
Probing scrambling and operator size distributions using random mixed states and local
measurements

Philip Daniel Blocher,1, ∗ Karthik Chinni,2, 1, † Sivaprasad Omanakuttan,1, ‡ and Pablo M. Poggi3, 1, §

1Center for Quantum Information and Control, Department of Physics and Astronomy,
University of New Mexico, Albuquerque, New Mexico 87131, USA

2Department of Engineering Physics, École Polytechnique de Montréal,
2500 Chem. de Polytechnique, Montréal, Quebec H3T 1J4, Canada

3Department of Physics, SUPA and University of Strathclyde, Glasgow G4 0NG, United Kingdom
(Dated: May 29, 2023)

The dynamical spreading of quantum information through a many-body system, typically called
scrambling, is a complex process that has proven to be essential to describe many properties of
out-of-equilibrium quantum systems. Scrambling can, in principle, be fully characterized via the use
of out-of-time-ordered correlation functions, which are notoriously hard to access experimentally. In
this work, we put forward an alternative toolbox of measurement protocols to experimentally probe
scrambling by accessing properties of the operator size probability distribution, which tracks the
size of the support of observables in a many-body system over time. Our measurement protocols
require the preparation of separable mixed states together with local operations and measurements,
and combine the tools of randomized operations, a modern development of near-term quantum
algorithms, with the use of mixed states, a standard tool in NMR experiments. We demonstrate how
to efficiently probe the probability-generating function of the operator distribution and discuss the
challenges associated with obtaining the moments of the operator distribution. We further show that
manipulating the initial state of the protocol allows us to directly obtain the individual elements of
the distribution for small system sizes.

I. INTRODUCTION

Understanding how quantum information spreads
across the degrees of freedom of a quantum system is a
key part of developing a comprehensive picture of nonequi-
librium quantum many-body physics. In this context, the
notion of scrambling has attracted much attention over
the past years due to its relevance in the study of closed-
system thermalization [1], quantum chaos [2], information
retrieval in black holes [3, 4], and quantum algorithms
[5]. Scrambling refers to the dynamical delocalization of
quantum information [6] and can be diagnosed by the
generation of entangled states from initially separable
ones, or from the growth of initially local operators [7].

An approach to characterizing scrambling from the
unitary evolution of an operator W (t) in a many-body
system is to analyze the dynamics of so-called operator
size distributions {Pk(t)} [8–10]. These can be obtained
by coarse-graining the expansion of W (t) in a complete
operator basis, the choice of which depends on the nature
of the system. In the case of systems of N spin− 1

2 par-
ticles, a natural operator basis is the set of multi-body
Pauli operators PN = {1, σx, σy, σz}⊗N/

√
2N , which has

dimension D = 4N and forms an orthonormal basis. In
the Heisenberg picture an operator W may at time t be
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written as

W (t) = U†(t)W U(t) =
D−1∑
j=0

f [Λj ; W (t)]Λj , (1)

where U(t) is the unitary time evolution operator from
the initial time t = 0 to time t and Λj ∈ PN . Given
this expansion of W (t), the operator size distribution is
constructed by grouping the elements of the exponentially
large Pauli basis according to their size s(Λ). Here the
operator size corresponds to the number of non-identity
operators in the Pauli string (i.e., its Hamming weight)
and thus 1 ≤ s(Λ) ≤ N such that PN = ∪N

k=1Ck, where
Ck = {Λ | s(Λ) = k}. The resulting operator size distri-
bution reads

Pk(t) =
1

Tr[W †W ]

∑
Λ∈Ck

|f [Λ; W (t)]|2, (2)

and measures the size of the support of W (t). It is easy
to see that

∑N
k=1 Pk(t) = 1 for all times t, hence the oper-

ator size distribution can be regarded as a coarse-grained
probability distribution in the expansion coefficients of
W (t).

Of particular interest is the case where W (0) is a size-
one (i.e. single-body) Pauli operator such that Pk(0) =
δk,1. As the operator grows and information becomes
scrambled, the distribution shifts to higher values of k
and grows in variance. The dynamics of Pk(t) have been
studied for various many-body models [8, 10], and it
holds a close connection to the Krylov picture of operator
growth [7, 11].

While the scrambling dynamics in the system may be
described using the operator size distribution, it is not
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Figure 1. (a) Relationship between the operator size distribu-
tion Pk(t) of Eq. (2), out-of-time-ordered correlation functions
(OTOCs), and the NOTOC approach proposed in this arti-
cle using local expectation values over random mixed states.
OTOCs allow (indirect) access of the moments of the operator
distribution, while our proposal allows to probe the probabil-
ity generating function F (x) or the individual probabilities
directly, depending on the choice of initial state ρ0. (b) Il-
lustration of the operator evolution (above the dashed line)
and the proposed measurement protocol (below the dashed
line). The operator size distribution Pk(t) is a property of an
operator in the Heisenberg picture (and thus independent of a
choice of state). Our protocol proposes to access this property
by measuring expectation values ⟨W (t)⟩ = Tr[ρ(t)W ] after the
time evolution of a suitably-chosen set of initial states ρ0.

obvious how to access this distribution experimentally. A
complete characterization of Pk(t) for all k requires an
exponential amount of resources; this is clearly seen if one
reconstructs Pk(t) from two-point correlation functions
to obtain each of the coefficients f [Λ;W (t)] = Tr (ΛW (t))
in Eq. (1). A partial workaround is given by considering
out-of-time-ordered correlators (OTOCs) which take the
form

F (W (t), R) = ⟨W †(t)R†(0)W (t)R(0)⟩ . (3)

It has been shown that moments of Pk(t) can be computed
by constructing averages of OTOCs over appropriate sets
of operators {Ri} [8, 10, 12, 13]. However, accessing
even a single OTOC is often challenging in experiments
due to the out-of-time-ordered nature of Eq. (3), and
typically requires the use of many-body time-reversal
operations [14–18] or auxiliary systems [19]. In cases
where OTOCs can be accessed without these tools (see for
instance the method in [20]), reconstructing the moments
of Pk(t) requires the measurement of a large number of
OTOCs and the task becomes unfeasible for high-order
moments [10].

In this article we propose an alternative set of tools

to experimentally probe the operator size distribution
which circumvents the use of OTOCs completely. We
combine the use of ensembles of initially separable mixed
states with local random operations and local measure-
ments at the final time in order to access a quantity G(t)
which is explicitly not an OTOC, hence we name this
quantity a “NOTOC”. We show that our measurement
protocol, depending on the choice of initial state ensemble,
probes either the probability generating function (PGF)
F (x, t) =

∑
k Pk(t)x

k of the operator size distribution
(method A), or its elements {Pk(t)} directly (method B),
as illustrated in Fig. 1. We demonstrate our methods nu-
merically and show that the operator size distribution can
be accurately probed even when accounting for statistical
noise stemming from averaging over random operations
and from experimental imperfections. In our analysis
of method A, we discuss inherent shortcomings of the
problem of inverting the PGF to obtain Pk(t) such as its
sensitivity to noise, and we show for the case of the Ising
model that the PGF can itself be seen as a good indicator
of the presence of scrambling in the system. For method
B we discuss the efficiency of the method as the system
size N increases and show that individual probabilities
Pk(t) can be reliably obtained as long as k ≪ N .

