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Abstract: A novel financial metric denominated unit financial impact indicator (UFII) is proposed
to minimize the payback period for solar photovoltaic (PV) systems investments and quantify the
financial efficiency of allocation and sizing strategies. However, uncontrollable environmental
conditions and operational uncertainties, such as variable power demands, component failures,
and weather conditions, can threaten the robustness of the investment, and their effect needs to be
accounted for. Therefore, a new probabilistic framework is proposed for the robust and optimal
positioning and sizing of utility-scale PV systems in a transmission network. The probabilistic
framework includes a new cloud intensity simulator to model solar photovoltaic power production
based on historical data and quantified using an efficient Monte Carlo method. The optimized
solution obtained using weighted sums of expected UFII and its variance is compared against those
obtained by using well-established economic metrics from literature. The efficiency and usefulness of
the proposed approach are tested on the 14-bus IEEE power grid case study. The results prove the
applicability and efficacy of the new probabilistic metric to quantify the financial effectiveness of solar
photovoltaic investments on different nodes and geographical regions in a power grid, considering
the unavoidable conditional and operational uncertainty.

Keywords: decentralized generators; optimal allocation; uncertainty; power grid; unit financial
indicator; robust optimization; simulation

1. Introduction

Photovoltaics (PVs) and decentralized generators play a fundamental role in today’s
developing world, where securing access to easily approachable, sustainable, cost-effective,
and clean energy is one of the main objectives of all countries. According to International
Energy Agency, renewable energy sources (RESs) will provide 30% of electrical power
demand in 2023, and PVs are expected to face the highest growth [1]. Unfortunately, higher
penetration levels of RESs are hard to achieve in practice due to the low flexibility of
thermal power plants and the stochastic nature of environmental conditions affecting the
availability of renewable power. The inherent variability of renewable power production
can introduce economic and technological risks, and scientific research must focus on viable
ways to maintain the power quality and profitability of the grid despite the addition of PV
systems. Substantial investments in renewable energy require the development of more
effective planning and integration strategies, careful identification of the most suitable sizes
and locations of RESs, and rigorous quantification of unavoidable sources of uncertainty.

It is important to understand the impact of renewable resources on power grids and
their contribution to sustainability goals. Different types of generation technologies [2],
alternative allocation and planning strategies in deregulated electricity markets [3], and
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technological, financial, and social aspects [4] are examples of some of the most important
themes discussed in this context. Decentralized generators can be optimally allocated based
on their financial, sustainability, and safety perspectives [5,6], whether adopting modern
optimization techniques or via metaheuristic approaches [7]. Computational frameworks
for the optimal allocation of PV units often account for economic and environmental as-
pects [8], electrical engineering quantities such as power losses, voltage deviations [9],
voltage stability indices [10], and probabilistic reliability and availability metrics [11,12].
Examples of economic objective functions for optimally allocating the decentralized gener-
ators include the net profit of wind farm investors [13] or the costs of power losses, power
supply, social welfare, or load interruptions, see for instance [14,15]. Compared to eco-
nomic objectives, the technical aspects of RES integration on existing power grids are more
commonly studied in the literature. Technical objectives used for the optimal allocation
of decentralized generators are classified and compared in [16,17], and the authors show
some of the most common objectives focus on the minimization of power losses, improve-
ment of voltage profile, current reduction in weak lines, the spinning reserve power, and
network MVA capacity. Many research papers proposed static and deterministic analyses
only, potentially leading to an incomplete understanding of relevant dynamics and risks
due to a lack of execution of the system evaluations on a time horizon [18,19]. Similarly,
some limitations must be faced by deterministic optimization methods, which can lead to
sub-optimal and non-robust investment solutions [20,21]. A comprehensive discussion of
PV technology and various mitigation methods to support decentralized PV generations
occurring in low-voltage distribution networks can be found in [22].

Reliable and robust investment plans on RESs must include a clear quantification of
relevant uncertainties and analysis of the grid operations over time due to their stochastic
and time-varying nature [23]. Robust solutions are obtained thanks to a combination of
including dynamic simulations, Monte Carlo (MC) simulations [24,25], optimal power flow
(OPF) models, sensitivity analysis methods [26], and population-based or metaheuristic
optimization approaches [27]. More advanced probabilistic frameworks have also been
proposed for a risk-based optimization of renewables [28], for the simulation of extreme
weather conditions [29], or for the minimization of expected costs and expected energy-not-
supplied values of multi-energy networks [30]. In these studies, the running and investment
costs are often considered for financial analyses and optimization, where the minimization
of the overall running cost of the system alone can lead to investment solutions charac-
terized by a very high penetration of renewable generators which guarantees a reduction
in the system running cost because of the negligible cost of renewable energy production.
However, maximizing the PV units can lead to instability on the grid, and it is not always
cost-effective because the system running cost is a non-probabilistic and nonlinear function
of the total investment in PV capacity. A lack of financial efficiency becomes particularly
clear when PV units are installed at cloudy locations or in the proximity of low-capacity
cables behaving as bottlenecks for the network. Moreover, if PV systems are placed on
buses where the power demands are low, this can prevent a localized consumption of the
produced energy, thereby increasing the transmission/distribution losses.

This paper proposes a probabilistic framework for the optimal and robust allocation of
utility-scale PV units in transmission networks, adopting a novel metric that gives a direct
quantification of the payback time for the investment [31]. The probabilistic framework
proposed allows quantifying the effect of uncertainty, such as the random failures of
components, extreme weather events, and non-stationary factors, such as load demand
and solar irradiance (obtained using a novel probabilistic cloud covering model calibrated
using real-world historical data).

The proposed metric denominated unit financial impact indicator (UFII) measures the
financial efficiency of the investment. Minimizing the expectation value of the UFII allows
for minimizing the payback time, while the variance of the UFII distribution represents
the stability of the financial return (or the risk associated with the financial investment).
This allows the identification of the optimal sizing and siting of PV units that minimize
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the time needed for the return on the investment to achieve efficient spending of resources
under uncertainty.

