrTiO3, followed by Ti/Au metal deposition. The ion
milling procedure is typically understood to dope SrTiO3 with oxygen vacancies, creating robustly metallic 2DEGs
[S7]. Consequently, our device likely has a narrow superconducting region below and/or near the ohmic contacts.
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This explanation is consistent with the observation of a drop in R2T driven by temperature, small magnetic field (at
≈ 50 mT), and DC source current (shown in Fig. S2b and S2c).

Extended Data Fig. 2 in the main text compares the range of carrier density studied in our SrTiO3/HfOx+IL
device (IL stands for ionic liquid gate) to closely related superconducting 2DEGs: SrTiO3+IL devices with very
similar design but lower mobility [S1] and SrTiO3/hBN+IL Hall bar devices with comparably high mobility [S6], and
SrTiO3/LaAlO3 2DEGs [S8, S9]. The overall trend is suppression of peak Tc value and its movement to higher NH

for SrTiO3 2DEGs with high mobility. A potentially related trend is the suppression of the superconducting critical
field Bc and the corresponding increase of the inferred superconducting coherence length ξ = (Φ0/2πBc)

1/2 at low
disorder. This is based on comparison with [S1, S5, S6] in Fig. S3, where Bc and corresponding ξ are shown as a
function of Hall mobility. For the device in this work, Bc = 0. This is not an ideal cut in the Bc – µH space, as carrier
densities and sources of disorder are different across these works, but rather a coarse illustration of a big picture trend.

C. Shubnikov-De Haas oscillations

This section presents supplementary data on quantum oscillations in the 2DEG resistance, and describes in detail
their analysis. The measurement configuration was similar to all other measurements described in this work, but the
constriction was tuned into an open state by VG12, and a large AC source current (500 nA) was sourced through the
constriction to improve the signal-to-noise ratio in the 4-probe measurement of 2DEG resistance Rxx. For all three
cooldowns of the main device, strong oscillatory features were present in the longitudinal magnetoresistance of the
2DEG. For the 4.6×1013 cm−2 cooldown, a detailed analysis of the temperature dependence of such oscillations is
shown in Extended Data Fig. 1 in the main text and Fig. S6. Fig. S4 shows base temperature (≈ 40 mK) traces for
all three cooldowns, measured on both sides of the constriction.

As demonstrated below, oscillation periodicity was typically not regular in 1/B . This caused the Fourier analysis to
be overly sensitive to the choice of data range, and thus not reliable in our case. As an alternative, we algorithmically
identified the minima and maxima of individual oscillations, indicated by red and orange markers in Fig. S4. For
corroboration, we carried out this analysis on δRxx (4-terminal resistance of the 2DEG after subtraction of a smooth
background), and on its second derivative d2Rxx/dB

2 (without any background subtraction).
The spacing between oscillations extrema is shown in Fig. S4 as a B-dependent frequency fSdH. Within the picture

of Shubnikov-de Haas oscillations, the corresponding carrier density is NSdH = 2eh−1fSdHν
−1, where is ν is the

degeneracy number. The conversion between the NSdH and fSdH axes in Fig. S4 is shown assuming ν = 1 (spin-
resolved Landau levels). An alternative representation is the “Landau plot” shown in Fig. S4: oscillation extrema are
indexed as integer Landau Level number nLL, and plotted with respect to their position in 1/B. A straight line with
a slope given by fSdH is expected for conventional Shubnikov-de Haas oscillations.
A recurring pattern in Fig. S4 is the abrupt increase in oscillation periodicity as B is increased past a certain value

BX of order 4-8 T. As summarized in Fig. S5, fSdH was typically 60-100 T at high B > BX, which corresponds to
NSdH of 3-5×1012 cm−2. At low B < BX, fSdH is lowered by a factor of 2-3.
In Fig. S4, the Landau plots were fitted to BX, fSdH above BX, and a numerical multiplicative factor FX for fSdH

below BX. BX is 5.5-7.5 T from analysis of δRxx and 4-6 T from analysis of its second derivative. This discrepancy
is expected since the latter procedure captures more of the vanishing high frequency extrema near BX. Due to the
difficulty of accurately resolving all peaks near and below BX, both BX and FX are not reliably measured quantities.
Least squares fitting gives FX = 1.5-3, but it is likely to be overestimated due to unresolved oscillation peaks.

A natural explanation for this increase in fSfH is breaking of the spin degeneracy, bringing ν from 2 to 1 above BX.
This would be consistent with FX = 2. A conventional explanation for the persistence of this two-fold degeneracy
up to a fairly large BX involves a situation where cyclotron and Zeeman energy scales (or their integer multiples)
are approximately equal (ℏωc ≈ gµBB). If their difference is less than Landau level broadening, than the adjacent
spin up and down Landau levels will end up overlapping in finite B. This will result in apparent spin degeneracy,
persistent up to a field where ℏωc − gµBB becomes larger than the broadening. This situation has been observed in
SrTiO3-based 2DEGs [S10, S11]. The condition ℏωc ≈ EZ is likely to be satisfied in our case as well. Taking m∗ = 3
(value extracted below from T dependence of oscillation amplitude), ℏωc = EZ if g = 0.67. This is approximately
double of the value extracted from analysis of QPC subbands (see section S2C), and very close to the value reported
in [S12].

A compelling alternative explanation involves comparing the BX scale from quantum oscillations in the 2DEG
with the BP scale observed in the Y subband shape observed in transport across the adjacent gated constriction
(see section S2C). Both BX and BP are indicative of a two-fold degeneracy (presumably from spin) that persists in
finite field. BX = 4-8 T is approximately coincident with BP = 5-6 T observed for the lowest lying subbands of the
constriction. It is therefore natural to speculate whether the physics behind non-zero BX and BP could be the same.
A likely mechanism for the Y shape in QPC subbands is from an attractive pairing interaction between electrons, as
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Fig. S4. Supplementary quantum oscillation data. Left column: background subtracted magnetoresistance
(black) and its second derivative with B (grey), markers are indexed oscillation peaks. Middle column: Peak-to-peak

spacing, converted into local frequency and carrier density. Right column: Landau plot of Landau level index
against 1/B. Lines in middle and right columns are fits to separate oscillation frequencies above and below BX. For

each row, Hall carrier density and Rxx measurement on right or left side of the constriction are labeled in the
leftmost plot.
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discussed in the main text and [S13]. If this interaction is intrinsic to the 2DEG, regardless of quantum confinement in
the constriction, it could result in a genuine (as opposed to apparent for the conventional explanation) spin degeneracy
that is persistent in large B. Within the present study, we cannot conclusively discriminate between the conventional
and alternative explanation for persistent two-fold degeneracy in the 2DEG. The progressive nature of periodicity
doubling indicated by the different transition field scales extracted from analysis of δRxx and d2Rxx/dB

2 appears
more consistent with the conventional explanation.

Conversely, it is important to note that the conventional mechanism (ℏωc ≈ EZ) cannot explain persistent two-fold
degeneracy in the constriction: its subbands are further split by quantum confinement in lateral and vertical direc-
tions, preventing the possibility of overlap between adjacent Zeeman-split subbands. Therefore, if the conventional
explanation is valid for oscillations in the unpatterned 2DEG, the coincidence with BP in the constriction is most
likely accidental.

The oscillation amplitude ∆Rxx is typically analysed in the framework of the Lifshitz–Kosevich formula, which
describes its suppression with B and T :

δRxx(B, T ) = 4R0ATAB ,

AT =
αT

sinh(αT )
,

AB = exp(−αTD),

α = 2π2kB/ℏωc,

(S1)

Where ωc = eB/m∗
e is the cyclotron frequency, R0 is a constant amplitude factor, TD is the Dingle temperature.
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Figures S6a and S6b show the temperature dependence of peak-to-peak amplitude of oscillations in both δRxx

and d2Rxx/dB
2. Both were fitted to the thermal suppression factor AT , giving the effective mass m∗ shown in

Fig. S4c. For peaks in the B = 7-9.5 T range, m∗ = 3 - 3.2 from both procedures. At low B close to BX (<7 T),
peak-to-peak amplitude is affected by the transition to larger oscillation periodicity. At high B (>9.5 T), a faint low
frequency oscillation (difficult to distinguish from smooth background) interfered with the extraction of the dominant
oscillation amplitude. Presence of multiple oscillation components has been documented in other SrTiO3-based 2DEGs
[S6, S10, S14–S16].

