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Spectral techniques for measuring bipartivity and producing partitions

Azhar Aleidan and Philip A. Knight†

Department of Mathematics and Statistics, University of Strathclyde, Richmond Street,
Glasgow G1 1XH, UK

†Corresponding author. Email: p.a.knight@strath.ac.uk

[Received on 3 March 2023; editorial decision on 20 June 2023; accepted on 26 June 2023]

Complex networks can often exhibit a high degree of bipartivity. There are many well-known ways for
testing this, and in this article, we give a systematic analysis of characterizations based on the spectra of the
adjacency matrix and various graph Laplacians. We show that measures based on these characterizations
can be drastically different results and leads us to distinguish between local and global loss of bipartivity.
We test several methods for finding approximate bipartitions based on analysing eigenvectors and show that
several alternatives seem to work well (and can work better than more complex methods) when augmented
with local improvement.
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1. Introduction

Complex networks exist in many disparate fields of study including maths, social sciences and informat-
ics. Describing these systems enables us to discover useful properties. One such property is exhibited
by so-called ‘two-mode’ networks, where two sets of nodes are connected by links that represent the
relationships between them are described as bipartite [1]. Even networks that are not truly bipartite may
show more bipartivity than would be seen in a completely random network. The degree of bipartivity in
a network can be measured [2] with a view to exploiting this structure where present, or correcting for
it, to increase efficiency.
A number of authors have given examples of real-world networks, where identifying closeness to

bipartivity gives useful insight. For example, Kunegis [3] observes that in networks formed through sexual
selection, near bipartivity is a common property; and in [4], the authors draw a parallel between stability
of fullerene isomers and the nearness to bipartivity of graph models of their molecular form. In [5], the
authors observed that one can find a degree of bipartivity in a network depicting communication between
airports; that is, most communication is between the partitionswhile there is little betweenmembers of the
same group. The authors focused on European airline networks to see how varying degrees of bipartivity
affect their efficiency. The authors showed that that traditional airlines appear to be much more bipartite
than low cost airlines. If we measure transportation efficiency as the ratio of the number of passengers to
the number of hours flown by a carrier, it can be seen that a low degree of bipartivity in a transportation
network drives airline efficiency. Without a way to measure bipartivity, inefficiencies like the one just
discussed would be more difficult to identify [1].
In order to measure bipartivity, one has to characterize the property. In this article, we look at how

different characterizations have been used, and can be extended, to measure the degree of bipartivity
within a network. We show that the different characterizations can lead to profoundly different conclu-
sions about the level of bipartivity within a network. For example, we show that is possible to generate a
network that is arbitrarily close to being bipartite by one measure while being arbitrarily far by another.
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We compare the various a priori measures on synthetic and real-world data in order to determine which
is the most useful in predicting whether a network is in any sense close to bipartite.
Finally, we test a number of existing algorithms that have been proposed for finding approximate

bipartitions and compare them with simple methods inspired by the equivalent characterizations of exact
bipartivity on a number of real-world networks. There is variation in performance, but this can be mit-
igated against, and we find that we can regularly improve results with by some simple post-processing
via local improvement.
The article is organized as follows. First, we introduce various characterizations of bipartivity from

which we derive a series of measures. We then give an analysis of these measures before presenting a
number of algorithms for finding bipartite perturbations of networks. We examine the performance of
these algorithms before drawing conclusions.
Throughout the main body of this article, we focus on simple networks. We use the notation G(V ,E)

to denote a network (or graph) G with n nodes (or vertices) V = {v1, v2, . . . , vn} connected by m bi-
directional edges E = {ε1, ε2, . . . , εm}, unless otherwise stated. Each edge εi is distinct and connects
two distinct nodes vpi and vqi . We write εi = (vpi , vqi). We denote the adjacency matrix of G by A, the
complete graph with n nodes by Kn, the path graph with n edges by Pn and the complete bipartite graph
with partitions of size n1 and n2 by Kn1n2 . Unless otherwise stated, our networks will be assumed to be
strongly connected.
Matrices and vectors are denoted by bold letters, and we use subscripts to denote their dimensions

when appropriate. We use O, I and E to denote the zero matrix, the identity matrix and a matrix of ones,
respectively, 1 to denote a vector of ones (subscripted with its dimension when necessary), and ei to
denote the ith column of I.

2. Characterizing bipartivity

The classic definition of network bipartivity is as follows.

Definition 2.1 A network is bipartite if the nodes of the network G(V ,E) can be divided into disjoint
sets V = V1 ∪ V2 such that for all (u, v) ∈ E, either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1.