2. Power System Model
2.1. Power Optimization

A widely used tool for energy system cost optimization is the AC-OPF method [32]. It
considers bus voltage angles, magnitudes, generators’ active power, and reactive power
flow. In this paper, an AC-OPF approach is used to evaluate the operational and main-
tenance costs of the grid, which satisfies the load demand while obeying the technical
limitations and requirements. A compact formulation of the proposed AC-OPF problem is
defined as follows [33]:

x∗ = arg arg C(x; δ) , (1)

subject to linearized nodal power balance constraints, g(x; δ) = 0, and inequality con-
straints, h(x; δ) ≤ 0, see Equations (A1)–(A9) in the Appendix A. The grid operational and
maintenance cost, C(x; δ), is optimized by tuning the grid variables, x = (Θ, V, pc, qc)

T for
the environmental-operational state of the grid δ, which comprises the load demand profile,
the irradiance, the PV generation profile, and the topological structure of the network. The
grid variables are the voltage angles and magnitudes, Θ and V respectively, that must
satisfy the inequality constraints on the voltage profile (related to the stability of the grid)
and the active and reactive power pc and qc, produced by the nc controllable generators.

Hence, the optimal system cost C(x?; δ) represents the minimum network cost ob-
tained by applying the optimal operational profile x? to the uncertain scenario δ. If PV
units are installed on the grid, the net generated power p = pc + ppv(G) is the sum of
the controllable generators’ production and uncontrollable active power produced by the
on-grid PV systems, ppv(G). The latter depends on the uncontrollable solar irradiation, G.
Similarly, the net reactive power is given by q = qc + qpv(G), however, for simplicity, in this
work, it is assumed that the PV units produce active power only and q = qc (unity power
factor). Thus, the integration of PV units will affect the power factor of the whole system,
and conventional power plants need to adapt their active and reactive power outputs
accordingly to secure grid reliability. Power curtailment involves a deliberate reduction of
the PV power output to satisfy the grid’s thermal and stability constraints [34]. However,
power curtailment is not considered within the scope of this work and the power output
from PV units is regarded as uncontrollable. For a more detailed description of the AC-OPF
problem, the reader is reminded of Appendix A.

2.2. Modeling of the Nominal PV Generation

The power generated by a solar panel, PPV [W], with respect to the total irradiance
hitting a tilted PV module, Gmodule, is defined as follows:

PPV = Pmax ∗
(

Gmodule
GSTC

)
∗ [1+ ∝P ∗(TC − TC,STC)] (2)

where Pmax represents the power output of the PV cell under standard test conditions
[540 W]; GSTC is the incident irradiation at standard test conditions [1000 W/m2]; ∝P is
the temperature coefficient of Pmax [−0.341 %/◦C]; TC,STC is the PV cell temperature under
standard test conditions [25 ◦C] and finally TC [◦C] is the PV cell temperature.

This model is adopted for finding the PV power generation normalized to a unit PV
capacity of 1 MWP. The mathematical expressions for calculating the total irradiance hitting
a tilted PV panel, i.e., Gmodule, are represented in Appendix B. It is important to notice that
the effect of temperature on the output production of PV units is not modeled directly.
However, the cloud model detailed in Section 4.1 includes the effect of the temperature on
the PV unit production since it is calibrated using effective power generated by the PV units
that depend on different environmental factors but lumped in the cloud coverage model.
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2.3. Modeling of the Nominal Power Demand

In warm-climate countries such as Cyprus, the industrial activity and the power con-
sumption in governmental, private-sector, and domestic buildings remain almost the same
throughout the year. However, the usage of air conditioning (A/C) units varies according to
the season. The A/C unit operations directly influence the electrical power demand by us-
ing electricity for cooling in summer and heating in winter. Mild temperatures observed in
spring and autumn result in negligible usage of A/C units with the lowest power demand
values in the year, while the highest load demands occur in August due to the highest mean
daily temperatures according to climatological data, comprising measurements between
1991 and 2005, by the Department of Meteorology of the Republic of Cyprus, August [35].
Because the case study is static and has single values for both active and reactive loads, the
power demand values over 8760 h are normalized with respect to the case study’s load
values which are taken as the annual peak loads. In addition, it is assumed that all days
of the year have similar load profiles with two daily peaks, one at noon and one in the
evening. The effects of public holidays are neglected to ease the modeling efforts.

3. Unit Financial Impact Indicator (UFII)

The UFII quantifies the monetary efficiency of the transmission-connected PV plants
added to the system compared to a baseline case. This defines the normalized financial
influence of the total PV capacity added on the power grid computed as the percent change
in the total running cost of the grid per one unit of PV capacity added. Mathematically the
UFII is defined as:

UFII(δ) =

(
Co−Cpv

Co

)
∗ 100

PVT
=

%4 C(δ)
PVT

(3)

where Co represents the optimal running cost of the original system (€/h); Cpv the optimal
running cost of the system after the addition of PV generators (€/h) and PVT denotes the
total PV capacity added to the system (MWp).

The optimal running cost of the power grid without PVs is obtained by solving the
AC-OPF as follows:

Co = min
Θ,V,pc ,qc

(
nc

∑
i=1

f i
P(pc,i) + f i

Q(qc,i)) (4)

whilst the optimal running cost after the addition of PV units is:

Cpv = min
Θ,V,pc ,qc

(
nc

∑
i=1

f i
P
(

pc,i + ppv,i
)
+ f i

Q(qc,i) +
nb

∑
i=1

fPV(PVi)

)
(5)

where f i
P and f i

Q are the marginal cost functions of the real and reactive power production
of the i-th controllable generator and include both fuel and O&M costs. fPV(PVi) represents
the operations and maintenance cost of the i-th PV unit allocated on the grid, which is a
constant as it only depends on the PV allocation vector PV =

(
PV1, . . . , PVnb

)
. PV will be

optimized in a later stage of the proposed framework. Co(x; δ) and Cpv(x; δ) both depend
on design variables and the (uncertain) operational-environmental scenario δ. To ease the
notation, these explicit dependencies are omitted in the remainder of the paper. The UFII
metric in Equation (3) can also be extended to include other factors such as tax support
determinants, tax deductions, inflation/deflation effects, and budget allowances. However,
these extensions go beyond the scope of this work and will not be further considered.

To incorporate the unavoidable uncertainty affecting the environmental-operational
scenarios δ, the expected value of the UFII, E[UFII], and its standard deviation σ[UFII] are
used. UFII(δ) quantifies the economic gain due to the reduced generation cost, and there-
fore, it can be regarded as an instantaneous normalized reward. In contrast, the E[UFII]
and the σ[UFII] quantify the average monetary gain and its variability as a percentage
of per-unit PV capacity installed. Hence, a higher UFII means a lower instantaneous cost
for the specific scenario, a higher E[UFII] means a shorter payback period and indicates



Sustainability 2023, 15, 11715 5 of 24

a more effective sizing and positioning of PV units that lead to better financial prospects
in the long run. It is important to notice that the σ[UFII] represents the total variability
of the UFII function, including the variabilities due to the noise of the process and the
“natural” variability of the signal δ, e.g., due to seasonal and daily variability of the weather
conditions and power demand.