Our proposed measurement protocol connects to pre-
vious works which focused on experimental schemes to
diagnose scrambling. In particular, method A recovers
a procedure put forward in Ref. [12] to measure opera-
tor growth in the special case when the initial states are
pure. Likewise, the use of randomized operations to access
properties of the operator size distribution makes this pro-
posal complementary to the one in Ref. [20], where similar
tools were used to measure OTOCs instead. Finally, the
NOTOC proposed here can be seen as a generalization
of the fidelity OTOC [1, 14, 15], which has been widely
studied due to its ease of accessibility in experiments
[21]. Our analysis reveals that this quantity is inherently
connected to the operator size distribution, although in a
way that is fundamentally different from regular OTOCs,
and that had not been revealed up to now to the best of
our knowledge.

The structure of this article is as follows: In Sec. II
we present the main tools to be used to probe the opera-
tor size distribution Pk(t), including the choice of initial
states, randomized operations and local measurements.
Sections III and IV discuss two methods of implementing
the necessary state preparation for our measurement pro-
tocol, with the method of Sec. III using partially polarized
qubit states to obtain the probability-generating function
for the operator size distribution, and the method of
Sec. IV tailoring separable states to obtain the probabil-
ity distribution elements directly. In Sec. V we compare
our measurement protocol to previous results and propos-
als in the literature, extend the NOTOC measurement
protocol to collective spin systems, and provide a general
discussion of the NOTOC toolbox. Finally, we conclude
on our work in Sec. VI and discuss possible future exten-
sions.
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II. NOTOC MEASUREMENT PROTOCOL

Our measurement protocol draws inspiration from the
so-called fidelity OTOCs, which are OTOCs on the form
Eq. (3) where one chooses the operator R = ρ0 in Eq. (3)
to be the projector onto the pure initial state ρ0 [1, 14, 15].
Fidelity OTOCs are experimentally accessible quantities
as [21]

⟨W †(t)R†(0)W (t)R(0)⟩ ≡ | ⟨W (t)⟩ |2, (4)

hence they require only the measurement of a single-time
expectation value. However, this identity holds only for
pure initial states, and the fidelity OTOCs for mixed
initial states takes on a more elaborate form, as discussed
in Ref. [21].

Inspired by the simple form of the fidelity OTOC in
Eq. (4) as a squared expectation value of an operator W
for a pure state, we define the quantity of interest for our
protocol as

G(t) := | ⟨W (t)⟩ |2 = |Tr[ρ0W (t)]|2, (5)

with ρ0 being a generic mixed state. The quantity G(t)
defined in Eq. (5) is equivalent to an OTOC only for pure
states [22], and to emphasize that G(t) is related to fi-
delity OTOCs while itself being a time-ordered correlation
function at all times and for all initial states, we will refer
to G(t) as a “NOTOC” throughout this article. In the
remainder of this section we will demonstrate the utility
of defining G(t) on the form Eq. (5), and in Sec. V we
will comment further on its relation to fidelity OTOCs.

Using Eq. (1) the NOTOC G(t) may be written on the
form

G(t) =
∑
i

|f [Λi; W (t)]|2 ⟨Λi⟩2

+
∑
i̸=j

f [Λi; W (t)]f [Λj ; W (t)]∗ ⟨Λi⟩ ⟨Λj⟩∗ . (6)

We now consider a generic mixed state on the form

ρ0 =
1

d
1+

∑
i

riΛi, (7)

for which ⟨Λi⟩ = ri. We recall from Sec. I that Ck =
{Λ | s(Λ) = k} is the set of Pauli operators of size k. If we
were to engineer an ensemble of initial states {ρ0} on the
form Eq. (7) such that the state coefficients {ri} were in-
dependent, identically distributed random variables with
vanishing mean ri = 0, the second term of Eq. (6) would
vanish under averaging over this ensemble. Furthermore,
if we require the state coefficients of the engineered initial
state to have finite variance r2i = ∆k for Λi ∈ Ck, the

averaged quantity then reads

G(t) =
∑
i

|f [Λi; W (t)]|2 r2i

+
∑
i̸=j

f [Λi; W (t)]f [Λj ; W (t)]∗ rir∗j (8)

=
N∑

k=1

∑
Λi∈Ck

|f [Λi; W (t)]|2∆k (9)

=
N∑

k=1

∆kTr[W †W ]Pk(t). (10)

Equation (10) reveals that G(t) is a linear combination
of the elements of the probability distribution {Pk(t)},
with coefficients proportional to the variance ∆k times the
2-norm Tr[W †W ] = ∥W∥22 of the operator W . The proba-
bility distribution {Pk(t)} may be extracted from Eq. (10)
using several methods, and we present two different mea-
surement protocols for systems of spin-1/2 particles in the
following sections III and IV. Our measurement protocols
provide experimental access to the averaged NOTOC G(t)
and the probability distribution {Pk} through engineer-
ing of the initial state ρ0 and subsequent measurement
of the expectation value ⟨W (t)⟩ = Tr[ρ(t)W ] at the final
time t. The main challenge thus lies in the preparation
of random initial states ρ0 whose coefficients {ri} must
have appropriate statistics.

The operator size distribution is an operator property
independent of the initial state of the system, hence the
Heisenberg picture lends itself nicely to the analysis of the
operator size distribution’s evolution in time. However,
in the NOTOC measurement protocol outlined above we
probe the operator size distribution using expectation val-
ues ⟨W (t)⟩ρ0

≡ Tr[ρ0W (t)], which depend on the choice
of initial state ρ0. In this way, the initial state is a con-
trol knob used by this protocol to access properties of
the operator. As expectation values are quantities inde-
pendent of the choice of picture, it is more natural to
describe our proposed experimental measurement proto-
col in the Schrödinger picture as the time evolution of an
initial state ρ0 → ρ(t), with which we first evaluate the
expectation value ⟨W (t)⟩ρ0

≡ Tr[ρ(t)W ], subsequently
calculate the NOTOC Eq. (5), and finally recover the
averaged NOTOC Eq. (10) by appropriate averaging over
initial states. The NOTOC measurement protocol is thus
illustrated in this way in Fig. 1(b), where the Heisenberg
operator evolution is shown above the dashed line, and
our proposed measurement protocol is illustrated below
the dashed line.

III. METHOD A: ACCESSING THE
PROBABILITY GENERATING FUNCTION OF

THE PROBABILITY DISTRIBUTION

In this section we present an experimentally relevant
measurement protocol for obtaining the squared expec-
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tation value Eq. (10) using mixed states similar to those
used in NMR together with random local operations [23].
The starting point of our measurement protocol is the
preparation of the product state

ρini =

(
1+ εσz

2

)⊗N

(11)

=
1

d

1+ ε
∑
i

σi
z + ε2

∑
i<j

σi
zσ

j
z + . . .

 (12)

=
1

d
1+

N∑
k=1

εk√
d

∑
Λ∈Cz

k

Λ, (13)

where each qubit is in a statistical mixture of being maxi-
mally mixed 1 and polarized along the z-axis, with the
parameter ε controlling the amount of polarization. In
Eq. (13) we have defined the subset Cz

k ⊂ Ck of size-
k Pauli operators that consist of only σz terms (e.g.,
1⊗ σz ⊗ 1). The polarization parameter ε takes values
|ε| ≤ 1, and we note that for ε = ±1 the initial state ρini
is a pure state.