There are a number of other characterizations that have been proposed in the literature, and many of
these are collected in Theorem 2.2. Before, we state the theorem we introduce some notation that will be
useful to us. We write the spectrum of G as

σ(G) = {[λ1]p1 , [λ2]p2 , . . . , [λl]pl} ,

where λ1 > λ2 > · · · > λl are the distinct eigenvalues of A (which are real since G is undirected) and pi

is the multiplicity of λi (since G is connected p1 = 1 by the Perron–Frobenius theorem). We note that if
f (A) is a well-defined function of a matrix then

tr(f (A)) =
l∑

i=1
pif (λi).

Suppose D is the diagonal matrix whose entries are the degrees of the nodes of G, then the matrix
L = D−A is known as it graph Laplacian and the matrixQ = A+D is called its signless Laplacian. The
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normalized Laplacian is the matrixN = I−D−1/2AD−1/2. And given a partition of the nodes P = {V1,V2}
the modularity is given by

Q = Q(P) = 1

4m
s�

(
A − kk�

2m

)
s = 1

4m
s�Bs, (2.1)

where k is the vector of node degrees, and s is an indicator vector whose ith element is +1 if vi ∈ V1
and −1 if vi ∈ V2. We recall that modularity is used in community detection to measure the quality of
a proposed partition P and that −1/2 ≤ Q ≤ 1 with a high value of Q indicating that P gives good
community structure [6]. In the case of a partition into more than two sets the definition, we have given
must be modified slightly. Also we will use subgraph centralization, which is defined to be the mean of
all subgraph centralities of the nodes of a network [1], that is

〈SC〉 = 1

n

n∑
i=1

(
eA

)
ii

= 1

n
tr(eA).

Theorem 2.2 IfG(V ,E) is a simple connected network, then the following conditions are equivalent.

1. G is bipartite.

2. The adjacency matrix of G can be permuted to

[
O B

B� O

]
.

3. G has no cycles of odd length.

4. G has no closed walks of odd length.

5. λ1 = −λl.

6. The spectrum of G is symmetric about 0.

7. tr(sinhA) = 0.

8. 〈SC〉 = 1

n
tr(coshA).

9. Q is singular.

10. N has maximum eigenvalue 2.

11. Q(P) = −1/2, where P is the bipartition of nodes.

None of these results is new; 2–6 are standard text book results and 7–11 can be found in [5–8].
We note that while the normalized and signless Laplacians can be used to characterize bipartivity, there
appears to be no way to use the standard graph Laplacian. However, in Section 5, we show all three can
be used to derive spectral algorithms for finding approximate bipartitions.

3. Bipartivity measures

Using Theorem 2.2, we can characterize closeness to bipartivity in myriad ways. In this section, we
introduce a number of measures. We want to identify computationally tractable measures. These are
generally inspired by algebraic properties of the adjacency matrix and Laplacians of a bipartite graph.
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We note that almost all of the measures listed here, as well as simple variants, are well known in the
literature.
Calculating the proportion of edges that destroy the bipartivity in a network gives an easy way to

define the degree of network bipartivity. That is, we can measure the degree of bipartivity by counting
the minimum number of edges we need to remove to create a perfectly bipartite network [9]. The edges
we remove are commonly referred to as frustrated edges.
Let md be the number of such edges in G. Then, the bipartivity of G can be measured by bc =

1 − md/m, where the subindex c is introduced to indicate that this index is combinatorial in nature [9].
Clearly, bc equals 1 if and only if G is bipartite. And since, we never need to remove more than half the
edges of a network to make it bipartite (the limiting case being Kn as n → ∞) bc ≥ 1/2 for all networks.
To make the comparison between measures more transparent, we will normalize the ones we study in
this article so that they give values across the range [0, 1] with the value of 1 occurring if and only if a
graph is exactly bipartite.1 For this reason, we will use the measure bC in place of bc, where

bC = 1− 2md

m
.

This measure is impractical to calculate in practice because determining md is an NP complete problem
[9] which is one of the reasons for introducing alternative measures for bipartivity.
Instead of using frustrated edges, one can use the fact that since a simple bipartite graph contains

no odd cycles we can measure closeness to bipartivity by quantifying the frequency of odd cycles or
closed walks and the proportion of even closed walks to the total number of closed walks is a measure
of network bipartivity. This can be quantified using subgraph centralization with the measure

bs = tr(coshA)

tr(eA)
, (3.1)

since the entries of coshA give weighted sums of just the even length walks in a graph. Hence, bs ≤ 1
and bs = 1 if and only if G is bipartite. Furthermore, as sinh(λj) ≤ cosh(λj), ∀λj, then bs ≥ 1

2 [1]. The
lower bound is again the limiting value for Kn since

bs = cosh(n − 1) + (n − 1) cosh(−1)
en−1 + (n − 1)e−1

and

lim
n→∞ bs(Kn) = lim

n→∞
cosh(n − 1) + (n − 1) cosh(−1)

en−1 + (n − 1)e−1 = 1

2
.