It is assumed that the UFII(δ) is an ergodic stochastic process. This implies that
the random process UFII will not change its statistical properties with time and that its
statistical properties can be obtained from single, sufficiently long realizations (samples).
Hence, the expected efficiency of an investment can be estimated by averaging the UFII
values identified for different scenarios nmc as follows:

E[UFII] =
∫

UFFI(δ) fδ dδ ≈ 1
nmc

nmc

∑
t=1

UFII(δt) (6)

where fδ represents the probability density function of scenario δ. Similarly, the risk of the
investment is quantified by the standard deviation of UFII and calculated as follows:

σ[UFII] ≈

√
∑nmc

t=1(UFII(δt)− E[UFII])2

nmc
(7)

Different scenarios can be easily generated by means of the Monte Carlo method
by generating random events from their probability density functions, as explained in
Section 4.2. Moreover, epistemic uncertainty may affect the sample-based approximation of
E[UFII] due to the limited number of samples used, and this effect is estimated by quanti-
fying the variance of the estimator: V(E[UFII]). The V(E[UFII]) quantifies the variability
of the estimator of E[UFII] and differs from the standard deviation σ[UFII], which is the
second moment of the stochastic process. Therefore V(E[UFII]) measures the quality of
the estimator while σ[UFII] relates to the inherent variability of instantaneous rewards,
i.e., the variability of the σ[UFII] under different scenarios. A low σ[UFII] indicates that
instantaneous gains are stable, independently of the operational and weather scenario,
whilst a low V(E[UFII]) indicates high confidence in the estimated payback period.

4. Uncertainty Management
4.1. Modeling Uncertainty

Environmental-operational uncertainties affect the power grid state and the goodness
of PV investments. Therefore, uncertainties due to varying consumer power demand;
seasonal and daily changes in the solar irradiance, and thus, PV power generation, for
instance, due to stochastic cloud movements and intensities; and random component
failures such as line outages and generator shut-down events are considered in this work.
Several probabilistic models have been introduced in the literature to characterize power
demand variability and component outages.

Power demand: The consumer power demand naturally varies due to different en-
vironmental conditions, special occasions, user behaviors, etc. In this work, the power
demand profiles are generated according to the guidance in Reference [36], which studies
the consumption trends with respect to consumer behavior. More specifically, the daily
load profiles are generated from a realistic point of view, with two peaks per day at noon
and evening times where relatively higher power demand levels are expected [37]. Please
note that the profiles of the 24-h demand curves (each profile representing a day of the
year) resemble each other and only differ in peak values due to seasonal variations in
consumption. In addition, the random floatations around the nominal hourly demand
are modeled as Gaussian distribution with a coefficient of variation Pf , which is used to
represent the size of the random variability in the consumer power demand. The variability
of the power demand is assumed to be limited to within three standard deviations from
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the nominal profile. The application of Pf ensures that a load demand curve generated is
always unique and allows studying various possible combinations of power demand.

Component outage: Malfunctions of the power grid components occur in real life due
to equipment aging, weather-induced failures, and malicious attacks. Homogenous Poisson
processes are often used to model the time-to-failure of different components and duration
of component outages, see, e.g., [38]. Here, a generic component i is considered to have
an expected number of occurrences λi per year while the duration τi of failure events, τi,
are assumed to be normally distributed with a mean value of µτi and a standard deviation
value of στi . For each event type, the hour of the year associated with the component outage
is represented by a vector Fi = (Fi1, . . . , Fin) where n represents the total number of hours
of the i-th component failure in one year. Although there are no limitations for the number
and type of failures that can be added to the power grid model, to prove that the model
supports their consideration, only a subset of the most probable failures is considered,
namely, two branches and one generator are assumed to be the least reliable components
and the only components affected by failures.

Cloud coverage: The power production of a PV system is directly proportional to
solar irradiance [39,40]. Cloud coverage is modeled as a non-stationary Gaussian process
that is fully defined by its second-order statistics. The differences between the clear sky
irradiation [41] and historical measurements measured in Kalkanli, Cyprus [35], are used
to estimate the mean value and standard deviation for the irradiance for each hour of the
year. This is obtained assuming PV modules have a tilt angle of 30 degrees facing south.
The real measurements of irradiance data consist of hourly global horizontal irradiance
and direct normal irradiance measurements covering a period of four years between 2013
and 2017. Clearly, irradiance cannot be lower than zero, and it is assumed that the higher
irradiance value corresponds to the theoretical clear sky irradiance. Hence, the distribution
is truncated to satisfy these two constraints. For more details on the stochastic irradiance
model, see Appendix B.

Although the main contribution to solar irradiance is due to cloud coverage, the model
takes indirectly into account other environmental factors such as temperature, humidity,
wind velocity, altitude, and air pressure. Therefore, the cloud coverage model can be
considered an effective model of all environmental factors affecting solar irradiance but not
explicitly modeled for simplicity’s sake.

Heat waves: Extreme weather conditions such as heat waves and freezing tempera-
tures increase the demand for electric power due to air conditioning and electrical heating,
respectively. The expected number of days in a month with heat waves, λE, is sampled
from a non-homogenous Poisson distribution with λE > 0 during the warmest two months
of the year, i.e., July and August, and negligibly small otherwise [35]. During a heat wave,
both active and reactive power demands are increased by 10%. This is used to simulate the
extra electrical energy demanded for the increased use of A/C units. The heat wave model
can also be extended to include the effect of climate change and the expected increase of
extreme events.

4.2. Uncertainty Quantification

A realistic analysis of the integration of PV units into the power grid requires a proper
quantification of the effect of uncertainty. The Monte Carlo method is a flexible and easily
applicable tool to model complex problems under the effect of uncertainty. Monte Carlo
simulators are especially useful for power grid analyses, which are often complex and
high-dimensional, to simulate variable power demands, random component failures, and
volatile renewable production and for uncertainty [42,43]. The simulator generates power
demand, solar irradiance, and component failures from the model of uncertainty defined
in Section 4.1; then, these values are used to evaluate the AC-OPF and UFII; and statistical
information of the output is computed.

The Monte Carlo simulation procedure can be summarized as follows:
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1. Initialization: The grid structure, generator and lines parameters, and the vector of
PV sizes and capacities (i.e., the investment) are defined. The stochastic model is also
defined and includes the parameters and family of the probability distributions.