To create a random state ρ0 for the experiment whose
expansion coefficients ri in Eq. (7) satisfy the appropriate
statistics for Eq. (10), we apply random local rotations to
the initial state Eq. (13) via the unitary Urot =

⊗N
i=1 U

(i)
rot

ρ0 =Urot ρini U†
rot (14)

=
1

d
1+

N∑
k=1

εk√
d

Urot
∑
Λ∈Cz

k

ΛU†
rot

 (15)

=
1

d
1+

N∑
k=1

εk√
d

∑
Q∈Ck

qQQ, (16)

where U (i)
rot is a random rotation of the ith qubit that we

will discuss momentarily. In the last equality of Eq. (16)
we expanded Urot

∑
Λ∈Cz

k
ΛU†

rot on the Pauli operators
Q ∈ Ck, as the random local rotations do not change
the operator size. Comparing the form of Eq. (16) to
that of Eq. (7), we make the identification rQ = qQε

k/
√
d

for s(Q) = k. We choose the random local rotations Urot
such that the coefficients {qQ} are independent, identically
distributed random variables with vanishing mean qQ = 0

and finite variance q2Q = ∆k for s(Q) = k. This yields
rQ = 0 and r2Q = ε2k∆k/d, which is consistent with
the assumptions made in Sec. II. Substituting this back
into Eq. (10) – and choosing W to be a non-identity
observable with trace Tr[W 2] = d [24] – we thus find
averaged squared expectation value

G(ε, t) =
N∑

k=1

Pk(t)∆k ε
2k. (17)

Equation (17) is an (at most) Nth degree polynomial
in ε2 with coefficients proportional to elements Pk(t) of

the probability distribution of interest. This form is
reminiscent of a probability-generating function (PGF)
of the probability distribution {Pk(t)} [25], and we now
show that Eq. (17) is indeed a PGF by introducing the
explicit form of ∆k.

To obtain the correct statistics for the coefficients rQ, as
well as to ensure that all operators Q ∈ Ck are sampled
for all k, we propose to take the single-qubit rotation
operator U (i)

rot to be sampled from a uniform distribution
over SU(2). In each random instance the local rotation
transforms the ith site Pauli-Z as

σi
z → U (i)

rotσ
i
zU

(i)†
rot =

∑
α

n(i)α σi
α (18)

with α = x, y, z, with

n(i) =cos(ϕi) sin(θi)x̂+ sin(ϕi) sin(θi)ŷ

+ cos(θi)ẑ. (19)

The polar angle θi and azimuthal angle ϕi are thus random
variables taking values in the interval [0, π) and [0, 2π),
respectively.

The coefficients qQ of Eq. (16) are then expressible as
products of these random numbers n(i)α , with all factors
being independent of each other thanks to the local ro-
tations being uncorrelated. Taking each pair of angles
(θi, ϕi) to be uniformly distributed over the sphere, one
readily obtains that nα = 0 leading to rQ = 0 as required
by our protocol. Due to symmetry the variance ∆k is
expected to be independent of α = x, y, z, hence we can
compute it for any component. We find that

n2z =

∫
dΩP (θ, ϕ) cos2(θ) =

1

3
, (20)

and thus we get a factor of a 1/3 for each non-identity
operator in a given multi-body Pauli operator Q. This
leads to the variance ∆k = 1/3k which in turn implies
that

r2Q =
1

d

ε2k

3k
. (21)

Using the result Eq. (21) and letting x := ϵ2/3 for
notational convenience, Eq. (17) may be rewritten as

F (x, t) := G(
√
3x, t) =

N∑
k=1

Pk(t)x
k, (22)

which is the probability-generating function (PGF) for the
probability distribution {Pk(t)} [25]. From the PGF one
may extract information about the corresponding proba-
bility distribution, including the elements and moments
of the probability distribution.

We point out that the uniform sampling of the continu-
ous group SU(2) is not strictly necessary, as it suffices to
sample over a finite set of rotations given the correct first
and second moments. This is equivalent to constructing a
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Figure 2. Exact PGF approximated using a randomized subset
of rotations for W (0) = σ

(1)
y . Solid black lines are the exact

PGF, while colored dots denote the PGF obtained using a
subset of 1000 random rotations. Results are shown for several
choices of the state parameter ε (see legend in panel b), and
for both the integrable case θ = 0 (a) and the chaotic case
θ = π/6 (b). For the case ε = 1 the blue crosses show the
PGF obtained using a subset of 100 random rotations.

unitary 2-design and sampling the local operations from
it, and can be done by choosing Urot such that each qubit
takes on one of the values ±X, ±Y , and ±Z in each shot,
with a total of 6N unique rotation unitaries Urot needed
to obtain Eq. (17) without approximation. This shortcut
to uniform averaging also results in ∆k = 1/3k and ri = 0,
and thus Eq. (22) is unchanged when using this method
of averaging over a discrete set of rotations.

A. Application of the measurement protocol

In the remainder of this section we demonstrate via
numerical simulations our measurement protocol for the
case of the 1D tilted field Ising model. We present results
on how to obtain the PGF approximately using a subset
of random rotations, and show that the PGF may be
used as an indicator of quantum information scrambling.
Finally, we discuss an experimentally relevant method
of extracting the elements of the probability distribution
from the PGF and discuss its sensitivity to noise.

The Hamiltonian for the 1D tilted field Ising model is

given by

HIsing(θ) = J
N−1∑
i=1

σi
zσ

i+1
z +B

N∑
i=1

(
σi
x cos θ + σi

z sin θ
)
,

(23)
where the operators σi

α are the usual Pauli operators on
site i with α = x, y, z. The model describes N spin- 12 par-
ticles interacting in one dimension via nearest-neighbor
interactions in the presence of an external magnetic field
with both a transverse and longitudinal component which
are parameterized by the angle 0 ≤ θ ≤ π/2. This model
is a well-known platform for studies of many-body quan-
tum chaos [10, 26] since it is nonintegrable for generic
choices of θ and presents two integrable limits at θ = 0
(where the model reduces to the usual transverse field
Ising model) and θ = π/2 (where the Hamiltonian is di-
agonal in the z-basis). The scrambling properties of the
dynamics generated by the Hamiltonian Eq. (23) have also
been studied in relation to their quantum chaos character-
istics. For instance, it has been established that even the
integrable limit θ = 0 can lead to scrambling, and in this
case the mean operator size typically presents long-lived
oscillations for finite system sizes. The system typically
shows the highest degree of chaoticity for θ ≃ π/6, where
the operator sizes grow quickly and then equilibrate, and
temporal fluctuations are suppressed [10]. Throughout
the following we will consider the case J = B with N = 6
qubits.

In Fig. 2(a) and (b) the solid lines behind the colored
dots show the exact PGF F (x, t) for the edge site operator
W (0) = σ

(1)
y ≡ σy ⊗ 1 ⊗ . . . ⊗ 1, for several choices of

the state parameter ε. We consider the integrable case
θ = 0 (a) and the chaotic case θ = π/6 (b) of the tilted
field Ising model Eq. (23). For all t the two limiting cases
F (x = 1, t) = 1 and F (x = 0, t) = 0, with x = ε2/3,
follow from the definition of the PGF Eq. (22). We
observe in Fig. 2 that the primary effect of varying the
state parameter ε in the considered parameter range is a
change of amplitude of the PGF.

The colored dots (blue crosses) in the two panels of
Fig. 2 show the PGF extracted using a random subset
of 1000 (100) rotations out of the 6N = 46656 rotations
needed for the exact result. Figure 2 demonstrates that
we may obtain the PGF to very good accuracy using a
heavily reduced number of rotations compared to the exact
result, both in the integrable case θ = 0 and the chaotic
case θ = π/6. This is encouraging for the experimental
feasibility of implementing the present protocol.