A slight adaptation of (3.1) gives a measure of bipartivity in the range [0, 1] as observed in [5]. This is
carried out by using the traces of the hyperbolic cosine and sine matrix functions, namely

be = tr(coshA) − tr(sinhA)

tr(coshA) − tr(sinhA)
= tr(e−A)

tr(eA)
.

This can be written instead in terms of the eigenvalues of eA and e−A. Again, limn→∞ be(Kn) = 0.

1 We note that in [3], a series of measures are given which are zero if and only if the graph is bipartite.
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One attractive feature of measures based on walks is the tangible relationship between the connectiv-
ity of the edges in the graph and bipartivity. Measures based purely on spectral properties, as described
below, lack this direct connection. But, they are still popular in the literature and as we will see in our
experiments, they can perform very well as a surrogate for frustrated edges.
The simplest spectral measure is probably the ratio

bλ = | λl |
λ1
,

where λ1 and λl are the most positive and negative values of the adjacency matrix respectively. Since A
is non-negative for any graph, bλ ≤ 1 by the Perron–Frobenius theorem and by Theorem 2.2 we have
equality if and only if G is bipartite. On the other hand, since σ(Kn) = {[n − 1]1, [−1]n−1}, bλ(Kn) =
1/(n − 1) → 0 as n → ∞. The measure bλ is well known, for example, see [3].
Using the symmetry of the whole spectrum, we can measure closeness to bipartivity by measuring

how much this symmetry is disturbed. For example,

σsym(G) =
l∑

i=1
= |λi + λl+1−i|

equals zero if and only if G is bipartite whereas it equals n − 2 for Kn and so we can use

bσ = 1

1+ σsym(G)

as another measure whose range is [0, 1]. We can link sym(G) to the number of odd closed walks as
follows. For simplicity, suppose G has an even number of nodes and no repeated eigenvalues. If f (x) is
a function whose Maclaurin series has zero coefficients for even powers and odd coefficients c2k+1 ≥ 0
(such as sinh x) then

tr(f (A)) =
n∑

i=1
f (λi) =

n∑
i=1

∞∑
k=1

c2k+1λ2k+1i =
∞∑

k=1

n/2∑
i=1

c2k+1(λ2k+1i + λ2k+1n−i+1)

and unless λi +λn − i + 1 = 0, we get a positive contribution to tr(f (A)). In practice, this measure seems
to give no more insight than simpler ones, and we do not consider it further. However, we note that the
symmetry is exploited in a similar way to derive an algorithm for finding bipartitions in [10].
We can use the properties of the signless and normalized Laplacians to come up with measures,

too. For example, bQ = 1/(1 + λmin(Q)) and bN = |1 − λmax(N)| (noting that σ(N) ⊂ [0, 2] for all
simple graphs). Again, for Kn both of these measures tend to zero as n → ∞. Kunegis introduces similar
measures in [3] and notes that λmin(Q) can be linked to the number of frustrated edges via a relaxation
of a minimization of a quadratic form.
Finally, we observe that we can also usemodularity, for example, with themeasure bmod = 2(1−Q)/3.

This measure, though, is dependent on the bipartition used to find Q. From (2.1), we see every intra-
partition edge gives a positive contribution to modularity, and so if we pick the optimal partition in terms
of frustrated edges we should be able to minimize Q. But since this partition is NP hard to find, this
is not something we can do in practice. In Section 5, we will consider a number of methods of finding
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bipartitions, and the results of these algorithm can then be measured by bmod (or more directly by Q). We
note that if we link two copies of Kn with a single edge then the bipartition induced by splitting the nodes
into the respective complete graphs gives a modularity that converges to 1 as n → ∞.
Given the choice of measures, which should be used in practice if we want an effective tool for mea-

suring near bipartivity? To answer that question, we will analyse some of the measures both theoretically
and empirically. In Section 4, we show that there can be a great disparity between the measures and we
look to see whether this is more than a theoretical effect in Section 6. It is also worth observing that there
is some artifice in mapping quantities onto the range [0, 1], and there are many alternative ways of doing
so. Another aspect that needs to be considered is the cost. Clearly, measures that are based on the whole
spectrum (such as bσ and be) carry a computational penalty. If cost is an issue, then we can use estimates:
λ1 and λl can be approximated cheaply, often to high accuracy, which is clearly an advantage for bλ, but
such estimates can also help with other measures. For example be can be approximated by eλ1/e−λl .