2. Sampling: Realizations of weather conditions and operational variables are generated
for a year with an hourly resolution where:

a. Loads at each node of the power grid are sampled hourly from a truncated
normal distribution;

b. Cloud covering for each individual region is sampled from normal distributions.
The differences with the clear sky irradiance model are then used to calculate
the net solar irradiance hitting the solar PV generators;

c. The presence of extreme heat waves and their durations are sampled from a
non-homogeneous Poisson process;

d. Component failures are samples from a Poisson distribution and their duration
from a truncated normal distribution.

3. Scenario selection: A subset of hours is randomly selected from the year. The scenarios
indicated with δt with t = 1, 2, . . . , nmc comprises solar irradiance, the presence of
clouds and heat waves, and power demand at nmc a random hour within a year.

4. Grid performance evaluation: From the scenarios {δ1 . . . , δt, . . . , δnmc} defined at point
3, the active and reactive loads for each node of the power grid are calculated at each
time t as follows:

a. Normalized PV power output: The net solar irradiance hitting a PV module is
computed by subtracting from the clear-sky irradiance the effect of the cloud
coverage. Finally, the PV generations per one unit of PV capacity (MWp) are
computed for each node.

b. Power demand: The active and reactive power demand values are updated
considering the occurrence of extreme weather conditions sampled at point 2c.

c. Component outages: From the component outages sampled at point 2d, the
condition of each component is identified, defining the configuration of the
power grid.

d. Grid evaluation: The UFIIt is calculated according to Equation (3), and the
optimal costs Co(δt) and Cpv(δt) are found by solving two AC-OPFs, one by
evaluating the grid with no PV installed and one for the selected PV investment
strategy.

5. Post-processing: The statistical indicators of the network performance are computed,
i.e., the expected E[UFII] and standard deviation σ[UFII].

Note that the number of randomly chosen scenarios nmc must be sufficiently large to
capture the behavior of UFII over the year without sacrificing accuracy in the estimation
of the UFII expectation for much less computational time. To check the accuracy of the
simulation, the V(E[UFII]) is quantified. Specifically, the variance of the estimator is
obtained by resampling, where ten independent Monte Carlo runs obtained from the nmc
scenarios are used to estimate ten realizations of E[UFII] and associated variance. This
allows us to estimate V(E[UFII]) at no additional computational cost.

4.3. Optimization under Uncertainty

An optimization algorithm is introduced in this work to prescribe an optimal invest-
ment PV∗ defined as a vector of power capacities on each node of the system. To find a
robust PV allocation vector that compromises between the minimization of the payback
time and maximization of the revenue stream stability, an objective function is defined by a
weighted sum of the negative expected UFII and the weighted standard deviation. This
yields the following optimization problem:

PV∗ = arg PV∈ Rnb − E[UFII] + α · σ[UFII] (8)
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subjected to 0 ≤ PVj ≤ buj where PV is the design vector defining the PV capacities on
all nodes of the grid, buj is the maximum capacity of the node j and PV∗ is the optimal
investment that minimizes the output of interest.

The Monte Carlo simulator procedure is embedded within the optimization algorithm,
and it is necessary to evaluate the objective function −E[UFII] + α · σ[UFII]. Therefore,
E[UFII] and σ[UFII] are the outcomes of the Monte Carlo simulation procedure depending
on different candidate solutions, i.e., the PV allocation vectors (provided in step 1 in
Section 4.2). Moreover, note that the objective is to maximize E[UFII] combined with a
minimization of the uncertainty (second term). A well-established generic algorithm is used
to solve the optimization problem numerically, which has often been used on distributed
generators [44] because the gradients are not computable and the state space is usually
quite large.

Four cases are considered to minimize the risk and to maximize the expected return
of the investment, which combines the values of E[UFII] and σ[UFII] via a robustness
parameter α. With a value of α = 0, the objective function is equivalent to the maximization
of the expected UFII without any consideration for the variability of the instantaneous UFII
returns. With α > 0, the objective function includes a robustness element by controlling
the variance of the UFII metric by penalizing solutions having highly uncertain returns
for the investments, i.e., unstable revenue streams. Note that the proposed approach
may be computationally very burdensome, especially for large systems. In fact, for each
candidate allocation vector in the population of the evolutionary algorithm (npop) and at
each generation (nepochs), a full Monte Carlo simulation is required for the evaluation of
the performance of the power grid and the subsequent estimation of the UFII. Therefore, a
total of 2× nmc × npop × nepochs AC-OPF runs are required. Hence, efficient sampling and
caching procedures are proposed to reduce the computational cost of the optimization. The
nmc samples are generated only once at the beginning of the optimization procedure, and
the corresponding costs Co are computed and saved for future UFII evaluations. In fact, the
costs of the initial grid Co are independent of the allocation vector and are only affected
by the nmc random scenarios δt. Hence, by fixing the randomized sample, the Co results
can be conveniently re-used to compute the UFII of new PV investments. This procedure
reduces half the computational cost. Further, a limited number of scenarios nmc are used
to keep the computational cost of the analysis feasible. For more details and a discussion of
a convergence analysis study, the reader is reminded of the case study section.

4.4. Computational Tool and Software

The proposed algorithm for optimal sizing and locating transmission-connected PV
plants is summarized in Figure 1, where each PV plant to be installed in a power grid is a
decentralized generator. The computational approach optimizes four objective functions for
different levels of robustness (see Equation (8)) using an evolutionary algorithm, whereas
the grid performance is simulated employing a combination of AC-OPF and Monte Carlo
simulation. Matlab is the chosen working platform due to its easy applicability, high
functionality, and flexibility, together with ready tools in its library. Genetic algorithm
and nonlinear programming optimizations are executed via Matlab’s ga and fminbnd built-
in functions, respectively. Matpower [45] is used for modeling the power network and
for running energy system functions such as OPF. OpenCossan software [46] is used for
performing the uncertainty quantification part. The optimizations are conducted on a
laptop computer with a 64-bit operating system, 1.8 GHz CPU, and 8 GB RAM.
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5. Case Study
5.1. 14-bus IEEE Power Grid

The 14-bus IEEE power grid is a simplified version of a part of the American Elec-
tric Power System as of 1962 and is a commonly used power grid test case [45]. It is a
representation of the high-voltage transmission network consisting of five thermal power
plants, and its peak total active and reactive power demands are 259 MW and 73.5 MVAr,
respectively. Default vmin

i and vmax
i values are kept between 0.94 and 1.06 p.u., respectively,

for i = 1, . . . , 14. Bus, branch, and generator data for the 14-bus IEEE power grid are listed
in Appendix B. To demonstrate the applicability of the approach to a realistic system, the
test case is modified by considering four geographical regions characterized by different
climate conditions, i.e., cloud coverage. Figure 2 shows the test case and the four regions A,
B, C, and D with increasing cloudiness.
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5.2. Parameter Selection

Power demand: The active and reactive loads for each bus of the 14-bus IEEE power
grid case study, as illustrated in Figure 3. These active and reactive load values are taken to
be the annual peak values, and the 8760-h power demand curves are normalized according
to these peaks. As mentioned in Section 4.1, the random variability of power demand
around the hourly values is modeled as a Gaussian noise with a coefficient of variation
of 5%. The variability of the consumer power demand due to the presence and effects of
extreme weather conditions are also taken into consideration.
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Figure 3. Annual peak active and reactive load values of 14 buses.