In Ref. [10] moments of the operator size probability
distribution were used as signatures of quantum infor-
mation scrambling in the tilted field Ising model, with
the integrable case θ = 0 leading to oscillatory dynamics
of the mean operator size whereas in the chaotic case
θ = π/6 the mean operator size grew and saturated only
after initial oscillations. When comparing the curves for
θ = 0 with the corresponding curves in θ = π/6 in Fig. 2,
we see a clear difference in behavior for Jt ≥ 4, with
θ = 0 curves at later times exhibiting oscillations that
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are not present for θ = π/6. In the following we thus
explore whether the PGF may be used as an indicator
of scrambling, similar to the mean operator size used in
Ref. [10].

Figure 3 illustrates the PGF F (x, t) for different B-field
angles θ and times t as a function of the PGF parameter
x. For the initial time t = 0 the PGF is linear in x
independent of the choice of θ, however at finite times t
the behavior of the PGF is significantly different across
different θs. In the chaotic case θ = π/6 the PGF F (x, t)
approximately coincides with the result obtained from a
Haar random state (dashed red line) for all displayed times
greater than Jt = 2.52, indicating a fast equilibration. For
θ = π/3 the solid curves trend toward the Haar random
curve for increasing time Jt, but have yet to equilibrate
at Jt = 10 (light blue curve). The two integrable cases
θ = 0 and θ = π/2 display oscillatory behavior in the
PGF F (x, t) for a given x, similar to what was observed
in Fig. 2 - e.g., the dark blue Jt = 2.52 curve is below
both the black Jt = 0 curve and the light blue Jt = 10
curve for all x in both cases. We also do not observe
an equilibration of the PGF to the result for the Haar
random state.

While the PGF F (x, t) primarily serves as a quantity
from which one may extract information about the corre-
sponding probability distribution, we now illustrate how
the PGF itself may be used to characterize quantum infor-
mation scrambling. We propose to do this by analyzing
the time-average of the PGF for a fixed argument x,

F (x) =
1

tf − ti

tf∫
ti

F (x, t)dt′ (24)

and the time-averaged temporal fluctuations

∆F (x)2 =
1

tf − ti

tf∫
ti

(
F (x, t′)− F (x)

)2
dt′. (25)

In Ref. [10] we studied analog constructions for the
mean operator size (i.e., the first moment of the operator
size distribution) and found that they allowed to distin-
guish different scrambling and quantum chaos regimes of
this model. In Fig. 4(a) we show the time-average F (x)
as a function of the magnetic field angle θ. For different
accessible values of x we see that that F (x) dips in the
highly chaotic regime and grows near the integrable limits.
This behavior originates in the fact that the chaotic case
shows quick scrambling and subsequent equilibration to
the Haar-random behavior, where the PGF is closer to 0,
while the integrable cases show the largest typical values
of the PGF, as was noted for θ = 0 in the discussion of
Fig. 2. A similar functional form is observed for the time-
averaged temporal fluctuations ∆F (x)2 which we show
in Fig. 4(b). This indicates that temporal fluctuations of
the PGF are suppressed in the chaotic and enhanced in
the integrable cases, a behavior also observed also for the
mean operator size in Fig. 3 of Ref. [10].

Figure 3. Exact PGF F (x, t) illustrated for several times t
and B-field angles θ as a function of the parameter x. Solid
lines are the PGF for N = 6 qubits and, for comparison, the
red dashed line is the PGF for a Haar random probability
distribution.

Figure 4. Time average F (x) and fluctuations ∆F (x)2 of the
PGF F (x, t) as a function of the B-field angle θ, plotted for
three values of x corresponding to ε = 1 (red), ε =

√
2/3

(blue), and ε =
√

1/3 (black curve). The time average and
fluctuations are calculated for 5 ≤ Jt ≤ 80 to exclude the
initial transient dynamics from the results.

Our present findings thus show that it is not neces-
sary to extract the probability distribution {Pk(t)} from
the PGF F (x, t) in order to characterize the scrambling
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of quantum information for the considered Ising model.
Rather, the time average and time fluctuations of the
PGF are themselves good indicators of the presence of
scrambling. As demonstrated previously in Fig. 2 the
PGF can be approximated to good accuracy using a heav-
ily reduced number of random rotations, and as the PGF
is not itself sensitive to the noise unlike quantities ex-
tracted from the PGF (which we will comment on in the
following Sec. III B), the PGF provides an experimentally
relevant quantity for characterizing quantum information
scrambling. The results of Figs. 3 and 4 further emphasize
the utility of the PGF itself as a quantifier of quantum
information scrambling.

B. Extracting probability distribution elements and
moments from the PGF

In the absence of noise on the PGF F (x, t) – e.g., in a
numerical study of the exact PGF – the corresponding
probability distribution {Pk(t)} can be extracted from
the PGF using Eq. (22) in the following way. One first
calculates the PGF F (x, t) for N different values of x, and
then inverts the system of equations Eq. (22) to obtain the
elements Pk(t) of the probability distribution. However,
in the presence of a noisy PGF due to, e.g., a finite number
of sampled rotations or experimental imperfections, we
find that the procedure of inverting Eq. (22) leads to high
sensitivity to noise, which we associate with a poorly-
conditioned linear system of equations.

For a more systematic approach we can use well-known
properties of the PGF to recover the full probability
distribution. From the definition of the PGF Eq. (22),
one finds that [25]

Pk(t) =
1

k!

∂

∂x
F (x = 0, t), (26)

i.e., the elements {Pk(t)} of the probability distribution
are accessible through the evaluation of derivatives of
the PGF with respect to the parameter x at x = 0.
Likewise the moments of the probability distribution may
be accessed through derivatives of the PGF at x = 1:

E[Xk(t)] =

(
x
∂

∂x

)k

F (x = 1, t). (27)

In the following we will focus on the extraction of the
elements of the probability distribution via Eq. (26). We
leave the discussion of the moment extraction for later in
this section.

The nth derivative of the PGF F (x, t) at x = 0 may
be implemented for both numerical studies and in exper-
iments using a forward-only finite difference method on
the form [27]

F (n)(x = 0, t) =(∆x)−n
n+a−1∑
m=0

c(n,a)m F (m∆x, t)

+O(∆xa), (28)

where a is the accuracy of the finite difference method.
We leave the details of our implementation of the forward-
only finite difference method to appendix A. In practice,
applying this method implies preparing several states of
the form Eq. (13) with various levels of purity (controlled
by the parameter ε). To explore the experimental feasi-
bility of extracting the probability distribution elements
from the PGF, in the following we characterize the sensi-
tivity of the method to noise. The noise may have origin
in an approximative PGF due to choosing a reduced sub-
set of rotations, as discussed in Sec. IIIA, or stem from
experimental imperfections. We simulate the effect of the
noise in the following way. First the exact PGF F (x, t)
is calculated, on top of which we add noise. The noise is
assumed to be Gaussian and multiplicative in nature [28],
hence we write the noisy PGF as

F η(x, t) = [1 + δ(η)]F (x, t), (29)

where δ(η) ∼ N(0, η) is a normal-distributed number with
vanishing mean and variance η2. From the noisy PGF we
then use Eq. (28) to extract the elements {P η

k (t)} of the
probability distribution in the presence of noise.

We now consider the N = 6 transverse field Ising model
with J = B and θ = 0. In Fig. 5 we show for the operator
W (0) = σ

(1)
y the time averaged error of the extracted

probability distribution elements

∆P η
k =

1

T

∫ T

0

dt|P η
k (t)− P 0

k (t)|, (30)

as a function of the finite difference step size ∆x. The error
is calculated by comparing the elements P η

k (t) extracted
from the noisy PGF with the exact elements P 0

k (t), and
has been averaged over 100 realizations of the Gaussian
distributed noise δ(η). An accuracy of a = 1 was used for
the finite difference method; see details in appendix A.