4. Analysis of bipartivity measures

In this section, we give contrasting examples showing the disparity between bipartivity measures on a
two families of networks.
Our first family extends a ‘nearly’ bipartite class of graphs, known as agave graphs, illustrated in

Fig. 1. The network is generated by adding a single edge to Kn2 (the edge is added to the partition with
two nodes) and was used as an example by Holmes et al. in [2].
It is straightforward to compute the spectrum of A since it has rank 3 and the non-zero eigenvalues are

easy to track down which makes it easy to compare our spectral bipartivity measures. Furthermore, bc is
easy to compute in this case since there is only one frustrated edge. On the other hand, as we increase the
number of modes, the number of odd cycles increases rapidly and this leads to a significant difference
between certain bipartivity measures. A simple generalization of the agave graph allows us to take this
difference to the extreme.

Theorem 4.1 There is a family of networks parameterized by n such that as n → ∞, bλ → 1, bC → 1
and be → 0.

Proof. We construct a graph Gn with n2 + n nodes, where n nodes are connected to every node in the
graph (except themselves) but there are no intra-connections between the other n2 nodes. If n = 2, this
is an agave graph. The adjacency matrix of the graph Gn is

A =
[

Kn Enn2

ET
nn2 O

]
,

. . .

Fig. 1. An agave graph.
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where Kn is the adjacency matrix of a complete graph. We can calculate the spectrum of A explic-
itly given its relatively low rank. The result can be found in [11, pp. 138–141], where this graph is an
instance to the class of networks with an n-fully meshed star topology. We give a simple derivation of

the result. To do this, we first apply the similarity transformation induced by V =
[

In O
O Z

]
, where

Z = 1

n

[
1 1T

1 −In2−1

]
. Then,

V−1AV =
⎡
⎣ Kn n1 O

n1T 0 O
O O O

⎤
⎦.

To find the eigenvalues of X =
[

Kn n1
n1T 0

]
, we use the spectral decomposition of the complete graph

Kn = QDQ� (where the eigenvalues are ordered so that the bottom right element of D is n − 1, and
hence the final column of Q is 1/

√
n). Thus, using the orthogonality of Q, we find

[
Q� O

O 1

]
X

[
Q O
O 1

]
=

[
D nQ�1

n1�Q 0

]
=

⎡
⎣ −I 0 0

0� n − 1 n3/2

0� n3/2 0

⎤
⎦.

Hence

σ(Gn) =
{
[0]n2−1, [−1]n−1, [f (n) + g(n)]1, [f (n) − g(n)]1

}
,

where

f (n) = n − 1
2
, g(n) =

√
(n − 1)2
4

+ n3.

Now, we compute the bipartivity measures.
Firstly, note that we can make the network bipartite by removing the n(n − 1)/2 edges from the Kn

block and hence

bC ≥ 1− n(n − 1)
n3 + n(n − 1)/2 ≥ 1− 1

n
.

Next,

bλ = g(n) − f (n)

g(n) + f (n)
= 1− o(n).
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.

.

.

. . .

Fig. 2. A graph with a long tail.

Finally,

be = (n2 − 1) + (n − 1)e + e−f (n)−g(n) + e−f (n)+g(n)

(n2 − 1) + (n − 1)e−1 + ef (n)+g(n) + ef (n)−g(n)
= 2ef (n) cosh g(n) + n2 − 1+ (n − 1)e
2e−f (n) cosh g(n) + n2 − 1+ (n − 1)e−1

which for large n behaves increasingly like e1−n and hence be → 0 as n → ∞. �

For our second family, we consider networks where the path graph PN is connected by a single edge
to Kn, as illustrated in Fig. 2. If we let N grow much faster than n, then we can show a very different
behaviour from the previous one. It has adjacency matrix

AT =
[

Kn C
C� PN

]
,

where C is a matrix which has a single non-zero entry in its bottom lefthand corner, and PN is the adja-
cency matrix of PN . The proof relies on the following conjecture for which we only have numerical
evidence.

Conjecture 4.2 For sufficiently large n, the eigenvalues of AT (λ1 ≥ λ2 ≥ · · · ≥ λn) and those of

[
Kn O
O� PN

]

(μ1 ≥ μ2 ≥ · · · ≥ μn) are such that for all i

|λi − μi| = O(n−2)

for N ≥ n.

Theorem 4.3 For the graphs Gn with adjacency matrices AT , we can choose N = N(n) such that as
n → ∞, bλ → 0, bC → 1 and be → 1.