Figure 4 shows an example of the hourly active demand curves for Bus 3 resulting
from the proposed load-generating method for four different days of the year. The original
active load value of 94.2 MW for Bus 3 is taken as the annual peak value. Please note
that none of these graphs include the effect of heat waves at this point. Additional graphs
illustrating the irradiance, load, presence of heat waves, and component failures over a
time horizon resulting from the Monte Carlo simulator are presented in Appendix C.
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Figure 4. Hourly active load curves on Bus 3 for the 14-bus IEEE power grid on the 55th, 144th, 216th,
and 303rd days of the year and assuming an annual peak value of 94.2 MW.

Heat waves: The number of days with a heat wave Ee are modeled with a Poisson distri-
bution with an occurrence rate λE = 5 events

month over July and August, and λE = 0 otherwise.
Solar irradiance: The clear sky model prepared by the Solar Energy Research Institute

for the U.S. Department of Energy is used to model solar irradiance over time [41]. The
input parameters are chosen for Cyprus, and the resultant dataset gives the direct normal
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irradiation (DNI), zenith angle (θ), direct horizontal irradiation (DirHI), global horizon-
tal irradiation (GHI), and diffuse horizontal irradiation (Di f HI) with hourly resolution
without considering the effect of clouds.

Cloud coverage: Hourly irradiance samples, G, are calculated for each of the geo-
graphical regions. The cloud coverage model is obtained by randomly generating the
cloud covering from Gaussian distributions at each hour using the model calibrated from
the difference between the clear sky irradiances (deterministic) and measured irradiance
described in Section 4.1. The model is adapted to each region by artificially reducing the
mean of the distribution by 50, 100, and 150 W/m2 in regions B, C, and D, respectively.
Figure 5 graphically presents the proposed irradiance model on four simulated days, two
sunny days in winter (the two profiles on the left) and two cloudy days in summer (the two
profiles on the right). The yellow marked line presents the clear sky irradiance whilst the
mean value of the hourly irradiance and its value plus and minus one standard deviation
are presented by the solid line and dashed lines, respectively.
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in yellow.

Grid failures and power demand: The expected number of failure events are modeled
as a Poisson distribution with parameter λi, while the duration of the event is modeled as
a normal distribution with a mean µi and standard deviation σi. The numerical values of
the parameters of the distributions are chosen to reflect realistic scenarios and are listed
in Table 1.

Table 1. Line and thermal power plant outage model. Expected number of outages per year (.λi ),
mean (τi ) and standard deviation (σi) of the duration of the outage.

Event λi τi[hr] σi[hr]

Line outage—Branch 17 3 3 1
Line outage—Branch 7 4 2 0.5

Generator outage—Bus 6 2 4 1

5.3. Uncertainty Propagation and Convergence Analysis

Since it is not possible to produce and analyze an infinite number of scenarios, it is
important to find the minimal number of Monte Carlo samples needed for an acceptable
convergence of the result. A convergence analysis is conducted to analyze the behavior of
the mean, standard deviation, and coefficient of variation of the UFII function as a function
of the Monte Carlo samples. Twenty randomly generated PV vectors are created where
0 < PVi < 100 for all i ∈ {1, . . . , nb} and 0 ≤ PVT ≤ 150. The statistical indicators are
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computed using up to nmc = 10, 000 samples. Each realization contains 45 input parameters,
summarized in Table 2.

Table 2. Data set of each scenario analysis.

Description and Range Parameter #

Active power demand at each node [0, 94.2 MW] 1–14
Reactive power demand at each node [0, 19 MVAr] 15–28

Branch failure {0, 1} 29, 30
Generator failure {0, 1} 31

Relative PV power generation [0, 1] 32–45

The applicability of the optimization approach relies on the stability of the ranking
of different investment vectors. Due to the stochastic nature of the fitness functions, the
fitness hierarchy of the competitive investments could likely change in different epochs of
the GA. This behavior is highly undesirable as it can lead to instability problems and sub-
optimal solutions. This work overcomes this issue by proposing an intelligent propagation
scheme that maximizes solution ranking stability and simplifies the comparison of different
candidate investments. The fitness of each investment PV is evaluated on an identical
set of scenarios. The samples of the uncertain factors are generated before running the
optimization routine and used during each epoch to evaluate the fitness scores. In other
words, all proposed solutions shared the same random scenarios.

The results of the convergence analysis are shown in Figure 6. The expected UFII
and standard deviation converge around 500 samples, where the coefficient of variation is
after 400 samples. However, the convergence graphs display parallel trends in the curves
among different investment options (PVs), even at low sample amounts. This means
that the ranking of the 20 investments is very stable, thanks to the proposed uncertainty
propagation scheme. Therefore, 250 samples are used in the analysis, which represents a
good compromise between practicality and accuracy for the estimation of the parameters
of interest.

5.4. Optimal PV Allocation

The optimization approach based on the UFII is used to identify the optimal and
robust allocation of decentralized PV generators. Optimal PV allocations are obtained
using four values of the robustness parameter α, and the objective function is estimated
using 250 samples. The optimization parameters, design variables, constraints, and linear
inequalities are summarized in Table 3. bu is the upper limit for the PV unit capacity on
a single node; and bT is the upper limit for the total capacity of all the PV units on all
nodes. These parameters are chosen empirically with the aim of an accurate and efficient
optimization, where bT is particularly set to prevent the uncontrollable PV generation from
exceeding the total active power demand and assure OPF convergence.

Table 3. Optimization parameter used for the robust PV allocation.