Analysis of the magnetic suppression factor AB was not reliable due to the narrow range in B where oscillations
were not subject to such beating patterns. Within the available B range, it was not possible to accurately disentangle
secondary oscillation contributions for our case. Estimates in the intermediate range B = 8-10 T gave TD = 0.6-1.7
K (from δRxx) and 0.2-0.6K (from d2Rxx/dB

2). With m∗ = 3.1, the estimate range for the corresponding quantum
mobility µQ = ℏ/(2πm∗

ekBTD) is 400-3500 cm2/Vs.
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S2. QPC TRANSPORT

A. DC bias spectroscopy and lever arm analysis

In this section, supplementary DC bias spectroscopy data are presented. The transconductance diamond pattern
in such measurements is evidence of ballistic transport across the constriction. It also allows for extraction of a “lever
arm” coefficient fLA for conversion of split gate voltage into chemical potential.

Fig. S7a illustrates the physical mechanism behind DC bias spectroscopy. At VDC = 0, the conductance of the QPC
(G) is determined by the number of discrete subbands below the chemical potential (µ), which is locally controlled by
one or two split gates (VG12 or VG2, interchangeably referred to as VG below). Each subband contributes a quantum
of νse

2/h to G, with νs = 1 or 2 being the spin degeneracy. Gradually increasing µ with VG creates a step structure
in G. Equivalently, peaks in dG/dµ (or dG/dVG) occur at subband energies. A non-zero VDC creates a difference
between the chemical potential in the left and right lead (µL and µR). Therefore, the number of filled subbands
needs to be counted separately for the left and right moving electrons. Each subband now contributes a quantum of
νse

2/2h, allowing for fractional filling with µL or µR) only. In the example in Fig. S7a, applying VDC changes G from
4e2/h to 5e2/h (if νs = 2).

For a two-dimensional measurement of G with VG and VDC, this mechanism creates a diamond pattern with
alternating rows of “integer” plateaus at G = nνse

2/h (n = 0, 1, 2, ...), and “half-integer” plateaus at G = (n+0.5) ·
νse

2/h. Such patterns are observed in our device in the cooldowns with global Hall density at 3.0 and 4.6 × 1013

cm−2. At B = 5 T, νs = 2 (Fig. S7b,e). At B = 14 T, νs = 1 (Fig. S7c,d). Deviations from the pattern are present
in the form of overlapping subbands, either from Zeeman splitting at high B (Fig. S7c) or from overlap between
subbands generated by lateral and vertical confinement (see sections S2B, S2C). At B = 0 T, the diamond pattern
from ballistic subbands is clearly observable (Fig. S7d). But the quantization pattern in G deviates strongly from
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the conventional pattern described above, due to strong subband overlap and, additionally, subband fractionalization
that is discussed in more detail in section S3.

The gate lever arm factor can be extracted from the slope of the subbands: fLA = dVDC/2dVG at dG/dVG peaks (at
VDC = 0). Dashed lines in Fig. S7 illustrate this analysis. It is evident that fLA decreases at high filling, particularly
at high B where subbands are clearly resolvable at high VG. To account for this gate dependence, the fLA is extracted
as a function of VG, from the subband slope near zero bias. Fig. S8 shows that measurements at different B collapse
onto a single curve for each cooldown, when fLA is plotted against gate voltage. In this plot VG is corrected for long
term drift (on the scale of weeks) in VG between DC bias spectroscopy measurements. This was done by matching
traces of G(VG) at zero bias to cuts from a single G(VG, B) measurement. Both quantities were also normalized by
nG = 1 or 2, depending on whether VG12 pr VG2 was used to tune µ.
We found that the collapsed curve is well described by a renormalized expression for the dielectric constant non-

linearity of SrTiO3 in electric field [S17]:

fLA(VG) =
fLA(0) · VNL√

V 2
NL + (VG − VG0)2

. (S2)

Here, VNL is a parameter describing the sharpness of non-linearity, VG0 is a horizontal offset, and fLA(0) is the
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Fig. S9. Importance of accounting for gate lever arm non-linearity. Same measurement of
transconductance with split gate voltage and B is plotted against (a) unprocessed VG2, (b) VG2 converted into µ

with equation S3. Top axis shows the reversed conversion. Data are for the 3.0× 1013 cm−2 cooldown, VGIL = 10 V.
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maximum lever arm value at zero electric field across the split gate capacitor. This equation offers a compelling
connection to the intrinsic dielectric non-linearity of SrTiO3, arising from proximity to ferroelectricity. However,
strong and qualitatively similar lever arm variations can be present even in conventional QPC’s fabricated with linear
gate dielectrics [S18]. We therefore do not attempt to disambiguate the physical origins of this non-linearity. The
main utility of this analysis is in allowing for a straightforward conversion of VG into an energy scale µ, at any B:

µ(VG) =

∫ VG

VG0

fLA(VG) · (VG − VG0)dVG = fLA(0) · VNL arctan

(
VG − VG0√

V 2
NL + (VG − VG0)2

)
. (S3)

To illustrate the importance of this correction, Fig. S9 presents the same measurement as dG/dVG12(VG12, B)
and dG/dµ(µ,B). A measurement for the 3.0 × 1013 cm−2 cooldown is shown, where non-linearity is the strongest.
Conversion of VG12 into µ reverses a significant warping of the subband shape, particularly at high filling. The validity
of the conversion is also corroborated by the alignment of dµ/dB slopes for the lowest lying subbands in high B. In the
framework of constriction subbands generated by both vertical and lateral confinement, this corresponds to electron
mass being constant with subband index. Using a gate-independent fLA would incorrectly indicate a decreasing mass
at higher subband indices.

B. Constriction Hamiltonian in a three-dimensional confinement potential

In this section, we detail the theoretical framework used for the analysis of QPC subband evolution in magnetic
field. The essential ingredient of the model is a three-dimensional potential (see main Figure 4a) with parabolic
confinement in x, y (directions in the 2DEG plane, orthogonal and parallel to the current across the constriction,
respectively), and z (normal to the 2DEG plane). A full derivation of the Hamiltonian and subband energies with x,
y, and z confinement can be found in [S19]. A closely related model with y and z confinement has been presented in
[S12]. The classic derivation with x and y saddle potential confinement can be found in [S20].
The expanded form of the Hamiltonian introduced in the main text, written in the Landau gauge with vector

potential A = (0, xB, 0), is:

H = − ℏ2

2m∗
x

· ∂2

∂x2
− ℏ2
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∂x2
− m∗

xϵ
2
xx

2

2ℏ2
+

m∗
yϵ

2
yy

2

2ℏ2
+

m∗
zϵ

2
zz

2

2ℏ2
+ EZσz, (S4)

Where the first three terms are the kinetic energy, the next three terms define the parabolic confinement potential,
and the last term is the Zeeman energy with the B field applied in the z direction. At zero magnetic field, confine-
ment potentials in u = x, y, z can be approximated by the quantum harmonic oscillator model. With lu, being the
characteristic length scale of the constriction, ωu = ℏ/m∗

u/l
2
u and ϵu(B=0) = ℏωu. For B > 0, the cyclotron energy

ℏωc = eB/m∗
y renormalizes the x and y confinements [S19]:

ϵ2x(B) = −ℏ2
(
ω2
y + ω2

c − ω2
x

)
+

ℏ2

2

√(
ω2
y + ω2

c − ω2
x

)2
+ 4ω2

xω
2
y,

ϵ2y(B) = ℏ2
(
ω2
y + ω2

c − ω2
x

)
+

ℏ2

2

√(
ω2
y + ω2

c − ω2
x

)2
+ 4ω2

xω
2
y,

ϵz(B) = ϵz(B = 0) = ℏωz.

(S5)

In the limits of small ωx, or large ωc, or small ωc the x and y confinement energies have a simpler form:

ϵx(B) = ℏωx/
√
1 + ω2

c/ω
2
y,

ϵy(B) = ℏ
√

ω2
y + ω2

c ,

ϵz(B) = ϵz(B = 0) = ℏωz.