Proof. Let G′
n be the graph with disjoint components Kn and PN . By our conjecture, this has similar

eigenvalues to Gn and standard results give

σ(G′
n) = σ(Kn) ∪ σ(PN) = {[n − 1]1, [−1]n−1} ∪ {2 cos π j

N + 2 , j = 1, . . . ,N + 1}.
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Turning to the measures, we observe that by removing half the edges from the complete graph we have a
bipartite graph and hence md ≤ n(n−1)/4 and so long as n2/N = o(n) we will have bC → 1 as n → ∞.
Next note that λ1(G′(n)) = n − 1 while λn+N(G′

n) ≥ −2 and hence bλ → 0 as n → ∞.
Finally,

be = (n − 1)e + e1−n + S(N)

(n − 1)e + en−1 + S(N)
,

where

S(N) =
N+1∑
j=1
exp(2 cos

π j

N + 2 ) ≈
∫ N+1

1
exp(2 cos

πx

N + 2 )dx = N + 2
π

∫ π−π/(N+2)

1/(N+2)
e2 cos xdx

and hence for large N, we can use to high accuracy the approximation

S(N) = (N + 2)J0(2i),

where J0(x) is a Bessel function of the first kind. Note that J0(2i) ≈ 2.28. We end up with the
approximation for large n and N

be ≈ J0(2i)N

en−1 + J0(2i)N
,

and if N is sufficiently bigger than n (e.g. N > e2n), we see that the right handside of this expression
approaches 1 as n → ∞. �

We observe that the difference in size of the path graph and the complete graph in this example is
rather extreme. To illustrate the result, we have computed bλ and be explicitly for n = 2, . . . , 8 with
N = [en] (with e2n we have a much smaller range of n with which to work with computationally). In
Fig. 3, we record the values of be and bλ and show the effectiveness of our bounds.
Thus, the choice of measure we make to assess near bipartivity can in theory have a sizeable impact.

Observe that in the class of graphs considered in Theorem 4.1, a single edge is enough to introduce a
large number of walks of odd length, hence the rapid reduction in be, but for the class in Theorem 4.3,
the lack of bipartivity is effectively ‘quarantined’ by the lack of connectivity between the two parts of
the graph but the large eigenvalue of Kn distorts the measure bλ. We could describe the loss of bipartivity
in Theorem 4.1 as global while that in Theorem 4.3 is local. A similar observation has been made about
the potential for the Watts–Strogatz and Newman clustering coefficient measures to give very different
perspectives on global properties of a network [12] while in practice they seem to be strongly correlated
for real world networks. In experiments in Section 6, we look at how bipartivity measures behave in
practice.

5. Algorithms

An obvious goal when looking at nearly bipartite networks is to find a way of partitioning the graph
so that there are as few frustrated edges as possible. As we have previously noted, finding the opti-
mal solution is an NP-hard problem. But finding such partitions either exactly or approximately is
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Fig. 3. bλ and be.

clearly related to finding community structures and is often described as finding anti-communities. A
number of methods have been proposed to find good bipartitions, and we summarize some of these
below.
As observed in [13], community structures in the complement graph correspond to anti-communities

in the original graph and so any community detection algorithm can be employed. This approach can be
costly, since it may involve working with a dense graph but provides us with a starting point.
As a number of community detection algorithms look to maximize modularity, one could also look to

find good anti-communities by minimizing modularity. In [13], Newman proposes using the eigenvector
associated with the smallest eigenvalue of the modularity matrixB defined in (2.1). Newman goes further
and suggests a method for finding multiple anti-communities but as our focus solely is on bipartitions
we will not consider this further.
Estrada [12] proposes using the so-called anti-communicability matrix e−A to find an approximate

bipartition. Signs of the entries of this matrix indicate whether there are more even or odd walks between
pair of nodes and by defining a graph which has an edge between nodes i and j if and only if the (i, j)
entry of e−A is positive we should cluster together nodes that belong in the same partition. Ideally these
clusters would form cliques, but in any case the bipartition can be found using a standard community
detection algorithm on the new graph.
One can use the connection between bipartivity and the spectral properties of adjacency matrices and

Laplacians described in Theorem 2.2 to come up with algorithms for finding approximate bipartitions in a
way akin to the Fiedler vector for community detection. For example, we can use the signs of the elements
of the eigenvector associated with the most negative eigenvalue of the adjacency matrix to bipartition, an
idea that has proved popular in areas such as bioinformatics [14]. Similar methods can be derived from
the following theorem.

Theorem 5.1 SupposeG is a connected bipartite graph with partition P = {V1,V2} and adjacency matrix
A. Labels V1 and V2 so that V1 ∪ V2 = {1, . . . , n}. Let x be one of the following eigenvectors.
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1. The eigenvector associated with the most negative eigenvalue of A.

2. The eigenvector associated with the smallest eigenvalue of Q.

3. The eigenvector associated with the largest eigenvalue of N.

4. The eigenvector associated with the Fiedler vector of the complement graph.

5. The eigenvector associated with the largest eigenvalue of L.

Then, nodes i and j are in the same partition if and only if xixj > 0.

The results 1–3 can be inferred from [15] and 4 is a simple corollary of Fiedler’s results for the
Laplacian of graphs [16]. Note that we did not give a measure of bipartivity based on L. Nevertheless it
can still be used to find a bipartition as we now show.