Parameter Value

Number of design variables (number of buses to allocate PVs) 14
Maximum capacity of the node bu 100 MWP

Linear inequality bT 150 MWP
Population size 200
Number epoch 10
Crossover rate 0.8

Function tolerance 0.0001
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The sizes and locations of decentralized PV generators obtained for the four values
of robustness selected and their corresponding E[UFII] and σ[UFII] values are listed in
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Table 4. The optimization converged in 51 generations which took between 14–15 h to
complete. Faster results can be obtained using a computer with higher specifications or a
computer cluster rather than a laptop computer.

Table 4. PV allocation in MWp for different levels of robustness α.

Area Bus # α = 0 α = 1 α = 2 α = 3

A
1 21.0 18.6 14.0 9.9
2 1.4 15.5 16.4 16.1
5 75.1 62.0 32.4 26.6

B

3 0.2 13.2 16.3 19.9
4 0 3.1 13.7 17.7
7 0.1 7.3 11.3 11.0
8 0.5 5.5 9.2 12.0

C
9 0.2 0 1.4 1.5
10 0 0 2.4 1.3
14 0 1.0 1.5 0.6

D

6 0 0 5.2 8.1
11 0.1 6.1 10.4 9.8
12 0 10.4 12.1 10.3
13 0 3.6 5.6 5.2

PVT 98.6 146.3 149.9 150
Total E[UFII] 0.2489 0.2392 0.2238 0.2204

σ[UFII] 0.1528 0.1392 0.1321 0.131
V(E[UFII]) 0.0121 0.0091 0.0072 0.0068

The results obtained give valuable information for identifying the critical buses for
achieving a higher penetration of PV (and corresponding better performance of the UFII
index) and the influence of the robustness parameter on the PV allocation strategy. For
example, Buses 1 and 5 are the main driving force behind a high value of E[UFII]; however,
the total PV capacity needs to be distributed over the power grid, with lesser amounts on
Buses 1 and 5, for achieving a smaller σ[UFII]. It is worth mentioning that relatively very
small PV capacities are also suggested to be installed, e.g., 0.1 MWP PV capacity on Bus
7 according to the PV∗ obtained by the optimization procedure without consideration of
robustness (α = 0). These very small PV installations at the transmission level are noises of
the optimization algorithm and can be omitted since their impacts are negligible.

Figure 7 presents the optimal allocations of decentralized PV generators suggested for
the four levels of robustness analyzed. The PV allocation strategy follows the characteristics
of cloud coverage of the four geographical regions, with the most profitable investments
obtained by installing the PVs in the areas with the least amount of cloud. Consider as an
example region A which has the lowest amount of cloud coverage and includes Buses 1, 2,
and 5. Although Buses 2 and 5 are the only load-carrying nodes in region A, the optimizer
found that it is financially efficient to invest in Bus 1 and then forward its production to the
remaining part of the network.

The results tend to be distributed over the entire power grid rather than focusing on
a few buses to obtain higher robustness. In other words, a more uniformly distributed
allocation of PV plants reduces the variance of UFII, thus the risk and uncertainty associated
with the financial investment. In fact, as the robustness level, in order to minimize σ[UFII]
the optimization reduces the variability of the UFII values by increasing the lowest scores
and reducing the highest scores of the UFII. For comparison purposes, the probability
density functions (PDFs) and cumulative distribution functions (CDFs) of the resultant
UFII values obtained from PV allocations suggested by α = 0 and α = 3 with 250 samples
are plotted in Figure 8. Please note that there are also negative values of UFII obtained
by the optimization procedure. This happens because the generator O&M costs (€/h) of
PVs result in Cpv > C0 for scenarios with very low PV production, e.g., at night or for very
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cloudy weather conditions. Therefore, the extra O&M costs added to the system are not
compensated by the energy produced by the PVs, producing the corresponding negative
UFII values.
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(left panel) and the cumulative distribution functions (right panel).

Figure 9 shows the Pareto front of the obtained values of E[UFII] and σ[UFII] corre-
sponding to different values of robustness. It is obvious that there is compensation between
E[UFII] and σ[UFII], i.e., to reduce σ[UFII], thus uncertainty, a lower E[UFII] must be
complied with. When planning and designing a system, one must pay attention to this
trade-off as well as the needs and priorities of the power system operators and/or investors.



Sustainability 2023, 15, 11715 16 of 24

Sustainability 2023, 15, 11715 17 of 25 
 

 
Figure 9. Obtained values of 𝐸[𝑈𝐹𝐼𝐼] vs. 𝜎[𝑈𝐹𝐼𝐼] for the different levels of robustness. 

5.5. Verification of the Solution 
The identified optimal solutions estimated using a small number of Monte Carlo sce-

narios (𝑛 = 250) are verified against the results obtained by estimating the probabilistic 
performance of the PV investments on a larger set of scenarios. Ten years, corresponding 
to 𝑛 = 876,000 samples are generated, and the first and second moments of the UFII 
are calculated. The estimators and errors (percentages) are reported in Table 5. Note that 
the estimators computed with 250 samples are reasonably close to the ones obtained us-
ing large sample sizes. Moreover, the ranking of the expectations, variance, and lower- 
and higher-risk solutions also remains unchanged. The greatest difference between the 
expectations is found to be only 2.4% for 𝛼 = 1, which is very low considering the large 
computational gain attained by the low sample size. 

Table 5. Verification of the optimal solution. 

Parameter Robustness 𝒏𝒎𝒄 = 𝟐𝟓𝟎 𝒏𝒎𝒄 = 𝟖𝟕,𝟔𝟎𝟎 Error [%] 

𝐸[𝑈𝐹𝐼𝐼] 𝛼 = 0 0.2489 0.2459 −1.2 𝛼 = 1 0.2392 0.2337 −2.4 𝛼 = 2 0.2238 0.2201 −1.7 𝛼 = 3 0.2204 0.2159 −2.1 

𝜎[𝑈𝐹𝐼𝐼] 𝛼 = 0 0.1528 0.1551 1.5 𝛼 = 1 0.1392 0.1417 1.8 𝛼 = 2 0.1321 0.1348 2.0 𝛼 = 3 0.131 0.1334 1.8 

5.6. Effect of Natural Variability and Randomness 
The variability of the UFII scores is estimated via the Monte Carlo method and con-

siders the natural variability of the parameters and randomness effects. The natural vari-
ability 𝜎 [𝑈𝐹𝐼𝐼] is due to the variability in time of the nominal values of active/reactive 
loads and the clear sky irradiances. This can be estimated by generating Monte Carlo sam-
ples of time-varying factors but neglecting random effects such as failures, cloud cover-
ages, and heat waves. The total variability 𝜎[𝑈𝐹𝐼𝐼]  is estimated to account for all the 
sources of variability of the parameters. 

