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Hinged arrays have garnered increasing interest due to their potential to provide flexible and adaptable solutions for the
various challenges faced in ocean development. The effectiveness of these arrays in engineering applications heavily
depends on the motion characteristics of each individual module, rather than specific modules such as the one with
the strongest motion. However, the presence of hinge constraints results in coupled motion responses of all modules
instead of independent ones. The objective of this study is to investigate the motion behaviour of large arrays formed
by multiple floaters hinged together, while existing literature mainly focused on two-body hinged systems. Based
on the potential flow theory and Rankine source panel method, a numerical programme was developed to calculate
the hydrodynamic interactions and the coupled motion responses. Firstly, a model test was conducted to validate the
developed frequency-domain simulations. A good agreement was achieved. Then, the effects of hinge constraints, the
number of modules, and two external constraints on the motion responses of the entire array were discussed. The results
indicated that the heave motion of the array subjected to hinge constraints was significantly suppressed, but strong pitch
motion occurred in a larger wavelength range. For hinged arrays, the floaters located at the two ends were most likely
to be excited with the strongest motions. Moreover, a shorter hinged array could be used to quantify the trends in the
motion of arrays with more floaters. The calculation results also revealed that the motion responses of a hinged array
were highly sensitive to the external constraints, e.g. mooring lines.

I. INTRODUCTION

Large arrays of floating structures are emerging to be an at-
tractive solution for renewable energy production and ocean
space utilization. In engineering practice, the operational per-
formance of these arrays is closely related to the motion re-
sponses of each module. For example, the pitch motion of a
floating photovoltaic (FPV) array significantly affects the an-
gle between the upper solar panels and the sunlight, the elec-
trical conversion efficiency of a raft wave energy converter
(WEC) is determined by the relative motions between adja-
cent floaters, and the behaviour of operational equipment on
the multi-use floating islands and the comfort of humans liv-
ing on them are also closely linked to the motions of the mod-
ularized platforms. However, the motion performance of the
arrays is significantly affected by the wave motions, hydrody-
namic interactions among different modules and the mechan-
ical coupling effect of the connectors.

When water waves impinge on maritime structures, com-
plex interactions occur between the waves and structures. Be-
hera et al. (2018)1 conducted a study investigating the interac-
tion between oblique waves and a floating plate with three dif-
ferent types of edge conditions. Building upon this research,
Selvan and Behera (2020)2 explored the impact of a porous
structure on wave energy dissipation, while Gayathri et al.
(2022)3 examined the effect of porosity of a submerged cir-
cular membrane. In a similar vein, Hossain et al. (2023)4

focused on the influence of the uniform mass and stiffness of
a floating plate on the stability of flow beneath it. In another
study, Liang et al. (2021)5 investigated the phenomenon of

wave amplification by impermeable plates and found the po-
tential of insights for the applications of floating plates in the
ocean engineering, specifically floating breakwaters. Addi-
tionally, water wave interaction with box-type structures has
also drawn some researcher’s attention. Liu and Wang (2020)6

examined the effects of various cross-sections and physical
parameters, such as breakwater density, immersion depth, and
ballast-water gravity, on the wave-attenuation performance of
box-type breakwaters. Halder et al. (2023)7 utilized deep
learning-driven nonlinear reduced-order models to accurately
predict the dynamics of a two-dimensional box floating and
interacting with surface water waves. Shi and Zhu (2023)8

employed a newly proposed spectral coupled boundary ele-
ment method to investigate the occurrence of gap resonance,
a strong nonlinear phenomenon, occurring in the side-by-side
offloading of rectangular barges.

For hydrodynamic prediction of large multi-body arrays, a
classic study is Kangemoto and Yue (1986)9, who combined
the multiple-scattering interaction theory (Ohkusu, 1974)10

with the Direct Matrix Method (Simon, 1982)11 to develop
an interaction theory for computing the wave exciting forces
and hydrodynamic coefficients of an array consisting of mul-
tiple separate cylinders. The accuracy of this theory was val-
idated by the reasonable agreement between their results and
the experimental data. Goo and Yoshida (1990)12 extended
Kangemoto and Yue’s method (Kangemoto and Yue, 1986)9

to hydrodynamic interaction for bodies of arbitrary geometry,
by utilizing the source distribution panel method and Green’s
functions in polar coordinates. They compared their numeri-
cal results with the experimental results and got a good agree-
ment. Borgarino et al. (2012)13 implemented a fast multipole
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algorithm into the free-surface Green’s method to solve the
diffracted and radiated wave problems in a generic WEC ar-
ray. Some limitations of the algorithm were also pointed out,
which were attributed to the slow convergence of the expan-
sion of the Green’s function. Zhang et al. (2022)14 proposed a
cut-off scheme based on the modularity of bodies in large ar-
rays to address the challenging issue of fully considering the
radiation interaction among floating bodies in such configu-
rations. By comparison with the results from the commercial
software WADAM15, it was shown that, while maintaining
computational accuracy, the developed cut-off scheme could
significantly improve the computational efficiency of hydro-
dynamic interactions of large arrays.