When using finite-difference methods, there are two
major sources of error: truncation errors associated with
the accuracy a of the method, and rounding errors due
to uncertainty on the input function (in the present case
the rounding error is due to the noise added to the PGF)
[27]. The former error prefers ∆x as small as possible,
while the latter prefers larger ∆x. Hence, in choosing
the step size ∆x, one has to balance the contributions
from the two errors. We observe for the case η = 10−2 in
Fig. 5 that there exists step sizes ∆x for which the first
two elements P1 and P2 can be extracted with reasonable
errors – for P1 the time-averaged error is much smaller
than unity for all choices of distance ∆x. For higher k the
errors exceed 10−1 for all choices of ∆x, and is dominated
by rounding errors [27]. We note here that the step size
∆x is upper bounded by (1/3)/(n+ a− 1), as we need to
sample (n+ a− 1) points between x = 0 and x = 1/3.

By decreasing the noise amplitude by two orders of
magnitude to η = 10−4, we observe in the lower panel of
Fig. 5 that choosing ∆x ≥ 0.03 yields time averaged errors
smaller than 10−1 for the k ≤ 3 elements, while the k ≥ 4
elements of the probability distribution still carry too large
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Figure 5. Time averaged error ∆P η
k [see Eq. (30)] for the

elements of the probability distribution {Pk}, averaged over
0 ≤ Jt ≤ 10. We have used multiplicative noise with strength
η = 10−2 (upper panel) and η = 10−4 (lower panel), added
to the PGF F (x, t) before using finite difference derivatives
with step size ∆x and accuracy a = 2 to extract the noisy
probability distribution elements {P η

k (t)}. In both panels the
curves from top to bottom at ∆x = 0.02 are the time averaged
errors ∆P η

k for P6 (black dashed), P5 (blue dashed), P4 (red
dashed), P3 (black solid), P2 (blue solid), and P1 (red solid),
averaged over 100 noise realizations.

errors to be usable for the analysis of scrambling. We
thus see that the above derivative-based method Eq. (26)
of extracting the elements of the probability distribution
becomes increasingly sensitive to noise with the degree of
the derivative one needs to evaluate, and even for highly
precise measurements of the PGF F (x, t) the method
Eq. (26) of extracting the probability distribution from
the PGF is too sensitive to noise to allow us access to Pk

for k ≥ 4.
As a consequence of the high sensitivity to noise –

whether the noise originates in experimental imperfec-
tions or an approximate PGF due to a finite number of
sampled rotations – it does not seem experimentally feasi-
ble to extract the probability distribution elements from
the PGF. Instead, one should use a protocol dedicated
to the extraction of the probability distribution elements.
To this end we present in Sec. IV an experimentally-
relevant protocol that is able to access the elements of
the probability distribution without using the PGF.

Finally, we comment on the extraction of the moments
of the probability distribution using Eq. (27). Accessing
the moments of the probability distribution using the pre-
viously described finite difference method requires one to
create states with x > 1/3 to approximate the derivative.
However, with the constraint of |ε| ≤ 1, it is impossible
to access x > 1/3 through the procedure outlined in this
section. If one could engineer an ensemble of correlated
initial states, the variance ∆k could possibly be manip-
ulated sufficiently to allow access to values of x > 1/3.
However, in the present work we do not investigate this

Figure 6. Application of Method B to obtaining the operator
size distribution {Pk(t)} for the case of the Ising model of
Eq. (23) with N = 6 and J/B = 1. Each panel shows a
different value of k = 1, . . . , 6. Full lines correspond exact
numerical results obtained by solving the Heisenberg evolution
of the initial operator, here chosen to be W (0) = σ

(2)
x . Symbols

correspond to numerical simulations of Method B (Sect. IV)
with different choices of the number of sampled rotations
Mrot = 100 (circles) and Mrot = 500 (crosses). Different colors
denote different regimes of the model: integrable case θ = 0
(blue) and chaotic case (θ = π/6) (red).

further and leave it for possible future extensions of this
work.

IV. METHOD B: ACCESSING ELEMENTS OF
THE PROBABILITY DISTRIBUTION FOR

SMALL OPERATOR SIZES

In the previous Sec. III we presented a measurement
protocol that can access the operator size probability dis-
tribution {Pk(t)} by measuring the probability-generating
function (PGF) F (x, t) in Eq. (22). Here we return to
the general result in Eq. (10) and develop an alternate
NOTOC measurement protocol to access the individual
probabilities. This is achieved by employing a different
choice of initial state that replaces the one in Eq. (13).
The protocol will provide a direct way of obtaining the
probabilities and bypasses the sensitivity issues encoun-
tered when trying to invert the PGF.
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In order to directly access Pk for a given 1 ≤ k ≤ N ,
we choose a subset Mk of k particles in the system and
prepare them the classically correlated state

ρ
(k)
Z =

1

2k

(
Ik +

k⊗
i=1

Zi

)
, (31)

while the other N − k particles are left in a maximally
mixed state. The resulting state is clearly unentangled
as it can be produced as a statistical mixture of product
states in the computational basis. Crucially, it has the
desired property of being written solely in terms of weight-
k operators, as discussed in Sec. II. Thus we may proceed
in a similar fashion to method A: we apply a round of
uniformly-chosen random rotations on each of the particles
in Mk. The resulting full state takes the form

ρ0 =
1

d

1+
∑

Q∈Ck(Mk)

qQQ

 , (32)

where the modified set Ck(Mk) is composed of all k-
body Pauli operators acting on the particles in Mk. The
application of random, local rotations ensures that the
coefficients qQ are independent, identically distributed
random variables with mean qQ = 0 and variance q2Q =

1/3k. It follows from Eq. (9) that

G(t)Mk
=

1

3k

∑
Q∈Ck(Mk)

|f [Q;W (t)]|2 , (33)

and thus we find

Pk(t) = 3k
∑
Mk

G(t)Mk
. (34)

In order to obtain Pk(t) exactly one needs to obtain G(t)
for all possible subsets of Mk of k particles, thus requiring(
N
k

)
repetitions of the protocol. While this is in general

inefficient, it can be feasible as long as k and N are
not too large. In practice, the number of initial states
can be reduced in at least two ways. One option is to
approximate the sum in Eq. (34) by randomly sampling a
reduced number of sets Mk. Alternatively one can exploit
symmetries of the system. For instance, the Hamiltonian
in Eq. (23) has a reflection symmetry with respect to
the middle of the chain which can be easily leveraged to
reduce the state count by a factor of 2. If the system has
a full translational symmetry, then the state count can
be reduced by a factor of N . The procedure to achieve
this is described in the Appendix B.

In the following we present numerical results that
demonstrate this method’s ability to reconstruct Pk(t)
for various instances of the tilted field Ising model intro-
duced in Sec. IIIA with N = 6 particles. We choose the
initial operator to be W (0) = σ

(2)
x . Results are obtained

by using all possible choices of Mk for each k, and by
sampling over Mrot realizations of randomized rotations.

In Fig. 6 it can be seen that the dynamics of each size
probability Pk(t) is faithfully reproduced by the present
method, in some cases using as little as Mrot = 100 ro-
tations. For larger operator sizes k ≥ 4 the effects of
finite sampling are more pronounced, however this is to
be expected as the typical probabilities are also smaller.
The cases displayed in the figure correspond to θ = 0 (in-
tegrable transverse field model, blue curves and symbols)
and θ = π/6 (chaotic model, red curves and symbols),
and it can be readily seen that the protocol accesses the
typical features expected in both cases, namely a fast
spread of the operators (as seen in the decay of P1(t) at
short times), a subsequent oscillatory behavior for θ = 0,
and equilibration for θ = π/6.