The relative contribution of randomness on 𝜎[𝑈𝐹𝐼𝐼]  is computed as: (𝜎[𝑈𝐹𝐼𝐼] −𝜎 [𝑈𝐹𝐼𝐼])/𝜎[𝑈𝐹𝐼𝐼]  and showing a very high contribution to σ[𝑈𝐹𝐼𝐼] from the natural 
variability of the signal. This contribution is also more significant for the solution obtained 

Figure 9. Obtained values of E[UFII] vs. σ[UFII] for the different levels of robustness.

5.5. Verification of the Solution

The identified optimal solutions estimated using a small number of Monte Carlo
scenarios (nmc = 250) are verified against the results obtained by estimating the probabilistic
performance of the PV investments on a larger set of scenarios. Ten years, corresponding
to nmc = 876, 000 samples are generated, and the first and second moments of the UFII
are calculated. The estimators and errors (percentages) are reported in Table 5. Note
that the estimators computed with 250 samples are reasonably close to the ones obtained
using large sample sizes. Moreover, the ranking of the expectations, variance, and lower-
and higher-risk solutions also remains unchanged. The greatest difference between the
expectations is found to be only 2.4% for α = 1, which is very low considering the large
computational gain attained by the low sample size.

Table 5. Verification of the optimal solution.

Parameter Robustness nmc = 250 nmc = 87,600 Error [%]

E[UFII]

α = 0 0.2489 0.2459 −1.2
α = 1 0.2392 0.2337 −2.4
α = 2 0.2238 0.2201 −1.7
α = 3 0.2204 0.2159 −2.1

σ[UFII]

α = 0 0.1528 0.1551 1.5
α = 1 0.1392 0.1417 1.8
α = 2 0.1321 0.1348 2.0
α = 3 0.131 0.1334 1.8

5.6. Effect of Natural Variability and Randomness

The variability of the UFII scores is estimated via the Monte Carlo method and consid-
ers the natural variability of the parameters and randomness effects. The natural variability
σNV [UFII] is due to the variability in time of the nominal values of active/reactive loads
and the clear sky irradiances. This can be estimated by generating Monte Carlo samples
of time-varying factors but neglecting random effects such as failures, cloud coverages,
and heat waves. The total variability σ[UFII] is estimated to account for all the sources of
variability of the parameters.
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The relative contribution of randomness on σ[UFII] is computed as: (σ[UFII] −
σNV [UFII])/σ[UFII] and showing a very high contribution to σ[UFII] from the natural
variability of the signal. This contribution is also more significant for the solution obtained
using larger values of α, i.e., the randomness contributes to only 0.45 percent of the total
standard deviation for α = 3 and 10.4% for α = 0. Hence, the optimization with higher
α gives more importance to the minimization of the σ[UFII] and effectively improves the
stability (reduced uncertainty) of the instantaneous returns. However, even for high α
this optimization procedure cannot reduce the σNV [UFII] much further. This is due to the
natural and unavoidable variability in the reward process, e.g., higher/lower costs during
nightly/daily hours.

5.7. Effect of Sampling Uncertainty

The epistemic uncertainty affecting the estimator of E[UFII] due to the effect of
random sampling can be estimated by computing the variance of the estimator: V(E[UFII]).
The variance of the estimator is shown in Table 2. As a figure of merit, an estimate for the
coefficient of variation can be computed as CoV = V(E[UFII])

E[UFII] . The CoV varies between 4.9%
for α = 0 and 3.1% for α = 3.

5.8. Comparison of UFII with Other Objective Functions Studied in the Literature

The UFII metric and the optimal decentralized PV generator allocation vector resulting
from its maximization are compared with the results of well-established different economic
objective functions used in the literature. The first objective maximizes the running cost of
the power system whilst the second minimizes the levelized cost of energy (LCOE) [47]. For
this purpose, two more optimizations are executed with the same probabilistic framework,
methodology, and constraints but with the following objective functions:

E[∆cost] =
1

nmc

nmc

∑
i=1

∆costi (9)

E[LCOE] =
1

nmc

nmc

∑
i=1

O&MPVi

PPVi

(10)

where ∆cost = Co − Cpv; O&MPV is the total O&M cost of the PV systems [€/h]; PPV is the
power output of the PV systems [MW].

The PV allocations obtained using the objective functions defined in Equations (9) and
(10) are compared with the results obtained using the proposed UFII. The summary of the
results is shown in Table 6. The results are obtained using nmc = 250 samples and the same
optimization parameters listed in Table 6. The results show that the UFII metric provided
a slightly reduced expected payback period of the investment and a smaller associated
standard deviation (uncertainty). This demonstrates that the novel metric proposed in this
work can be used as an effective indicator for economically analyzing a PV investment.
The main reason why UFII performs better than LCOE is that LCOE directly measures the
unit cost of the electrical energy generated by the PVs, but it does not take into account
the changes in the power flows and respective possible power losses, which might create
an increase in the running cost of the whole system. On the other hand, maximizing ∆cost
is outperformed by maximizing UFII because the former suggests adding the maximum
amount of PV allowed without paying attention to the investment’s economic efficiency,
and the findings of the comparison confirm this behavior.
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Table 6. PV allocation in MWp for different levels of robustness α.

Objective Function PVT [MWp] E[UFII]: σ[UFII]: Payback Period
(Mean) [Years]

Payback Period
(Std) [Years]

Max (UFII) 97.5 0.2489 0.1528 3 1.8
Max ∆cost 149 0.2239 0.1497 3.4 2.3

Min (LCOE) 120 0.2406 0.1525 3.1 2

6. Conclusions

This work has introduced a novel metric of the unit financial impact indicator, which
allows for analyzing the efficacy of financial investments on PVs. A Monte Carlo approach is
used to estimate the probability of the UFII score for different investment schemes, allowing
unavoidable uncertainties affecting the system and the investment to be quantified. The
probabilistic approach has been embedded within an evolutionary optimization algorithm
to search for the optimal sizes and positions of PV units. The optimal solutions provide
a compromise between expected profit and financial risks. The optimized (risk-profit)
investments minimize a weighted sum of the expected UFII and its variance.