Proof of 5. Suppose V1 = {1, . . . , r}, V2 = {r + 1, . . . , n}. We can write a signed incidence matrix for G
as C = [

C1 C2

]
where C1 ∈ R

m×r, C2 ∈ R
m×(n−r) with C1 ≥ 0 and C2 ≤ 0 such that L = C�C.

Consider CC� = C1C
�
1 + C2C

�
2 ≥ 0 with dominant eigenvalue μ and corresponding eigenvector y.

By the Perron–Frobenius theorem y > 0. But x = C�y is the eigenvector of the dominant eigenvalue of
L because (C�C)(C�y) = μC�y, and CC� and C�C share the same non-zero eigenvalues. So

x =
[

C�
1 y

C�
2 y

]
,

and the first r entries of x are positive and the next n − r are negative, as required. �

So, we have a variety of eigenvectors to choose from to form an approximate bipartition for nearly
bipartite matrices. Computationally, there is very little to choose between finding individual eigenvectors
of A, L, N and Q. We test their performance in the next section.
Other methods related to spectral properties of bipartite graphs have been described in the literature.

For example, the authors of [10] use the symmetry of the spectrum to find a bipartition, but it requires
computation of the complete spectral decomposition of the adjacency matrix. And in [17], the authors
extend the idea of anti-communicability to define a so-called anti-communicability angle between nodes.
This works with the matrix e−A after a normalization of the entries to embed the graph into a Euclidean
space. The authors propose using k-means to bipartition the nodes (and the idea can be extended to multi-
way partitions). In the next section, we compare the methods in [10, 17] to methods based on a single
eigenvector.
Whatever method is used, once we have computed an approximate bipartition we can try and do

better with local improvement. This is a well-established method in community detection [18], where
nodes can be swapped between partitions in order to reduce the number of inter-community edges. The
idea is simplified when attempting to find a better bipartition since we do not need to swap nodes. We
simply need to move individual nodes across partitions if they reduce the number of frustrated edges,
or some other measure of bipartivity. We have implemented this by using local improvement to reduce
modularity. We do this as modularity is not directly tied to the spectral properties we try and exploit
in our algorithms, and as we now show, it can easily be updated as we swap nodes and so is cheap to
implement.
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Suppose P = {V1,V2}, where V1 = {1, . . . , r} and V2 = {r + 1, . . . , n}, and we want to swap node i
from V1 to V2. We have

Qold = s�Bs
4m

and Qnew = s̄�Bs̄
4m

,

where s and s̄ are the indicator vectors for the old and new partitions2, so s̄ = s − 2ei.
A simple calculation gives

Qnew = 1

4m
(s − 2ei)

�B(s − 2ei) = Qold + 1

m
(e�

i Bei − s�Bei).

Now, e�
i Bei = aii − k2i /(2m) = −k2i /(2m) and since

B1n = A1n − kk�

2m
1n = k − 2m

2m
k = 0,

we have

− 1
m

s�Be1 = 2

m

[
0

1n−r

]�
Be1 = 2

m
e�

i

[
A − kk�

2m

] [
0

1n−r

]
= 2

m
kV2
1 − k1k

�

m2

[
0

1n−r

]
= 2

m
kV2

i − kikV2

m2
.

And so the change in modularity is given by

�Q = −k2i
2m2

− kikV2

m2
+ 2kV2

i

m
,

where kV2
i is the number of edges from node i that end in V2 and kV2 is the sum of the degrees of the nodes

in V2.
The equivalent change can be calculated for every node very quickly and we swap the node which

gives the minimum value of�Q (so long as it is negative). We can repeat this process until we reduce Q
no further.

6. Experiments

In this section, we detail a number of experiments we have conducted on both randomly generated and
real-world networks to investigate the links between measures and the ability of the spectral algorithms
to find approximate bipartitions effectively.

6.1 Perturbing random graphs

In this experiment, we add edges randomly and sequentially to randomly generated bipartite graphs. The
number of edges added is an (increasingly crude) upper bound for the number of frustrated edges. Each
time we add an edge, we measure bλ, be, bQ and bN . The results can be seen in Fig. 4. On the left are

2 s is defined after (2.1).
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Fig. 4. Variation of bipartivity measures for random graphs.

the result when edges were added to trees randomly generated using Prüfer sequences [19] and so have
a degree distribution that follows a Poisson model. The graph shows the results averaged over 20 trees
each with 300 nodes but the trends were repeated for trees of other size and generated in other ways (e.g.
exponential distribution). On the right, the initial networks were generated using an adjacency matrix of
the form

[
O B
B� O

]
,

where the (binary) entries of B are chosen at random according to some parameter p so that each has
probability p of equalling 1. Thus, these matrices are generated in a very similar way to the Erdős–Rényi
(ER) model. Edges were assigned randomly to the diagonal blocks of the matrix. Again the results were
qualitatively similar for a wide range of values of p and dimension. We show the results averaged over
20 trials for B ∈ R

200×100 with p = 0.1.
Similar trends can be seen in other random models: the measures bλ and bN behave in a similar way,

decaying relatively slowly compared to be and bQ.