(S6)

For simplicity, the modeling of QPC subbands was carried using equation (S6). For ωx/ωy smaller than or of order
unity, the energies given by equations (S5) and (S6) track each other closely with B, with the discrepancy peaking
near ωc = ωy. It is below 12% for ωx = ωy, and below 6% for ωx = 0.7ωy (typical value found in our analysis).
The Hamiltonian in equation (S4) is separable into x and y, z components. The y-z subband spectrum is discretized

according to quantum numbers |ny, nz, s⟩. s = ±1/2 is the electron spin and ny,z = 0, 1, 2, ... The x wavefunction
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Fig. S10. Non-interacting model wavefunctions. Normalized harmonic oscillator wavefunction
(ϕy(0, y)/ϕy(0, 0)) · (ϕz(0, z)/ϕz(0, 0)) in the y–z plane for the six lowest lying subbands. Generated with

equation (S10), using ℏωy, ℏωz = 0.15 meV, m∗
y = me, m

∗
z = 10mee. Natural length scales ares ly = 22.6 nm, lz =

7.1 nm.

component broadens these subbands. The subband energies are:

ϵyz(ny, nz, s) = ϵy

(
ny +

1

2

)
+ ϵz

(
nz +

1

2

)
+ EZ(B, s) (S7)

To account for the unusual Y-shape of QPC subbands observed in B field, the Zeeman energy was modified to only
turn on above a threshold field BP:

EZ(B<BP, s) = 0

EZ(B≥BP, s) = gµBs(B −BP)
(S8)

The conventional Zeeman effect is recovered if BP = 0.
As a function of chemical potential µ (tuned in our experiment by VG12), the contribution of each individual subband

to the constriction conductance G is given by:

G(µ, |ny, nz, s⟩) =
e2

h
·
[
1 + exp

(
−2π · µ− ϵyz

ϵx

)]−1

. (S9)

The subband conductance increases from 0 to e2/h near µ = ϵyz. The step function-like transition is broadened by
ϵx. The measured total conductance is a summation across all quantum numbers ny, nz, s.

The corresponding harmonic oscillator wavefunctions (shown in Fig. S10) along u = y, z are:

ϕu(nu, u) =
(ωumu

πℏ

)1/4 1√
2nunu!

exp

(
−ωumuu

2

2ℏ

)
Hnu

(
u

√
muωu

ℏ

)
, (S10)

Where Hnu is Hermite polynomial of order nu.
Fig. S11 shows a model spectrum generated by subbands up to n = ny + nz = 9 with approximately equal ωz and

ωy. At B = 0, this generates dense packets of subbands with same total quantum number n. Both the width in µ and
the number of subbands in each packer increases with n. The series of subbands generated by nz ≥ 0 and ny = 0 is
distinctive because of the low slope with B. It ends up isolated as the lowest lying at high B. Subbands with ny > 0
generate a dense envelope under the ny = 1, nz = 0 subband. These features are distinctly present in our experiment,
validating the use of this model.

A natural consequence of this model is the intermittent occurrence of high order subband degenaracies (beyond
the spin degeneracy s = ±1). If ωz = ωy, the subband packets at constant n = ny + nz become degenerate at
B = 0. For small ωz − ωy, the packets can be quasi-degenerate within the broadening width in x. A full degeneracy
is intermittently recovered when subbands at same n cross at a singular point in B. Furthermore, multiple series of
coincident crossings in magnetic field between multiple subbands are generated naturally if the confinement potentials
are harmonic, i.e. if the subband spacing is given by ℏωy and ℏωz that do not change with µ.
The conductance quantization between these packets follows the pattern G · h/e2 = n(n+ 1) = 0, 2, 6, 12, 20, ... In

[S21], a similar half-quantization pattern (G ·h/e2 = n(n+1)/2) has been referred to as a “Pascal series”. The factor
of 2 comes from broken spin degeneracy, as the mechanism in [S21] for producing coincident subband crossing in B
relied on matching the y and z confinement potentials to the cyclotron frequency and the Zeeman energy.
The discussion of our case above was for spin degenerate subbands at B < BP and the Pascal-like series in G is

generated by approximately matching y and z confinements only. Such subband crossings are a non-interacting effect
and we do not make a claim of subband locking due to unconventional electron-electron interactions [S21]. The finite
width of subband crossings in the B–µ space (as opposed to a point crossing) observed in our experiments (see main
figures 3 and 4 in the main text and the following section S2C) is consistent with subband broadening in x.
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Fig. S11. 3D confined constriction model output. Model (a) conductance and (b) transconductance maps
generated by the subband spectrum from equation S4-S9, using ℏωx = 0.15 meV, ℏωy = 0.3 meV, ℏωz = 0.35 meV,
m∗

y = 0.7me, BP = 7 T, g = 0.6. Lines indicate subband energies. Selected quantum numbers are labeled in (a).
Selected spin-degenerate mode numbers are labeled in (b).

A clean ballistic quantum point contact in strontium titanate 

23



S13

C. Extended analysis of ballistic subbands in magnetic field

In this section, analysis of QPC conductance in magnetic field is presented in extended detail, starting from
dG/dµ(B,µ) maps, progressing to extraction of model parameters (ωx, ωy, ωz, m

∗
y, BP, g), and generation of model

transconductance maps for comparison with data. Discussion in the main text focuses on dG/dµ(B,µ) data from
the cooldown with Hall density NH = 4.6× 1013 cm−2 and VGIL = 12 V. Here, it is analysed alongside two separate
datasets measured during the 3.0× 1013 cm−2 cooldown, at VGIL = 10 and 7 V.

Following the model framework from section S2B, this analysis largely focuses on the |ny = 0, nz, s = ±1/2⟩ set of
subbands. They are clearly resolvable at magnetic fields above the position of the |1, 0,±1/2⟩ subband and the dense
“forest” of subband crossings that lies below.

The |0, nz,±1/2⟩ subband positions µ were identified algorithmically as points at which G = (2nz + 1) · e2/h. In
the spin degenerate state below BP, this is the middle of the transition between conductance plateaus. In presence
of non-zero Zeeman splitting above BP that is symmetric with respect to spin, the procedure is still expected to give

0 1 2
…(meV)

0

2

4

6

8

10

12

14

B…
(T

)

0 1 2 3 4 5nz:
a

0 1
…(meV)

0

2

4

6

8

10

12

14
B…

(T
)

0 1 2 3 4 5nz:
b

0 1
…(meV)

0

2

4

6

8

10

12

14

B…
(T

)

0 1 2 3nz:c

0 20 40 60 80
dG/d …(e2/h/meV)

0 20 40 60 80 100 120
dG/d …(e2/h/meV)

0 20 40 60 80 100 120
dG/d …(e2/h/meV)

Fig. S12. Fits to individual subbands. Transconductance maps with µ and B are shown for NH (1013 cm−2),
VGIL (V) = 4.6, 12 (a); 3.0, 10 (b); 3.0, 7 (c). Black markers are fixed conductance points used to algorithmically

identify subband positions. Red lines are fits to equation (S7) for |0, nz ≥ 0,±1/2⟩ subbands.
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Fig. S14. Subband packets at zero field. Parametric plot of transconductance against conductance at B = 0.
Markers are data for the 4.6× 1013 cm−2 cooldown. Shaded regions indicate the extent of subband packets with

same ny + nz, used to estimate ℏωy and ℏωz shown in Fig. S15. Black line is the resulting output of equations (S7)
and (S9) with ℏωx = 0.11 meV.

0 1 2 3 4 5
nz

0.00

0.05

0.10

0.15

0.20

0.25

…(m
eV

)

a

z…from…spacing…of…|0,nz …fits

z…from…G( )…at…B = 0
y…from…fit…to…|0,0

y…from…G( )…at…B = 0

0 1 2 3 4 5
nz

0.00

0.05

0.10

0.15

0.20

0.25

…(m
eV

)

b

0 1 2 3 4 5
nz

0.00

0.05

0.10

0.15

0.20

0.25

…(m
eV

)

c

Fig. S15. Subband spacing. Comparison of separate estimates for ℏωy amd ℏωz: from individual fits in the µ-B
space, and from subband packet analysis in G(µ) at B = 0. NH, VGIL = 4.6× 1013 cm−2, 12 V (a); 3.0× 1013 cm−2,

10 V (b); 3.0× 1013 cm−2, 7 V (c).

an extrapolation of the spin degenerate subband. In practice, the target G needed to be adjusted slightly below the
ideal value: G = 1, 2.8, 4.7, 6.8, 8.9, 10.5 e2/h for the 4.6× 1013 cm−2 cooldown. This is consistent with the presence
of a small series resistance between the voltage probes and the constriction.