The 14-bus IEEE power distribution grid tests the proposed method for finding an
optimal PV allocation strategy. Based on the numerical results, we claim that the proposed
framework can deliver investment solutions that are both robust (minimize the UFII
uncertainty/variance) and profitable (maximize the expected long-term profit). The results
confirmed that the sizing and siting of decentralized PV generators matter and play a
fundamental role in achieving a successful financial investment. The unit financial impact
indicator was compared with other commonly used economic metrics. The findings of
the two case studies revealed that the UFII performs slightly better in achieving a PV
unit positioning and sizing strategy that minimizes the payback period of the investment.
The main advantage and novelty of the UFII are that it not only considers the costs and
generations associated with PVs but also accounts for the generation, consumption, cost,
and power flow parameters of the whole power system. Investors and system operators
could consider utilizing the UFII, in combination with other financial performance scores,
to support decision-making on how to allocate PV plants.

Because the optimization approach selects candidate solutions only based on the first
and second-order moments, a small number of samples is needed to estimate the moment
of the UFII distribution. This allows a significant reduction of the computational cost of the
analysis yet allows a good treatment of the uncertainty. To further reduce the computational
cost, an efficient sampling strategy was developed and used to improve the stability of the
optimizer. These features make the proposed approach generally applicable to power grids
of different sizes. The proposed method is generally applicable and extendable to include
more technical parameters for the sake of achieving a resilient power grid. The results of
the optimization prove that the proposed framework can yield investment solutions that
are both robust (minimize the UFII uncertainty/variance) and profitable (maximize the
expected long-term profit).

Future Recommendations

While the methodology initially aimed at evaluating the efficacy of large-scale PV
investments considering unavoidable uncertainty and grid stability, it may also be utilized
for evaluating individual rooftop photovoltaic systems. The innovative metric proposed
for evaluating the impact of financial investments on photovoltaic systems can additionally
be employed to analyze the optimal distribution of energy storage systems and assess
the effectiveness of carbon taxes in stimulating the transition towards more sustainable
energy sources.
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Appendix A

AC-OPF is a nonlinear constrained optimization problem, and its solution requires
an iterative procedure, for instance, the Newton–Raphson method. The proposed AC-
OPF problem, see Equation (1), accounts for O&M costs of PV systems, and equality and
inequality constraints are defined as follows:

gP(Θ, v, p, δ) = AP(δ)

 Θ
v

pg + ppv(G)

+ LP = 0, (A1)

gQ(Θ, v, q, δ) = AQ(δ)

Θ
v
q

+ LQ = 0, (A2)

h f (Θ, v, δ) = B
(

Θ
v

)
+ c ≤ 0, (A3)

ht(Θ, v, δ) = −B
(

Θ
v

)
+ d ≤ 0, (A4)

−Θre f ≤ Θi ≤ Θre f , i ∈ ire f , (A5)

vmin
i ≤ vi ≤ vmax

i , i = 1 . . . nb, (A6)

pmin
gi ≤ pgi ≤ pmax

gi , i = 1 . . . nc (A7)

qmin
i ≤ qi ≤ qmax

i , i = 1 . . . nc, (A8)

0 ≤ ppv,i(G) ≤ PVi, i = 1 . . . nb, (A9)

where the equality constraints gP(Θ, V, p, δ) and gQ(Θ, V, q, δ) represent the linearized
nodal power balance equations for active and reactive power, respectively; h f (Θ, V, δ) and
ht(Θ, V, δ) are the constraints on the bus voltage magnitudes and phases from the end node
and to the end node of each branch, respectively; Θre f is the vector of reference bus voltage
phases; vmin

i and vmax
i are the lower and upper limits on bus voltage magnitudes; pmin

ci and
pmax

ci are the lower and upper limits on generator active power injections; qmin
i and qmax

i are
the lower and upper limits on generator reactive power injections, respectively; AP and

https://github.com/cossan-working-group/OpenCossan
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AQ are the node-arc incidence matrices for active and reactive power, respectively; B(δ) is
the matrix of susceptance obtained from the admittance matrix.

Note that the scenario δ =
(

LP , LQ, G, . . .
)

includes the vectors of active and reac-
tive load demands, respectively, LP and LQ, the irradiance realization for the different
geographical regions and affecting the PV production ppv,i(G) and Boolean indicators of
failure occurrences that affect the topological structure of the grid, e.g., the susceptance and
incidence matrices. c = Pf ,shi f t − Fmax; d = −Pf ,shi f t − Fmax, where Pf ,shi f t represents the
vector of phase shift of the flow at the front end and Fmax the vector of flow limits.

Appendix B

The total irradiance hitting a tilted PV panel is obtained according to the procedure
in [48]. The direct horizontal irradiation, DirHI for a horizontal PV panel is the vertical
component of the direct normal irradiance (DNI) that corresponds to the amount of solar
radiation received per unit area by a surface that is always held perpendicular (or normal)
to the rays that come in a straight line from the direction of the sun at its current position in
the sky. DirHI is therefore computed from the zenith angle (θ):

DirHI = DNI ∗ cos θ. (A10)

The normal component of DNI on a tilted PV module is computed as:

DNImodule = DirHI ∗ sin ψ + β (A11)

where ψ represents the elevation angle (ψ = 90◦ − θ) and β is the tilt angle of the plane.
The diffuse horizontal irradiation, Di f HI, i.e., the amount of solar irradiance incident

on a horizontal surface that has been scattered by the molecules and particles found in the
atmosphere rather than following a direct path from the sun and is usually assumed to be
distributed uniformly in all directions, i.e., isotropic. The proportion of the total Di f HI
hitting a PV panel is given by:

Di fview,sky = Di f HI ∗
(

1 + cos β

2

)
(A12)

The total irradiance hitting a tilted PV panel is obtained as follows:

G = DNImodule + Di fview,sky. (A13)

A realization of the total irradiance hitting a tilted PV at time t is obtained by evaluating
the following equation:

Gmodulei(t) = G(t)− ri(t), (A14)

where G(t) is the total irradiance at time t computed as in Equation (A13) and ri(t) ∼ N(µt, σt)
is a random sample for the depreciative effects mainly due to cloud covering on G(t).
Note that N(µt, σt) is assumed to be a truncated Gaussian distribution with time-varying
moments µt, σt estimated from historical data. Examples of realizations of cloud coverage
are shown in Figure 5.

Appendix C

This appendix presents an example of a scenario realized by Monte Carlo simulation
over a period of one year. Figure A1 shows the active power demand on bus 3. Figure A2
shows the irradiance on region A. Figure A3 reports the heat waves, and Figure A4 the
presence and duration of component failure, respectively. Please note the duration of failure
in Figure A4 is not visible due to the scale of the plot but contains one-hour outages at
hours 422, 896, 972, 1354, 2701, 2743, 6375, 7376, and 8414, two hours outages starting at
hour 154, 349, 2172 3322, 4137, 7021 and 7366 and three-hour outage starting at 2699.
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