6.2 Real-world graphs

We now look at how the measures behave when we work with real-world networks. Given a non-bipartite
graph we can remove edges to make it bipartite, then reintroduce these edges and track the measures. In
this instance, to form a bipartition we simply split the nodes according to the signs of the elements of
the eigenvector associated with the most negative eigenvalue. The trends here vary slightly more than
with the random models. In Fig. 5, we present typical results. In the left hand picture, the graph is that
of a food web in a waterway called Stony Stream with 112 nodes and 830 edges described in [20]. In
the middle, the graph is an electronic circuit with 512 nodes and 819 edges described in [21]. And on
the right, the graph of 994 nodes and 3640 edges is constructed from synonyms in Roget’s thesaurus as
described in [22]. More extensive results for over 30 real-world networks can be found in [23]. We note
that typically be decays faster than the other measures, whose behaviour is more variable.
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Fig. 5. Variation of bipartivity measures for real-world graphs.

Fig. 6. Comparison of bipartivity measures for real-world graphs.

Next, we look at a variety of measures for 52 simple connected real-world networks curated from
various on-line data repositories. They vary in size from 28 to 1586 nodes and from 67 to 18812 edges.
The networks were not selected for any particular properties related to bipartivity.3. We have simply
computed the four measures considered in our other experiments for each of these networks. The results
can be seen in Fig. 6, where the networks are ordered by the size of be. We have used the additional
measure balte = eλ1/e−λl which, as mentioned in Section 3, is a computationally cheaper approximation
of be. To the right of the graph, we have given the correlations between pairs of measures. Clearly, the
two measures that use the exponential are the most closely correlated, which suggests that if cost is a
factor then we can use balte instead of be. Kunegis carries out a similar experiment on some comparable
measures in [3] and recommends bλ as it has a more uniform distribution over the range of networks. Our
other measures are not exactly the same as his and seem to be more strongly correlated but the trends we

3 Details about the networks, as well as sources to some of the original references and MATLAB code to reproduce the figures
can be found at personal.strath.ac.uk/p.a.knight/Bipartivity.zip

personal.strath.ac.uk/p.a.knight/Bipartivity.zip
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see are similar. To gain more insight, it is worthwhile comparing the measures of bipartivity against the
results of using the algorithms described in Section 5.

6.3 Finding partitions

We report the results of experiments to test various algorithms to find approximate bipartitions on
the same 52 real-world graphs described above. We have tested eight algorithms, five derived from
Theorem 5.1, and three alternatives described in Section 5, as follows.

1. Partition using the signs of the eigenvector associated with the most negative eigenvalue of A.

2. Partition using the signs of the eigenvector associated with the smallest eigenvalue of Q.

3. Partition using the signs of the eigenvector associated with the largest eigenvalue of N.

4. Partition using the signs of the eigenvector associated with the Fiedler vector of the complement
graph.

5. Partition using the signs of the eigenvector associated with the largest eigenvalue of L.

6. Partition using the signs of the eigenvector associated with the most negative eigenvalue of the
modularity matrix4 as proposed by Newman [13].

7. Partition using the anti-communicability angle as described in [17].

8. Partition using Estrada’s approach [12] with the communicability matrix.

9. Partition using the approach of Concas et al. [10].

For each matrix and each algorithm, we subsequently applied local improvement. We computed modu-
larity in all cases and the results are illustrated in Fig. 7. Each circle indicates the size of modularity for a
particular method on a particular matrix. Each row contains the results for a particular matrix, each col-
umn a particular method. The right and left blocks record the values with and without local improvement,
respectively. Gaps in rows correspond to partitions with positive modularity, which is a crude indication
of failure.
As is to be expected, different matrices show different levels of bipartivity. The results have been

ordered by the modularity of the partition using, Method 3. We can see that there is a fair amount of
variance in some of the rows in the left block but this is ameliorated (and modularity usually reduced
somewhat) when we use local improvement. To distinguish between the methods, we look at the average
modularity of the partitions they produce without and with local improvement. The results are as follows.

1 2 3 4 5 6 7 8 9
Without −0.222 −0.215 −0.226 −0.151 −0.151 −0.218 −0.144 −0.189 −0.082
With −0.265 −0.263 −0.265 −0.256 −0.256 −0.264 −0.263 −0.264 −0.251

We see that in both cases, Method 3 does slightly better than any other and therefore for best performance
we recommend using the normalized Laplacian along with local improvement to find a good approximate
bipartition efficiently.

4 B in (2.1).
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Fig. 7. Modularity of approximate bipartitions for real-world graphs.