We note that the method presented in this section will
not be feasible to obtain the full probability distribution
for large system sizes N ≫ 1, since at some point an
exponential number of the subsets Mk’s would be required
to exactly recover them from Eq. (34). However, this
method can be used to verify whether a system a system
has scrambled to k−body operators as a long as k ∼ O(1).
An alternative benchmark is to compare the values of
the obtained Pk’s with the ones corresponding to Haar-
random evolution, i.e.

PHaar
k =

(
N

k

)
3k

d2 − 1
(35)

where d = 2N (see Refs. [10, 12] for additional details).
We show these values as gray dashed lines in each of the
plots of Fig. 6, where we observe that the observable
tends to equilibrate to these values in the chaotic regime
(θ = π/6) of the model.

V. COMPARISON & DISCUSSION

A. Extensions to other systems

In this section we present an extension of the NOTOC
measurement protocol introduced in Sec. II to collective
spin systems, where every spin interacts with every other
spin in the system. This class of systems preserves J2 =

J2
x + J2

y + J2
z where Ji =

∑
k σ

(k)
i is the collective spin

operator. Some well known Hamiltonians of this type
include p-spin models (p = 2 case is referred to as the
Lipkin-Meshkov-Glick model) and the quantum kicked
top model [29–31]. The dynamics of these models is often
studied in the symmetric subspace, the subspace of the
whole Hilbert space associated with J = N/2 quantum
number where N is the number of spins. The dimension
of this subspace increases linearly with the number of
spins in the system, dss = 2J + 1 = N + 1.

It is natural to study scrambling in this type of system
by decomposing the time-evolved operators in a basis
associated with the polynomials of collective spin oper-
ators, referred to as the spherical tensor operator basis
[10, 32]. A spherical tensor operator T (k)

q is an operator
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that transforms under rotations in the same manner as
spherical harmonics [33]

D(α, β, γ)T (k)
q D†(α, β, γ) =

k∑
q′=−k

D(k)
q′q (α, β, γ)T

(k)
q′ ,

(36)

where D(α, β, γ) = e−iJzαe−iJyβe−iJzγ and therefore
D(k)

q′q(α, β, γ) ≡ ⟨k, q′|D(α, β, γ)|k, q⟩. The explicit form
of the spherical tensor operators is given by [32]

T (k)
q (J) =

√
2k + 1

2J + 1

J∑
m,m′=−J

CJ m′

J m;k q|J,m′⟩⟨J,m|, (37)

where CJ m′

J m;k q = ⟨J,m′|J,m; k, q⟩ is a Clebsch–Gordan
coefficient, and q = {−k,−k + 1, ..., k} for a given rank
of the tensor operator k = {0, 1, ..., N}. These operators
form an orthonormal basis Tr

[
(T

(k′)
q′ )†T

(k)
q

]
= δk,k′δq,q′

that spans the Hilbert space associated with the symmet-
ric subspace. Note that a kth rank tensor operator is
simply a kth order polynomial of collective spin operators,
hence the basis consists of polynomials of collective spin
operators ranging from order 0 to order N . The rank
of these operators can be used to construct the operator
size distribution for this class of systems, similar to the
operator size (Hamming weight) used for the Pauli basis.
It is then natural to analyze the dynamics of the system
by considering an operator of a particular rank k at the
initial time, and characterizing the scrambling dynamics
of the system by considering for each tensor rank k the
time evolution of the element Pk(t) of the operator size
distribution.

In the following we describe the details of a NOTOC
measurement protocol for collective spin systems that can
access the elements Pk(t) of the operator size distribution
for small operator sizes. As in Sec. II we require the initial
state to be prepared from an ensemble that satisfies ri = 0

and r2i = ∆k in Eq. (7). The nonzero coefficients ri are
here associated with a particular rank k in the expansion
of the density operator in the spherical tensor operator
basis {T (k)

q }. To obtain states that satisfy these properties
for the expansion coefficients, we start with a mixed state
given by

ρ̃0 =
1

dss

(
1+

1

e0
T

(k)
0

)
, (38)

where k > 0. e0 is the absolute value of the smallest
eigenvalue of T (k)

0 , which is used to ensure the semidef-
initeness of the density operator. Note that T (k)

0 is a
kth order polynomial in Jz. For instance, T (1)

0 = c
(1)
0 Jz

and T
(2)
0 = c

(0)
2 (3J2

z − J(J + 1)) where c(1)0 and c
(2)
0 are

normalization coefficients. For k = 1 the state ρ̃0 is a ther-
mal equilibrium state of a system placed in an external
magnetic field at high temperatures, ρ = 1

d (1+ϵJz) where

ϵ≪ 1 [34]. Higher-order states could potentially be pre-
pared as equilibrium states of a system with Hamiltonian
consisting of higher-order Jz terms.

Applying global rotations of the form D(ϕ, θ) = D(α =
ϕ, β = θ, γ = 0) = e−iJzϕe−iJyθ on the state ρ̃0 leads to

ρ0 = D(ϕ, θ) ρ̃0 D
†(ϕ, θ)

=
1

dss

(
1+

1

e0

k∑
q′=−k

⟨k, q′|D(ϕ, θ)|k, 0⟩ T (k)
q′

)

≡ 1

dss
1+

k∑
q′=−k

rk,q′ T
(k)
q′

(39)

where rk,q′ = (e0dss)
−1⟨k, q′|D(ϕ, θ)|k, 0⟩, and the angles

θ and ϕ are sampled randomly from a uniform distribution
on the surface of a sphere. This state has zero mean and
nonzero variance [35] as expected,

rk,q′ =

∫
dΩ rk,q′(ϕ, θ) =

1

e0dss
⟨k, q′|D(ϕ, θ)|k, 0⟩ = 0,

(40)

r2k,q′ =

∫
dΩ r2k,q′(ϕ, θ) =

1

e20d
2
ss

|⟨k, q′|D(ϕ, θ)|k, 0⟩|2

=
1

e20d
2
ss

4π

2k + 1
,

(41)

where dΩ = sin θdθdϕ. Equation (41) is analogous to
Eq. (21) in that the expression for the variance depends
only on a coarse-grained property of the operator basis
element, namely, the operator size for the Pauli basis and
the operator rank for the spherical tensor basis. Hence
we have

Pk(t) =
1

∥W∥22 r2k,q′
| ⟨W (t)⟩ |2 (42)

where W is the operator of interest. This result shows
that method B of Sec. IV can be naturally adapted to
collective spin systems. In general, the procedure shown
in this section illustrates how to choose a combination of
initial states and randomized operations tailored to the
choice of operator basis such that the average NOTOC
connects to operator size distributions. Notice that N +
1 repetitions of the above protocol for different k will
provide us probabilities associated with all operator sizes.
However, the state in Eq. (38) is not easily accessible for
higher values of k, so this protocol might only be suitable
for small system sizes.