These subbands energies can be fitted to equation (S7). The relevant model parameters are m∗
y (giving ℏωc and

the slope at high B) and ℏωz (subband spacing in µ). If µ is referenced to the lowest lying subband, ℏωy only has
a minor effect on the trace shape, changing its curvature near B = 0. Because of the crossings with the |1, 0,±1/2⟩
subband, ℏωy can only be reliably fitted to the lowest-lying |0, 0,±1/2⟩ subband. This value of ℏωy was used for
subsequent fits to |0, nz > 0,±1/2⟩, a choice corroborated by independent estimates from analysis of conductance at
B = 0 (see below). The resulting fit traces are shown in Fig. S12. The extracted confinement parameters are shown
in Fig. S13a,b.

A separate estimate of both ℏωy and ℏωz can be extracted from the G(µ) trace at B = 0. As illustrated in Fig. S11,
in the case where ℏωy is close to but smaller than ℏωz, the subbands are grouped in packets of increasing width.
Fig. S14 shows that this picture is consistent with the experimental situation for the 4.6 × 1013 cm−2 cooldown,
remarkably up to G ≈ 50 e2/h. We see transconductance peaks with increasing width in G. In the 3D confined
constriction model, these are packets of subbands with the same ny + nz quantum number, and with increasing
numbers of mixed |ny > 0, nz > 0, s = ±1/2⟩ subbands. If ωy < ωz, |ny > 0, 0, s = ±1/2⟩ and |0, nz > 0, s = ±1/2⟩
are the first and last subbands in the packet, respectively. ℏωy can be estimated as the spacing in µ between points
with G · h/e2 = 1, 3, 7, 13, 21, ... (first transition in each subband packet). Similarly an estimate for ℏωz is the
spacing in µ between points with G · h/e2 = 1, 5, 11, 19, 29, ... (last transition in each subband packet). Deviations
in the experiment from the simple subband packet pattern described here are likely due to a combination of finite
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Fig. S16. Supplementary conductance quantization data. Parametric transconductance plots for the
3.0× 1013 cm−2 cooldown, VGIL = 10 V (a), 7 V (b).
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Fig. S17. Y shape of the subbands. Transconductance plots, centered in chemical potential based on G value
indicated in each plot. From left to right, plots are for |0, nz > 0,±1/2⟩ subbands with increasing nz. NH (1013

cm−2), VGIL (V) = 4.6, 12 (top row); 3.0, 10 (middle row); 3.0, 7 (bottom row). White markers indicate extracted
BP values, see Fig. S19, S20, and text for discussion of analysis procedure.

series resistance, increasing overlap between neighboring subband packets, and insufficiently granular quantification
of subband broadening (discussed below). Fig. S15 shows that these estimates are consistent with the results from
fitting individual subband positions in the µ-B space. For the 3.0× 1013 cm−2 data taken at VGIL = 7 V (Fig. S15c),
the assumption ωy ≈ ωz is not accurate, leading to a larger discrepancy between the two analysis approaches.

For the 3.0× 1013 cm−2 cooldown, additional fractionalization physics are at play. The first transition at B = 0 is
between G = 0 and ≈ 1 e2/h (in Fig. S16a), 0 and ≈ 0.5 e2/h (in Fig. S16b). An in-depth discussion of fractionalization
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Fig. S19. Zeeman splitting. Fitted double peak spacing (ϵF2R − ϵF2L) is shown as markers. Shading is the
combined fitted peak width (ℏωF2L/2+ℏωF2R/2). Dashed lines are fits to gµB(B −BP). Data for different subbands
are arbitrarily offset in δµ for clarity. NH (1013 cm−2), VGIL (V) = 4.6, 12 (top row); 3.0, 10 (middle row); 3.0, 7

(bottom row).

is presented in section S3. For the purpose of subband analysis, we found that using the expected G as a proxy for
subband location in µ gives results that are consistent with the fitting analysis at B > 2 T (where fractionalization is
suppressed). Similarly to Zeeman splitting, one would expect this procedure to work reliably if the fractional splitting
is symmetric in µ.
In Fig. S17, the |0, nz,±1/2⟩ subbands are centered in µ, using the procedure described above to get the offset in µ
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(location of G in the middle of transition between plateaus). The removal of the tilting in B from the ωc contribution
allows for a qualitative assessment of the Zeeman splitting being more consistent with a “Y” shape (BP > 0) rather
than the conventional “V” shape (BP = 0).
For a more quantitative assessment, we performed least-squares peak fitting to individual dG/dµ cuts at constant

B. We used the line shape given by the derivative of equation (S9):

dG

dµ
=

2πIF1
ℏωF1

·
exp

(
−2π · µ−ϵF1

ℏωF1

)
(
1 + exp

(
−2π · µ−ϵF1

ℏωF1

))2 , (S11)

where the fitting parameters are IF1 (peak height), ϵF1 (horizontal offset in µ), and ℏωF1 (peak broadening). This
single peak description is meaningful at small B above the |1, 0,±1/2⟩ subband, and up to B slightly above BP where
Zeeman split peaks become clearly resolved.

In the region above BP, we separately fitted the dG/dµ cuts to a double-peak lineshape:

dG

dµ
=

2πIF2L
ℏωF2L

·
exp

(
−2π · µ−ϵF2L

ℏωF2L

)
(
1 + exp

(
−2π · µ−ϵF2L

ℏωF2L

))2 +
2πIF2R
ℏωF2R

·
exp

(
−2π · µ−ϵF2R

ℏωF2R

)
(
1 + exp

(
−2π · µ−ϵF2R

ℏωF2R

))2 , (S12)

With the fitting parameters IF2L, ϵF2L, ℏωF2L for the “left” peak and IF2R, ϵF2R, ℏωF2R for the “right” peak. Examples
of single and double peak fitting are shown in Fig. S18.

The quantity of interest for quantifying the Zeeman effect is the peak spacing ϵF2R − ϵF2L. Fig. S19 shows that its
B dependence can be fitted to the modified Zeeman splitting in equation (S8), with BP and g as fitting parameters.
As indicated by red “x” markers, the fitting range in B was restricted to exclude spurious features, particularly near
BP and at very high B. Considerable interpretation uncertainty could not be excluded from the analysis of individual
subbands. But the overall pattern in Fig. S19 is robustly consistent with g = 0.15-0.35 and BP of at least 4 T
(Fig. S16), increasing above 14 T (maximum available in our experiment) with nz.

Separate quantities of interest from these fits are the broadening parameters ℏωF1, ℏωF2L, ℏωF2R, shown in Fig. S20
for the |0, 0,±1/2⟩ subband. In the picture of constriction conductance given equation (S9), these broadening widths
correspond to longitudinal potential energy ϵx and are expected to scale with B as in equation (S6). If one uses
m∗

y and ωy from subband position fitting described above, a fit to equation (S6) with ωx provides a reasonably close
description of ℏωF1 at B < BP (dashed line in Fig. S20), but with an overly abrupt decrease in B. The description
is significantly improved by adding a B-independent contribution ℏωx0:

ϵx(B) = ℏωx0 +
ℏωx√

1 + ω2
c/ω

2
y

. (S13)

The solid line in Fig. S20 is a fit to ℏωx0 and ℏωx. It captures well the low B behavior. The increase seen in
all broadening widths near BP is a natural consequence of emergent peak splitting, which is not captured by this
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Fig. S20. Subband broadening. Fitted peak width in field. Circle symbols show single peak fits (valid below
BP = 5 T) are shown for |0, nz > 0,±1/2⟩ subbands. For |0, 0,±1/2⟩, broadening from double peak fits is also

shown. Lines are fits to equation (S13) below BP for |0, 0,±1/2⟩.
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model. At high B, ℏωF2L and ℏωF2R fluctuate significantly due to spurious subband features. But the description
by equation (S13) aligns well with lower range of ℏωF2L and ℏωF2R, as one would expect for a saturating dependence
overlayed with spurious peaks. A reliable extraction of broadening parameters is unfortunately only feasible for the
|0, 0,±1/2⟩ subband. For nz > 0, the key region at low B is overlayed with the ny > 0 subbands. But the ℏωF1

widths at extracted above |1, 0,±1/2⟩ for nz > 0 are reasonably close to the |0, 0,±1/2⟩ case. Therefore, for the full
modelling of the subband spectrum bellow, the ℏωx0 and ℏωx fit values from |0, 0,±1/2⟩ were used for all subbands.