We have used modularity as a proxy for the number of frustrated edges. We cannot use it as an a
priori measure of bipartivity as we need the partition first. As a final experiment, we have compared the
measures of bipartivity against the best partitions in terms of modularity score for each of the real-world
matrices. Reordering the graph in the left of Fig. 6 according to modularity score gives Fig. 8 (we have
omitted balte for clarity). It appears from the picture that bλ follows the trend of modularity, and this is
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Fig. 8. Modularity versus bipartivity measures for real-world graphs.

confirmed by measuring the correlation between the measures and Q. For bλ, it is −0.94 while for bQ it
is −0.58, for bN it is −0.73, and for be it is −0.76 (negative correlation being what we would expect as
modularity is minimized by bipartivity while our measures are maximized).
Finally, we investigate a near bipartite graph with a ‘ground truth’. This is the graph of the connec-

tions between 60 commonly occurring adjectives and 60 commonly occurring nouns in the novel David
Copperfield by Charles Dickens, introduced in [24]. The words are nodes in the graph and edges link
words that appear adjacent at any point, and a degree of bipartivity is assumed as nouns should generally
appear next to adjectives. We tested the nine algorithms listed above on the largest connected component
of the resulting graph (112 nodes). The results are given in Fig. 9. The noughts and crosses represent the
number of words that are misclassified by attempting the best bipartition with the algorithms (with and
without local improvement), and the diamonds and triangles count the number of intra-partition edges.
the performance of the algorithms is similar as in our previous test. Note that although local improvement
always successfully reduces the number of frustrated edges it sometimes slightly increases the number
of misclassifications, but given that the ground truth is not perfectly aligned with bipartivity (since many
words are both adjectives and nouns) this is not unexpected. In terms of misclassifications, the minimum
achieved (13 when using an eigenvector ofQ) matches the performance of the algorithm in [24] at much
reduced cost.

7. Conclusions

Since bipartivity has so many equivalent characterizations there are many ways one can try and measure
nearness to the property. We have restricted our analysis to spectral measures and algorithms, but this
still gives us plenty to compare. Measures can be divided into those which use a purely algebraic charac-
terization of bipartivity (in terms of spectral properties) and those which use the existence of odd cycles
as a more direct manifestation of a lack of bipartivity. In experiments, it seems that both approaches give
insightful results. In terms of performance versus cost, we recommend bN since its cost is essentially just
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Fig. 9. Frustrated edges and misclassifcations in the Dickens graph.

that of finding the largest eigenvalue of a symmetric matrix for which an upperbound is already available
and thus is generally very cheap to compute for even very large networks.
Overall it seems that measures and algorithms based on the adjacency matrix and the normalized

Laplacian seem to be closely related to each other, and our results on minimizing modularity suggest
that these are well correlated to the presence of frustrated edges. Our experiments with algorithms for
finding a good partition into anti-communities show that simple spectral algorithms, based on the analysis
of a single eigenvector, can perform as well (or better) than some of the more complex techniques that
have been proposed in the literature, and that a little bit of post-processing with local improvement can
really pay dividends. These algorithms can also can also give a relative cheap approximation of md, the
number of frustrated edges, since we can get an upper bound by counting the intra-community edges in
the bipartition we calculate for the cost of one eigenvector computation.
Our theoretical analysis shows that there is the possibility that measures based on very similar spectral

ideas can diverge markedly. In particular, measures that look at the discrepancy between the number of
even and odd walks between nodes seem to decay very sharply. It may be that we can exploit this to
get a more nuanced view of the approximate bipartivity by using more than one measure on the same
matrix. In Fig. 10, we show the adjacency matrices of two of our real-world graphs reordered to minimize
modularity (non-zeros are shaded). In the left hand graph, bN = 0.97 while be = 0.55 whereas in the
right, bN = 0.75 and be = 5 × 10−8. So, while bN is large in both cases, the same is not true of be. We
note that the reordering in the right-hand side shows that the graph has a classic core-periphery structure.
Whether this characterization holds true more generally is a topic for future research.
Finally, a comment on the fact that we have stuck to spectral measures in our analysis. A well known

limitation of bipartivity measures that rely on the spectrum of the graph is that bc can differ for cospectral
graphs, as illustrated in Fig. 11. Although we do not anticipate this being much of a problem in practice,
one could always combine bλ with bQ or bN . We are unaware of any graphs which are cospectral for
adjacency matrices and Laplacians which have a different number of frustrated edges. We note that for
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Fig. 10. Approximate bipartivity in two real-world graphs.

Fig. 11. Cospectral graphs, one with two frustrated edges (left) the other with one.

the graphs in Fig. 11 both bQ and bN judge the right-hand graph to be closer to being bipartite while
our spectral algorithms all succeed in finding approximate bipartitions which require the removal of two
edges for the left-hand graph and one for the right.
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