B. Relation to previous proposals

The toolbox presented in Sec. II presents some notewor-
thy connections with previous works which have studied
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how to diagnose complex many-body dynamics in dif-
ferent settings. For instance, Qi et al. [12] proposed a
method to probe the growth of an operator O in quantum
quench experiments using pure product states of qudits
(of local dimension dL) followed by random local opera-
tions. The authors showed that the variance δO(t)2 of
the expectation value ⟨O(t)⟩ over the random realizations
yields

δO(t)2 =
Tr(O2)

dNL
F

(
x =

1

dL + 1
, t

)
. (43)

where F (x, t) is the probability-generating function as-
sociated with the operator size distribution of O(t). For
qubits, dL = 2 and so the method probes the PGF at
x = 1/3. This is exactly the case for the NOTOC when
choosing states of the form proposed in method A (Sec. III)
using pure states (ε = 1), see Eq. (22). Therefore, our
proposed method A recovers the protocol of Ref. [12] for
the case of pure states and generalizes it by showing that
the PGF can be sampled in a continuum of values x ≤ 1/3
by using mixed states of qubits. It remains to be studied
whether this generalization carries over to the case of
qudits with dL > 2. Additionally, these methods do not
allow to access x > 1/3 directly and it is unclear whether
the toolbox of Sec. II provides a way around this by using
a clever choice of initial states. Regarding this aspect,
we point out that a recent work proposes an alternative
method to access the PGF F (x, t) (in principle for any
x) using a single-particle mixed states (similar in form to
Eq. (31) when k = 1) and resorting to forward U(t) and
backward U†(t) evolution. Importantly, the analysis we
presented in Sec. III B concerning the large sensitivity to
noise of the process of obtaining the operator distribution
{Pk(t)} from its PGF F (x, t) applies to all methods that
aim at obtaining the PGF. Our findings indicate that
obtaining the distribution from the PGF might be unfea-
sible in experiments, but also show that properties of the
PGF itself could be used a probe for scrambling directly.
More detailed work should be carried out to explore this
further.

The idea of using mixed states to probe properties
of operator evolution was also used recently by Peng
et al. in Ref. [23], where the goal was to measure
single-site two-time correlation functions on the form∑

i Tr[σ(i)
z (0)σ

(i)
z (t)] in an NMR experiment. This mea-

surement was carried out by first preparing the weakly
polarized initial state ρ0 ∝ (1+ ε

∑
i σ

(i)
z ), then allowing

this initial state to become locally randomized by the
effect of on-site disorder, and ultimately measuring a tun-
able observable using inductive measurements, rotations,
and on-site disorder. An analogous method for measuring
two-site two-time correlation functions was also proposed
by the authors. The measurement protocol proposed in
Sec. III of the present work shares significant overlap in
methodology with that of Ref. [23], however the goals of
the two measurement protocols differ and thus the pre-
pared random mixed states and ultimate measurements

are also different. For the purpose of extracting the oper-
ator size distribution, we note that by using the two-time
correlation function studied in Ref. [23] one will have to
extend the method of Ref. [23] to all m-site correlation
functions, with m ≤ N . This will likely not be feasible due
to the non-local nature of the operators to be measured,
as well as the issue of the exponentially growing number
of operators one needs to measure which was discussed in
Sec. IV for our proposed measurement protocol.

Finally, we comment on the connection between our
proposal and that of Vermersch et al. in [20], where the
authors propose a way to measure OTOCs without using
time-reversal operations or auxiliary systems. Instead,
their proposal is based on performing randomized uni-
taries on a set of initial states and extracting the OTOCs
from the statistical correlations between the measurement
results. In principle, this method allows one to recon-
struct the operator size distribution if one repeats the
procedure for (exponentially many) choices of the opera-
tor R in Eq. (3). This can be achieved by using averages
of OTOCs to obtain the moments of the {Pk(t)} distri-
bution, as outlined in Sect. VI of [10]. In contrast, our
method can be seen as a way of using similar tools (i.e.
preparation of product states, randomized local opera-
tions, and local measurements) to probe the operator size
distribution directly, thus bypassing the calculation of
OTOCs.

C. Relation to fidelity OTOCs

Finally, we discuss the physical interpretation of the
different tools and quantities used to study quantum
information scrambling. The first aspect is related to the
fidelity OTOCs, introduced in Sec. II, which are a class of
correlation functions obtained from the usual OTOCs of
the form in Eq. (3) by choosing the early-time operator R
to be the projector onto the initial state R = ρ0. The use
of fidelity OTOCs attracted widespread attention in the
community because they are technically an OTOC but can
be measured as a single expectation value of a (often) local
operator W when the initial state is pure, ρ0 = |ψ0⟩ ⟨ψ0|
[21]. Fidelity OTOCs have interesting connections to
quantities like the quantum Fisher information [1] and
the Loschmidt echo [36].

The fact that typically ρ0 is a non-local operator makes
the fidelity OTOC relinquish the usual interpretation
of OTOCs as measures of information scrambling. In
particular, the relation between OTOCs involving Pauli
operators and moments of the operator size distributions
[6, 10] does not apply to fidelity OTOCs. However, our
present work shows that fidelity OTOCs are indeed con-
nected fundamentally to operator size distributions if one
takes the initial pure state |ψ0⟩ to be a product state
and then considers the average fidelity OTOC over many
realizations of local random rotations on the initial state.
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VI. CONCLUSION

In this article we have proposed a measurement pro-
tocol for probing quantum information scrambling by
measuring operator size distributions. Our measurement
protocol requires the preparation of separable mixed states
followed by local operations and final-time measurements
of local operators, and circumvents the typical use of out-
of-time-ordered correlation functions (OTOCs) to probe
scrambling properties[37, 38]. We have demonstrated that
the choice of initial separable mixed states in our mea-
surement protocol provides multiple ways to access the
operator size distribution, and we comment on the exper-
imental feasibility for two particular methods, one based
on first extracting the probability-generating function for
the operator size distribution, and the other focused on
obtaining the elements of the operator size distribution
directly.

The application of our measurement protocol is illus-
trated in detail for the 1D tilted field Ising model, a
well-known platform for studying many-body quantum
chaos [26, 39, 40]. We numerically demonstrate the char-
acterization of quantum information scrambling for this
model using our proposed measurement protocol. We
have related our proposed protocol with well-established
methods of characterizing scrambling, including those
based on OTOCs, and were able to establish connections
between the well-established fidelity OTOC and operator
size distributions using our results presented in this ar-
ticle. Finally, we have exemplified the extension of our
measurement protocol to other types of quantum sys-
tems by considering our protocol for the case of collective
spin systems. The collective spin case emphasizes further
the role that state preparation plays in our measurement
protocol.

In the discussion of our proposed measurement proto-
col’s connection to the probability-generating function,
we found that the extraction of moments of the opera-
tor size distribution was not possible due to constraints
on the prepared initial states that prevent us from ac-
cessing x > 1/3 in the probability-generating function
F (x). From preliminary numerical results we expect that
the extraction of the first and second moments of the
operator size distribution would be both resilient to noise
and reasonable to implement in experiment if one could
obtain values of x > 1/3, hence finding a way to prepare
initial states allowing the extraction of moments of the
operator size distribution would be an obvious extension
of the present work. This potential extension should be
compared to the proposal in Ref. [9] where the probability-
generating function can be accessed for any x, but at the
expense of requiring the implementation of time-reversal
of the many-body evolution.