The B dependence of ℏωF1 encodes another useful piece of information. Above we related its increase near BP

to the onset of peak splitting. Empirically, we found that the location of the minimum of ℏωF1 in B provides an
independent estimate of BP. As illustrated in Fig. S13 and S17, such estimates are close to the values of BP extracted
from the double-peak analysis (fitting ϵF2R − ϵF2L to equation (S8). The similarity between the two independently
extracted values of BP corroborates both its magnitude, and the increasing trend with nz.

The ultimate goal of this analysis is to use equation (S9) to simulate the full spectrum of |ny, nz, s⟩ states up to
a sufficiently large n = ny + nz to cover the experimental range in µ. This involves extrapolating the parameters
measured at low nz and ny = 0 to high n, where the subbands are too densely packed for reliable analysis. For g, an
average of measured values was used for all other subbands. Measured BP was used for subbands within the same
n = ny + nz packet. At higher n it was set to 14 T (i.e. no splitting detected in the experimental range). For m∗

y,
the last measured value was extrapolated to higher nz for |0, nz,±1/2⟩ subbands. A separate m∗

y value was slightly
adjusted to fit the |1, 0,±1/2⟩ state (unfilled symbols in Fig. S13a), which was then used for all subbands with ny > 0.
For ϵx, ℏωx0 and ℏωx from the fit to |0, 0,±1/2⟩ was used for all subbands. For ℏωz, same measured value was used
within the same n = ny + nz packet, and the last measured value was used for higher n. For ℏωy, the |0, 0,±1/2⟩ fit
value was used for all other subbands.

Figures S21, S22, S23 show direct comparisons in three different device states between measured G(µ,B),
dG/dµ(µ,B) maps and the model summing equation (S9) across quantum numbers ny, nz = 0, 1, ..., 20, and s = ±1/2.
Given the complexity of the measured pattern and the relative simplicity of the model, the correspondence between
them is remarkable. Of particular note is the close capture of the dichotomy between “fast in B” |ny > 0, nz,±1/2⟩
and “slow in B” |0, nz > 0,±1/2⟩ subbands. For lower lying bands, the model accurately captures subband broadening
and peak heights dG/dµ (in real units of e2/h/meV), including the maximized sharpness of |0, nz,±1/2⟩ transitions
near BP.
Some shortcomings of the model: 1) The broadening at high n and below the |0, 1,±1/2⟩ subband is underestimated.

Increased broadening is likely a combination of a slowly-evolving longitudinal potential potential with split gate voltage
and inter-subband scattering. We did not attempt to disentangle and quantify these effects; 2) in the 3.0 × 1013

cooldown data, G at low B is fractionalized in an unusual way that is not captured by the model, see further
discussion in section S3; 3) At high B, a tendency of G quantization to fractionalize into steps smaller than e2/h
is present in all data sets. Very pronounced fractionalization effects are often present in III-V based QPC’s in the
quantum Hall regime, due to interplay with the disorder potential around the constriction [S22]. It is reasonable to
speculate that in our device we might be seeing precursors to a similar regime.
Additional corroboration of the analysis is provided by comparing the characteristic length scales lu =

√
ℏ/ωu/m∗

u

of the u = x, y, z confinement potentials. The transverse length estimate (with ℏ/ωy and m∗
y∗ from the fit to the

|0, 0,±1/2⟩ subband) is ly = 22-23 nm for all cooldowns. This is smaller than, but close to the 40 nm lithographic
spacing between the split gates. Assuming m∗

x = m∗
y, the longitudinal length is slightly larger for all cooldowns: 26-30

nm. This is consistent with the sharp split gate design of our device. For the vertical confinement, the electron mass
m∗

z is expected to be significantly larger than m∗
x and m∗

z due to the anisotropy of electronic band structure in SrTiO3

2DEGs [S23]. We do not have a measurement of m∗
z in our device, but taking an estimate m∗

z = 10me gives lz =
6-7 nm. SrTiO3-based 2DEGs with carrier densities in the 1013-1014 cm−2 typically have a vertical extent estimated
in the 1-15 nm range [S23, S24], consistent with our estimate of lz.

An interesting comparison is between the two different data sets taken at VGIL = 10 and 7 V during the 3.0× 1013

cm−2. The average of lz across measured subbands is 6.2 and and 7.1 nm for VGIL = 7 and 10 V respectively. This
difference is consistent with the picture of VGIL (at sufficiently low T to freeze the ionic liquid) acting similarly to a
back gate, incrementally modulating the vertical depth of the 2DEG [S3].
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Fig. S21. Direct data-model comparison. 4.6× 1013 cm−2 cooldown. (a,d) conductance map (b,c,e,f)
transconductance map. Lines in (a,b,d,e) are subband energies. All data are shown against chemical potential,

converted from raw split gate voltage shown as top axis in (a-c).
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Fig. S22. Direct data-model comparison. 4.6× 1013 cm−2 cooldown, VGIL = 10 V. Same plots as Fig. S21
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Fig. S23. Direct data-model comparison. 4.6× 1013 cm−2 cooldown, VGIL = 7 V. Same plots as Fig. S21
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D. Reduction of Zeeman splitting due to nanostructure confinement

In this section, we present a simple band model for the electrons at the interface between SrTiO3 and the ionic
liquid that could explain why the Landé g factor [Eq. (1) in the main text] is smaller than in standard 2D interfaces
due to the transverse confinement of the electrons in the QPC.

In STO-based interfaces, the Fermi energy lies in the 3d t2g orbitals dyz, dxz, and dxy of the Ti ions near the
interface [S25, S26]. In the orbital and spin basis (dyz, dxz, dxy)⊗ (↑, ↓), the electron dynamics can be accounted for
by a six-dimensional Hamiltonian H of the form [S13, S26–S28]

H = H0 +Haso +Ha (S14)

where the Hamiltonian

H0 =


ℏ2k2

x
2mh

+
ℏ2k2

y

2ml
0 0

0
ℏ2k2

x
2ml

+
ℏ2k2

y

2mh
−∆Ey 0

0 0
ℏ2k2

x
2ml

+
ℏ2k2

y

2ml
−∆Ez

⊗ 12 + 13 ⊗
(g0
2
µBB

)
σz (S15)

contains the kinetic energies of the electrons with effective heavy and light masses mh and ml, the bare Zeeman
splitting energy with initial Landé factor g0 and Pauli operator σz, and the confinement-induced splitting energies
∆Ey and ∆Ez along y and z due to the presence of the ionic liquid and the additional transverse trapping potential
used to realize the QPC. Here, 12 and 13 are identity operators acting respectively on the two-dimensional spin and
three-dimensional orbital Hilbert spaces. The Hamiltonian Haso describes the effects of atomic spin-orbit coupling
and takes the form

Haso ∝ L · σ = i∆ASO

 0 σz −σy

−σz 0 σx

σy −σx 0

 , (S16)

where L = r × p is the orbital momentum operator, σ = (σx, σy, σz) is the vector of Pauli operators, and ∆ASO is
the atomic spin-orbit coupling strength. Finally, due to the broken inversion symmetry at the interface along z, an
additional coupling of the orbital dxy to dyz and dxz appears, at the origin of the Rashba spin-orbit coupling. This
effect can be accounted for via a third Hamiltonian of the form [S25, S26, S29, S30]

Ha = i∆za

 0 0 kx
0 0 ky

−kx −ky 0

⊗ 12 (S17)

where a = 0.392 nm is the lattice spacing and ∆z the overall energy scale.
An effective Landé g factor can be obtained from the model above by diagonalizing H [Eq. (S14)] and fitting the

difference between the minima of its two lowest energy bands by a linear function of B. The slope of the fit provides
gµB with g the Landé factor appearing in the main text.

Figure S24 shows the ratio g/g0 as a function of ∆Ey and ∆Ez for different values of ∆ASO and ∆z. For similar
confinement along y and z (i.e., ∆Ey ≈ ∆Ez), the ratio g/g0 is reduced, which could explain why the Landé factor
observed in the QPC is lower than typical values of g in standard SrTiO3-based interfaces. The width of the region
of parameters where this effect appears increases with atomic spin-orbit coupling strength ∆ASO. Note nonetheless
that for large broken symmetry inversion energy ∆z compared to ∆ASO, our model describes an enhanced ratio g/g0
at small ∆Ey.
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Fig. S24. Reduction of Zeeman splitting by confinement and spin-orbit-coupling. Ratio g/g0 between
the effective and initial Landé factors g and g0 as a function of splitting energies ∆Ey and ∆Ez induced by the
confinement along y and z, for different atomic spin-orbit coupling energy ∆ASO and broken inversion symmetry

energy ∆z. Other parameters are mh = 6.8me, ml = 0.41me with me the electron mass. For ∆Ey ≈ ∆Ez, the ratio
g/g0 is drastically reduced. The width of the region of reduced g/g0 increases with ∆ASO. For ∆z ≳ ∆ASO, a region

of enhanced g/g0 can be obtained at small ∆Ey.
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E. Mean-field model for electron pairing

The ‘Y’ shape (locking of subbands) observed in the conductance and transconductance data could be explained as
the result of attractive interactions between the electrons. We summarize here a minimal mean-field model presented
in [S12, S13, S31] accounting for electron pairing without superconductivity, which has been used in the context of
transport of electrons in 1D waveguide at the LAO/STO interface [S12, S13, S31] and in the main text to produce
the mean-field model traces in Figures 4b and c.

For this purpose, we first assume that the electrons act as free particles along x, which amounts to neglect the weak
potential along that direction. Although this is a 1D model, it provides a reasonable agreement with the experimental
data for the QPC. The single-particle Hamiltonian of this model in Landau gauge A = (−By, 0, 0) reads

H0
1D =

(px − eBy)2

2mx
+

p2y
2my

+
p2z
2mz

+ V (y) + V (z)− µ− g
µB

2
Bσz +

(αvσy + αlσz)

ℏ
(px − eBy) . (S18)

The first six terms describes the spin-degenerate kinetic and potential energies of the electrons with electron momentum
operators pi (i = x, y, z), effective masses mi, parabolic transverse confinement V (y) = myω

2
yy

2/2 and V (z) =

mzω
2
zz

2/2 with trapping frequencies ωy and ωz, and chemical potential µ. The next terms describe the lifting of the
spin degeneracy via the Zeeman splitting energy and different forms of spin-orbit coupling (SOC) characterized by
strengths αv and αl, modelling e.g. Rashba SOC at the SrTiO3-based interface. Without SOC (i.e., αv = αl = 0), the
Hamiltonian can be diagonalized in a basis of subbands |ny, nz, σ⟩ where ny, nz are quantum numbers for transverse
harmonic oscillator eigenstates with spin σ =↓, ↑ and single-particle energies

ξnynzσk =
ℏ2k2

2mx

ω2
y

Ω2
+ ℏΩ

(
ny +

1

2

)
+ ℏωz

(
nz +

1

2

)
− µ− s(σ)gµBB, (S19)

where k is electron wavevector along x, Ω =
√
ω2
y + ω2

c the renormalized trapping frequency along y, ωc = eB/
√
mxmy

the cyclotron frequency and s(↓) = −1/2 and s(↑) = 1/2. The presence of SOC mixes the different electron spin
species within a given transverse mode |ny, nz⟩.
On top of the single-particle model above, we consider attractive interactions between electrons in subbands of

opposite spins labelled as α = |ny, nz, ↓⟩ and β = |n′
y, n

′
z, ↑⟩. In second quantization and at the mean-field level our

interaction Hamiltonian takes the form

HI
1D =

∑
k

[ ∑
γ=α,β

Σγc
†
γkcγk −

(
χc†αkcβk + h.c.

)
+ (∆c†αkc

†
β−k + h.c.)

]
, (S20)

where ckα is the annihilation operator of an electron in the subband α with a wavevector k, and where Σγ , χ and ∆
are the Hartree, Fock and Bogoliubov mean fields defined as

Σγ =
U

2π

∫ ∞

−∞
⟨c†γkcγk⟩ dk, χ =

U

2π

∫ ∞

−∞
⟨c†αkcβk⟩ dk, ∆ =

U

2π

∫ ∞

−∞
⟨cβkcα−k⟩ dk, (S21)

where γ denotes the opposite subband of γ (γ = α, β) and where U is the interaction strength (in dimensions of
energy × length). We consider that U has the following empirical scaling with the magnetic field

U ≡ U(B) = U0

√
1− ω2

c

Ω2
= U0

ωy

Ω
, (S22)

where U0 is a bare interaction strength. This makes |U | decreasing as a function of the magnetic field and the
mean-fields (S21) independent of this effective scaling.

The total Hamiltonian H1D = H0
1D +HI

1D in second quantization reads

H1D =
∑
k

[ ∑
γ=α,β

(
ξγk +Σγ + 2s(γ)

ω2
y

Ω2
αlk
)
c†γkcγk +

[(
iαv

ω2
y

Ω2
k − χ

)
c†αkcβk + h.c.

]
+
(
∆c†αkc

†
β−k + h.c.

)]
. (S23)

and defines the following self-consistent eigenvalue problem in the electron and hole basis {cαk, c†α−k, cβk, c
†
β−k}

ξαk +Σα − αl
ω2

y

Ω2 k 0 iαv
ω2

y

Ω2 k − χ ∆

0 −ξαk − Σα − αl
ω2

y

Ω2 k −∆∗ −iαv
ω2

y

Ω2 k + χ∗

−iαv
ω2

y

Ω2 k − χ∗ −∆ ξβk +Σβ + αl
ω2

y

Ω2 k 0

∆∗ iαv
ω2

y

Ω2 k + χ 0 −ξβk − Σβ + αl
ω2

y

Ω2 k

ϕjk = Ejkϕjk, (S24)
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Fig. S25. Mean-field simulations. (a) Conductance as a function of µ and B and without spin-orbit coupling
(αv = αl = 0). (b) Transconductance lines for different SOC strength αv and αl. (c) Pairing area (i.e., region where
|∆| > 2.6 µeV) as a function of B and µ without spin-orbit coupling (αv = αl = 0). (d) Modifications of the contour

of the pairing area due to SOC, with the same legend as in (b). All simulations were performed for
mx = my = 1.124me, g = 0.3, U0 = −5.0 meVnm, ℏωy = 0.157 meV, and T = 30 mK.

where Ejk and ϕjk (j = 1, 2) are the quasi-energies of the quasi-particle wave function solutions. Equation (S24) must
be solved self-consistently, by inserting initial random values of Σγ , χ and ∆ into Eq. (S24) to obtain Ejk and ϕjk,
computing new mean fields via Eq. (S21) and repeating the procedure until convergence of the mean fields is reached
(unless otherwise stated we run the self-consistent convergence procedure until the mean-fields are converged to within
10−6 meV). Note that their calculations require to use Bogoliubov transformations of the electrons operators cγk
(γ = α, β) appearing in Eq. (S21) into quasi-particle operators γjk (j = 1, 2) satisfying

⟨γ†
ikγjk⟩ = δijn(Eik), ⟨γikγ†

jk⟩ = δij [1− n(Eik)], ⟨γikγjk⟩ = ⟨γ†
ikγ

†
jk⟩ = 0, (S25)

where n(E) = 1/[1 + eE/(kBT )] is the Fermi distribution with kB the Boltzmann constant and T the temperature.
Note also that since we work in the electron-hole basis twice as big as the physical basis, the quasi-energies Ejk appear
in conjugate pairs (E1k, −E1−k) and (E2k, −E2−k) and one has to select only one member of each pair.

This mean-field model makes it possible to construct phase diagrams and associated conductance maps. We identify
the presence of single-particle phases when the converged single-particle spectra cross the zero-energy axis, indicating
the presence of electrons in the single-particle bands. Each non-zero positive Fermi momentum contributes e2/h to the
conductance G. By contrast, we identify the presence of a pair phase when |∆| ≳ kBT emerges from the calculations
(i.e., when the single-particle spectra are gapped), indicating the presence of electron pairs. Since we consider that
the pairs unbind when they reach the leads before dissipating energy [S32], we associate a conductance of 2e2/h to
the pair phase, i.e., the sum of the conductances of the individual electrons.