In Sec. VA we presented the extension of our NOTOC
measurement protocol to collective spin systems. The ex-
tension of the measurement protocol to many-body qudit
systems and other systems of interest for studying the
nature of scrambling would be an interesting task that

we leave for future work. We point out that studies of
operator size distributions for many-body systems beyond
qubits are also scarce, with some exceptions [6, 41]. In
particular, we note the case where the system of inter-
est interacts with the environment, thus forcing one to
probe scrambling and the operator size distribution in the
presence of decoherence [9]. The NOTOC measurement
protocol may be extended to open quantum systems using
the analysis presented in Sec. II B of Ref. [21], from which
a detailed analysis of the effect of decoherence may be
carried out. Crucially one should revisit the definition of
the coarse-grained operator size distribution Eq. (2) and
consider the effect of decoherence on, e.g., the normaliza-
tion of this distribution. Additionally, the relationship
between the fidelity OTOC Eq. (4) and the NOTOC
Eq. (5) becomes more complicated for open quantum
systems [21].
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Appendix A: Finite difference method details for
method A

The nth derivative at x = 0 of the probability-
generating function F (x, t) defined in Eq. (22) is imple-
mented in the present work as a forward-only finite dif-
ference method [27], which takes the form Eq. (28) and
is repeated here for convenience:

F (n)(x = 0, t) =(∆x)−n
n+a−1∑
m=0

c(n,a)m F (m∆x, t)

+O(∆xa). (A1)

Here a is the accuracy of the finite difference method, and
the step size ∆x is the distance between the n+ a points
{x = m∆x}n+a−1

m=0 used to approximate the derivative.
The forward-only finite-difference coefficients c(n,a)m are
given in table I for a = 1 and in table II for a = 2, and
were obtained using Ref. [42]. Figure 5 in Sec. III B was
created using the forward-only finite difference method
Eq. (28) with the coefficients of table I.
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n c
(n,1)
0 c

(n,1)
1 c

(n,1)
2 c

(n,1)
3 c

(n,1)
4 c

(n,1)
5 c

(n,1)
6

1 -1 1 – – – – –
2 1 -2 1 – – – –
3 -1 3 -3 1 – – –
4 1 -4 6 -4 1 – –
5 -1 5 -10 10 -5 1 –
6 1 -6 15 -20 15 -6 1

Table I. Forward-only finite difference coefficients c
(n,a)
m for

derivatives of degree n ≤ 6, using accuracy a = 1. The finite
size difference coefficients were obtained using Ref. [42].

n c
(n,2)
0 c

(n,2)
1 c

(n,2)
2 c

(n,2)
3 c

(n,2)
4 c

(n,2)
5 c

(n,2)
6 c

(n,2)
7

1 -3/2 2 -1/2 – – – – –
2 2 -5 4 -1 – – – –
3 -5/2 9 -12 7 -3/2 – – –
4 3 -14 26 -24 11 -2 – –
5 -7/2 20 -95/2 60 -85/2 16 -5/2 –
6 4 -27 78 -125 120 -69 22 -3

Table II. Forward-only finite difference coefficients c
(n,a)
m for

derivatives of degree n ≤ 6, using accuracy a = 2. The finite
size difference coefficients were obtained using Ref. [42].

While in theory one can increase the accuracy a arbi-
trarily to minimize the error O(∆xa) of the approximation
for any ∆x≪ 1, in practice the method becomes increas-
ingly sensitive to noise as we increase the accuracy a.
This increased sensitivity to noise is due to the number of
points sampled n+a limiting the values that ∆x can take,
and in the vicinity of vanishing ∆x the dominant error is
not the approximation of the derivative in Eq. (A1), but
rather rounding errors due to the presence of the noise
[27].

Figure 7 displays a comparison between the extraction
of the elements of the probability distribution for accu-
racies a = 1 (solid curves) and a = 2 (dashed curves).
Plotted is the time averaged error ∆P η

k as defined in
Eq. (30), averaged over times Jt ∈ [0, 10] for each realiza-
tion of the noise Eq. (29) and subsequently averaged over
100 noise realizations. We are considering the same sys-
tem parameters and operator as in Sec. III B. We observe
for the higher noise amplitude η = 10−2 (upper panel)
that the lower accuracy method generally outperforms the
higher accuracy method for the considered step sizes ∆x,
the exception being for P1 when considering ∆x ≥ 0.02.
The crossover between the a = 1 and a = 2 curves at
∆x ≈ 0.02 for P1 indicates a transition from being domi-
nated by the sensitivity of the method to the added noise
Eq. (29) for smaller ∆x values, to being dominated by the
error due to the finite difference method’s approximations
for larger ∆x values.

For the case of η = 10−4 (lower panel in Fig. 7) we
clearly see that the a = 2 method outperforms the a = 1
method for P1, and a clear crossover point is also observed
for P2. Therefore, when working with a sufficient small

Figure 7. Comparison of time averaged error ∆P η
k [Eq. (30)]

for accuracy a = 1 (solid curves) and a = 2 (dashed curves).
The used parameters are identical to those used for Fig. 5.
Shown are the time averaged errors for P1 (red), P2 (blue),
and P3 (black curves), for noise amplitude η = 10−2 (upper
panel) and η = 10−4 (lower panel).

noise amplitude such as η = 10−4, it may be beneficial to
use a higher accuracy for the finite difference method.

Appendix B: Reducing state counts in Method B by
exploiting symmetries

Here we show how to reduce the number of states
required to produce in Method B of Sec. IV by exploiting
symmetries. In many cases, we are interested in the
operator size distribution of an operator W which is a
single site Pauli operator. For concreteness, let us assume
this operator acts on site 1, W ≡ W1. The NOTOC of
Eq. (17) is constructed by measuring the expectation value
of W1 at the end of the protocol. In principle, however,
there is no ’cost’ associated to measuring expectation
values on different sites and using those get more refined
information about the operator dynamics. Suppose the
system has a translational invariance described by an
operator Tl

T †
l

⊗
j

qj

Tl =
⊗
j

q(j+l mod N), (B1)

such that, for instance, T †
1 (A⊗B ⊗ C)T1 = C ⊗A⊗B,

etc. Consider our system’s evolution given by U(t) such
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that T †
l U(t)Tl = U(t). Then we have

W1(t) =
∑
Q

f [Q;W1(t)]Q (B2)

T †
l U(t)†W1U(t)Tl =

∑
Q

f [Q;W1(t)]T
†
l QTl (B3)

W1+l(t) =
∑
Q

f
[
TlQlT

†
l ,W1(t)

]
Ql (B4)

when we have defined Ql ≡ T †
l QTl and used the transla-

tion invariance property. By definition, the LHS of the

last equation equals

W1+l(t) =
∑
Q′

f [Q′,W1+l(t)]Q
′ (B5)

and so we have that

f [Q,W1+l(t)] = f [TlQT
†
l ,W1(t)]. (B6)

Suppose we start from a fixed initial state ρ1 =
1
d

(
I+

∑′

Q∈Ck
rQQ

)
, where the sum is over only a subset

of operators of weight k, starting at position 1 up to k.
If we measure ⟨W1+l(t)⟩ for l = 0, . . . , N − 1, then

⟨W1+l(t)⟩ =
∑
Q

f [Q;W1+l] ⟨Q⟩ρ1
(B7)

=
∑
Q

f
[
TlQT

†
l ;W1(t)

]
Tr (ρ1Q) =

∑
Q

f
[
TlQT

†
l ;W1(t)

]
Tr
(
Tlρ1T

†
l TlQT

†
l

)
(B8)

=
∑
Q̃

f
[
Q̃;W1(t)

]
⟨Q̃⟩Tlρ1T

†
l
. (B9)

In conclusion, that means that measuring ⟨W1+l(t)⟩
yields the same result as having done the protocol starting
from Tlρ1T

†
l , thus reducing the state count by a factor of

N provided one can measure expectation values in all sites

in the case of full translational invariance. The procedure
works similarly if one only has a reflection symmetry (i.e.
open boundary conditions).
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