Figure S25 shows the results of the mean-field model for the two lowest subbands |0, 0, ↓⟩ and |0, 0, ↑⟩ with parameters
mx = my = 1.124me, g = 0.3, U0 = −5.0 meVnm, ℏωy = 0.157 meV, and T = 30 mK throughout all simulations.
Since the confinement along z only contributes a constant energy shift to the Hamiltonian, Eq.( S19), we ignored this
in the simulations, and used ℏωz = 0.0 meV for simplicity. Panel (a) shows the conductance as a function of µ and B
without spin-orbit coupling (αv = αl = 0). Due to the presence of the attractive interactions, the electrons in the two
first subbands are paired at low B up to some critical field BP. Below BP, this leads to a conductance step of 2e2/h as
µ is increased. Above BP the Zeeman term dominates over the pairing strength, the pairs unbind, and we observe two
distinguishable conductance steps of e2/h. The inclusion of SOC effects can reshape conductance steps [S13, S33], but
as shown in panel (b), inclusion of either non-zero αv or αl only negligibly modifies the transconductance lines. This
suggests that SOC can be safely neglected for the understanding of the transport data. We chose reasonable values of
SOC up to 2 meVnm, motivated by the fact that whilst typical values of Rashba SOC in STO-based interfaces can be
of the order of 1-5 meVnm [S34, S35], a recent study suggests that it can be strongly reduced due to confinement [S13].
Panel (c) shows the pairing area as a function of µ and B, and (d) how it is modified when including SOC with αv ̸= 0.
It can be seen, that the SOC does increase the pairing area to larger µ, but since the paired phase is indistinguishable
from the phase where both single-particle bands are occupied (from a conductance perspective), this effect cannot be
observed in the present experimental conductance data.
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S3. QPC PLATEAU STABILITY AND FRACTIONAL STRUCTURES

In this section, extensive supplementary data are presented on stability of the subband plateau structure. It
is tested at zero DC bias, in the multi-dimensional phase space defined by VGIL (acting similarly to a back gate
voltage), and asymmetrically sweeping split gate voltages VG1 and VG2. We find the plateau structure originating
from |ny = 0, nz ≥ 0, s = ±1/2⟩ subbands to be largely stable to such perturbations at B above a few Tesla. Near
B = 0, the plateau structure can be highly unstable and present fractional transitions between conductance values
that are non-integer multiples of the spin-polarized conductance quantum e2/h.

Fig. S26 presents the case of a stable plateau structure, of which the clearest examples were found for
|0, nz ≥ 0,±1/2⟩ subbands that are disentangled by B from |1, 0,±1/2⟩ and the underlying subband “forest”. This
is the case for the first three plateaus shown in Fig. S26a-f, at B = 5 T for the 4.6 × 1013 cm−2 cooldown. The
G(VG2, VG1) map shows an approximately equal modulation by each split gate, confirming similarity of their capaci-
tance and lever arm. Subbands can be identified in line traces as midpoints of transitions between flat regions in G.
In the parametric plot of dG/VG2(G,VG1), narrow dark blue regions near integer multiples of e2/h correspond to flat
plateaus in G, while extended bright regions correspond to sharp transitions at subband filling. Plateau locations in
G (especially at higher filling) are slightly lower than integer multiples of e2/h, which is consistent with the presence
of a series resistance between the constriction and the voltage probes. In Fig. S26a-c, the first three plateaus remain
stable when G is tuned by VG2, while VG1 is swept independently. Similarly, the same plateaus in Fig. S26d-f are
stable when G is tuned by VG2 = VG1 = VG12 while VGIL is swept independently. For G > 6e2/h, apparent higher
order degeneracies are created by overlap with ny > 0 subbands (see extensive discussion in previous sections S2B
and S2C). The resulting plateau structure is also largely stable. A switch in Fig. S26f of the plateau value between
14 and 16 e2/h is consistent with a change of subband order from slight rearrangement of z and/or y confinement by
VGIL.

Broadly similar phenomenology is observed at B = 5 T for the 3.0×1013 cm−2 cooldown and at B = 14 T for both
3.0 and 4.6×1013 cm−2 cooldowns (Fig. S26 and S27). At B = 14 T, Zeeman splitting results in appearance of plateaus
at odd multiples of e2/h, although at high filling the subbands still appear doubly degenerate due to increased BP of
order 14 T (see previous section S2C, Fig. S13 and S17). At lower filling, gate-driven switches in plateau degeneracy
are observed. This is consistent with overlap between adjacent Zeeman split bands (see Fig. S26g-l, S27j-l), combined
with alteration of the confinement potential by the gates.

The opposite case of an unstable plateau structure is most clearly apparent near B = 0, particularly for the 3.0×1013

cm−2 cooldown (Fig. S28). The parametric transconductance plots present a rich structure that rapidly shifts with
assymetrically swept VG1 and VGIL and with B. Only a few features can be tentatively assigned to an integer multiple
of the conductance quantum (e.g. several spots with low dG/dVG2 at G = 4 and 8 e2/h). Otherwise, the position
of most features gradually evolves through fractional values of G. This is inconsistent with the basic expectations
of conduction via discrete ballistic subbands. However, DC bias spectroscopy in this regime (see section S2A and
Fig. S7e) does yield a subband-like diamond pattern, even in absence of expected quantization in G. Particularly
noteworthy are the gradual fractional features near pinch off, where the small value of G minimizes uncertainty from
finite series resistance. In Fig. S28c, the first plateau moves position between G = 2e2/h and 0.5e2/h. The latter
small value of G corresponds to half of a spin-polarized ballistic mode, clearly unexpected at B = 0.

For the 4.6×1013 cm−2 cooldown (Fig. S29), the plateau structure at B = 0 has similarities in showing rapid shifts
in VG1 and VGIL, but also much less tendency for gradual movement of subband-like transitions through obviously
fractional values. This is also consistent with the overall reduced repeatable noise in the transconductance signal for
this cooldown for the entire B range. In the 3.0×1013 cm−2 cooldown, the stable integer plateau structure at B = 5
and 14 T appears overlayed with repeatable noise, likely a residual of the behavior that dominates near B = 0.
We do not have a crisp explanation for the physics of the unstable plateau regime, but several factors are likely to

be relevant here:

• Interplay of y and z confinement, producing closely spaced subbands. Gradual tuning of the confinement
potentials by VG1, VG2 and VGIL does produce detectable shifts in band order at higher B, and is likely even
more relevant for subband structure at B = 0. This cannot explain fractional values of G and the gradual
transitions between them, only the presence of rapid evolution in the (VG1, VG2, VGIL) phase space.

• Various disorder-related mechanisms can be put forward as a conventional explanation. For instance, tuning
of disorder potential in InAs-based QPC’s has been shown to produce gradual transitions between non-integer
conductance plateaus [S36]. It was related to the disruption of the assumption that the coupling between
the constriction and the adjacent electron reservoirs is adiabatic [S36]. Alternatively, an accidental Coulomb
blockade in the vicinity of the constriction could produce resonant features that resemble short plateaus at any
value of G.
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• Alternatively, quantization anomalies can be connected to electron interactions. This is a rich and still largely
unresolved research direction in GaAs-based QPC’s (see e.g. [S37]). For instance, in [S38] fractional quantization
phenomenology (resembling some aspects of our device) was explained in terms of spin-incoherent transport
arising from Luttinger liquid physics.

At this point we do not attempt to disentangle these explanations. Future attempts to do so would strongly benefit
from reducing broadening by the longitudinal potential (i.e. making the constriction longer and wire-like), since it
dominates the B = 0 behavior in our current device.

For completeness, constriction conductance in the 10.4×1013 cm−2 (largest studied) cooldown is shown in Fig. S30.
Gate voltages VGIL and VG12 can modulate G in the 220-420 e2/h range. But constriction pinch-off could not be
reached within the safely available range of gate voltages.
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Fig. S26. Stable integer plateau structures, 4.6× 1013 cm−2 cooldown. (Left) Constriction conductance
map, (center) conductance line cuts in fast gate voltage axis, (right) parametric plot of transconductance against

conductance and slow gate voltage axis. (a-c) B = 5 T, VGIL = 12 V, VG1-VG2 map. (d-f) B = 5 T, VGIL-VG12 map.
(g-i) B = 14 T, VGIL = 12 V, VG1-VG2 map. (j-l) B = 14 T, VGIL-VG12 map.
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Fig. S27. Stable integer plateau structures, 3.0× 1013 cm−2 cooldown. (Left) Constriction conductance
map, (center) conductance line cuts in fast gate voltage axis, (right) parametric plot of transconductance against
conductance and slow gate voltage axis. (a-c) B = 5 T, VGIL = 10 V, VG1-VG2 map. (d-f) B = 5 T, VGIL = 7 V,

VG1-VG2 map. (g-i) B = 5 T, VG1 = 0.7 V, VGIL-VG2 map. (j-l) B = 14 T, VGIL = 10 V, VG1-VG2 map.
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Fig. S28. Unstable, incoherent plateau structures, 3.0× 1013 cm−2 cooldown. (Left) Constriction
conductance map, (center) conductance line cuts in fast gate voltage axis, (right) parametric plot of

transconductance against conductance and slow gate voltage axis. B = 0 T (a-c), 0.2 T (d-f), 0.5 T (g-i), VGIL = 10
V, VG1-VG2 map. (j-l) B = 0 T, VG1 = 0.7 V, VGIL-VG2 map
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Fig. S29. Zero field plateau structures, 4.6× 1013 cm−2 cooldown. (Left) Constriction conductance map,
(center) conductance line cuts in fast gate voltage axis, (right) parametric plot of transconductance against

conductance and slow gate voltage axis. B = 0 T, (a-c) VGIL = 12 V, VG1-VG2 map. (d-f) VGIL = 9 V, VG1-VG2

map. (g-i) VGIL-VG12 map.
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Fig. S30. An open constriction at high carrier density. 10.4× 1013 cm−2 cooldown, B = 0.2 T. (a)
Constriction conductance map with VGIL and VG12, (b) conductance line cuts in VG12, (c) parametric plot of

transconductance against conductance and VGIL.
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Fig. S31. Main device fabrication. Optical images after lift-off of (a) split gates, (b) gate contacts, (c) ohmic
contacts, (d) mesa insulation. (e) Finished device with ionic liquid. All scale bars are 50 µm.
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Fig. S32. SrTiO3 and SrTiO3/HfOx surface. Atomic force microscopy images of (a) SrTiO3 substrate after
TiO2-terminated surface preparation, (b) same chip after 10 HfOx ALD deposition cycles.

S4. FABRICATION DETAILS AND ADDITIONAL DEVICES

This section complements the methods section in the main text. Additionally, selected data are presented for
additional SrTiO3/HfOx Hall bar devices with and without split gates.

Fig. S31 shows optical images of the main studied device at different stages of fabrication of the main device. Small
area images of the Hall bar region are shown after each of the four lithography steps, as described in the main text. A
large area image is also shown of the device with the ionic liquid deposited, shortly prior to loading into the dilution
refrigerator.

Additionally, Fig. S32 shows a comparison of atomic force microscopy images taken on the same SrTiO3 chip before
and after deposition of a blanket HfOx barrier layer. The number of ALD cycles used for depositing HfOx was 10 in
this case, i.e. thicker than 4 cycles used for the main measured device. We do not observe any appreciable change in
the terrace step morphology or surface roughness, consistent with a highly conformal and smooth ALD deposition on
SrTiO3.

A. Additional Hall bar devices

As part of fabrication flow and device geometry iteration, a total of 9 simplified Hall bar devices were fabricated
and rapidly tested in a cryostat with a 1.6 K base temperature. These devices followed the same general fabrication
flow as the main constriction device, but skipping two lithography steps for gate and gate contact fabrication. A
TiO2-terminated SrTiO3 crystal was coated with sub-nm thick HfOx, using 3-10 cycles of atomic layer deposition
(85◦ C in all devices presented below). E-beam lithography step 1 was followed by ion milling, deposition of Ti/Au
ohmic contact, and lit-off. E-beam lithography step 2 was followed by sputtering of SiO2 insulation and lift-off..
Fig. S33 shows optical images of 3 devices with different Hall bar geometry and HfOx target thickness. Device A:

5-30 µm wide channels, 3 HfOx ALD cycles. Device B: 40 µm wide channel, 5 HfOx ALD cycles. Device C: 5, 10,
and 20 µm wide channels, 4 HfOx ALD cycles. These devices were fabricated in separate processing runs. Device C
was fabricated in the same run as the main device with split gates.
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Fig. S33. Optical images of additional devices. (a) device A, (b) B, (c) C. Estimated HfOx barrier thickness
in (a,b,c) was 0.45, 0.75, 0.6 nm (3, 5, 4 ALD cycles), respectively. Scale bars are 20 µm.
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Fig. S34. High mobility 2DEGs in additional devices. Device A: (a) Hall density at 1.6 K, tun by VGIL

above 220 K, (b) corresponding Hall mobility. Different traces are for different channel widths along the device. (c)
Temperature dependence of Hall mobility in devices A, B, C and in typical devices without a barrier layer. Devices

labeled in order of low temperature mobility.

Typical transport characterization involved accumulation of a 2DEG near 265 K, followed by alternation between
Hall measurements at 1.6 K base temperature, thermal cycling up to ≈ 200 K to measure temperature dependence
of the 4-terminal resistance, and thermal cycling up to ≈ 250 K to adjust VGIL and the 2DEG carrier density. Below
220K, VGIL was typically adjusted a few volts above its high temperature value to decrease ohmic contact resistance
and marginally optimize mobility. Carrier density shown in Fig. S34 was determined by a linear fit to the Hall slope
at 1.6 K, neglecting non-linearity of the Hall coefficient in B (typically 10-20% in our devices). The temperature-
dependent Hall mobility µH was calculated as µH(T ) = (eN(1.6 K)R(T ))−1, i.e. a T -independent carrier density is
assumed.

Fig. S33a,b shows an example of systematic carrier density tuning in the 2-8×1013 cm−2 range (measured at 1.6 K)
by adjusting VGIL above 220 K. Gradual non-uniformity of measured Hall density over tens of microns was usually
present, especially in larger devices. The density shown for each Hall bar region was taken to be an average between
the two adjacent pairs of Hall contacts. The Hall mobility in optimized conditions typically reached several thousands
of cm2/Vs (see Fig. S34b,c). The general trend of increasing µH at high NH was common in studied devices.

Between 1.6K and near room temperatures, metallic behavior was observed for carrier densities that were high
enough to get reliable ohmic contacts (usually above ≈ 1013 cm−2 ). Extrapolated mobility at room temperature was
always close to 10 cm2/Vs, as typical for electron-doped SrTiO3 [S39]. Typical traces for SrTiO3 Hall bar devices
without HfOx barrier layers are also shown for comparison in Fig. S34c. Such devices have mobilities of order 100-1000
cm2/Vs at base temperature, see also [S1, S40, S41]. Comparison of temperature dependence also showcases the much
larger residual resistivity ratio in high mobility SrTiO3/HfOx devices (up to ≈ 500).

Consequently, despite significant statistical scatter between devices, the insertion of a thin HfOx barrier layer
consistently improves Hall mobility from 102-103 cm2/Vs into the 103-104 cm2/Vs range. Correspondingly, the mean
free path is improved from tens of nm into the range of hundreds of nm to a few microns.
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Fig. S35. Second constriction device. (a) Zero bias conductance tuned by VG1. (b) Map of transconductance
with DC bias and VG1. (c, d) Zero bias conductance at zero DC bias with the two split gate voltages (VG1 and VG2)

tuned separately. Temperature is 440 mK and B = 0 T in (a-c). VG2 is fixed at 0.95 V in (a) and (b).

B. Additional device with split gates

In this section we show data from a second device that includes nanopatterned split gates. The layout design and
fabrication procedures are identical to the main device described in this work. The second device was fabricated on a
separate SrTiO3 chip with one intentional difference: the barrier layer thickness was reduced from 4 to 3 HfOx ALD
deposition cycles.

In the coarsely patterned 2DEG at base temperature (34 mK), we measured a carrier density of 4.7 × 1013 cm−2

and a mobility of 4800 cm2/Vs (540 nm mean free path).
Fig. S35 shows split-gate tuning of a 40-nm constriction near a single ballistic mode. Various spurious features are

readily seen in the data, including likely accidental Coulomb blockade resonances. But by fine tuning the constriction
away from such features in the VG1-VG2 space, the G = 2e2/h plateau can be observed at zero DC bias (Fig. S35a). In
finite DC bias, a crossing between the corresponding left and right-moving subbands is resolved in the transconductance
map (dashed lines in Fig. S35b). In the full VG1-VG2 map at zero bias (Fig. S35c and d), the G = 2e2/h plateau is
not spurious. It persists in the VG2 = 0.8-1.2 V range with VG1 as the fast axis.
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