To ensure the operational safety and maintenance cost of
the multi-body system, it is necessary to impose connection
constraints between different modules to reduce the risk of
collisions or drifting. Just as hydrodynamic interactions be-
tween modules can affect their responses, the application of
connectors can also have a significant impact on such re-
sponses. Diamantoulaki and Angelides (2010)16 conducted a
performance comparison of various configurations of hinged
floating breakwaters against a single floating breakwater with-
out hinges. Their results demonstrated that increasing the
number of hinge joints could enhance the effectiveness of the
floating breakwaters, except for extremely low frequencies
and high frequencies. This limitation was attributed to the
relatively small dimensions of the array in comparison to the
corresponding wavelengths at low frequencies, as well as to
low response levels in the short waves. Zheng et al. (2016)17

examined the influence of three connection conditions on the
variation of maximum relative capture width. Their results re-
vealed that the power absorption of the two hinged or rigidly
connected rafts can be dramatically reduced. Loukogeorgaki
et al. (2017)18 evaluated the internal forces of connectors in a
pontoon-type modular floating breakwater system consisting
of flexibly connected and moored chain modules. Each con-
nector in their study was made of coated wire rope, and its
flexibility was expressed by the axial and bending stiffness.
Zhao et al. (2019)19 proposed a general approach to determine
the stiffness configuration for various wave conditions by sim-
plifying the connector and ignoring its torsional and bending
stiffness. It indicates that the combination of small longitu-
dinal stiffness, large transversal and large vertical stiffness is
favourable for motion under most wave conditions. Xia et al.
(2020)20 applied a control method in conjunction with hinged
connectors to suppress the heave, roll and pitch motions of a
five-modular floating structure. Their numerical simulations
verified the effectiveness of the combination of the control
strategy and hinge connection. Ma et al. (2022)21 examined
the dynamic behaviors of a hinged two-body floating aquacul-
ture platform under regular waves. Their results showed that
the hinge-joint rotational stiffness has a predominant influence
on the maximum pitch response.

Among the various types of connection constraints, hinge
joints are a commonly used form of connector in large arrays,
which serve to restrict the relative motion between adjacent
modules. They are typically assembled in the gap space be-
tween two adjacent to restrict their relative motion around the

(a)

(b)

FIG. 1. Sketch of two applications of large arrays of modularized
floating bodies with hinge connections. (a) A FPV array (Zhang
et al., 2023); (b) a multi-use floating island of Energyhub@Sea
(Flikkema et al., 2021).

axis of the hinge connector, reducing the risk of collisions or
drifting. Some studies have been published to demonstrate
how to accurately predict the motion response of each floater
in a hinged multi-body system. Newman (1994)22 firstly took
hinge constraints into consideration in multi-body problems.
He utilized a mode generalized method to predict the vertical
motion and relative rotation of a hinge in a two-barge sys-
tem. Sun et al. (2011)23 applied the Lagrange multiplier
technique to investigate the same interconnected barge con-
figuration. They compared their numerical results with New-
man’s results (Newman, 1994)22 and got a good agreement.
Zheng et al. (2015)24 used a method of introducing a con-
straint matrix into the frequency domain dynamics equations
to calculate the results of motion. Their results also agree well
with Newman’s results (Newman, 1994)22. Compared to the
study of motion response predictions of hinged multi-body
systems, an increasing number of researchers are now more
focusing on the practical application of hinged arrays. Ren et
al. (2019)25 investigated the effects of various combinations
of hinges, linear pitch springs, and linear pitch dampers on the
shear force, bending moment of connectors, and the motion
of modules. Their findings indicated that using a hinge-PTO-
type design for the outermost connector can effectively reduce
the motion of the outermost module. Jiang et al. (2021)26

employed a potential-flow-based numerical model to inves-
tigate the hydrodynamic sensitivity of an articulated modular
floating structure. Their results showed that the hydrodynamic
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FIG. 2. Coordinate systems.

properties were similar for arrays of different number of mod-
ules, but that the translational horizontal motions were very
sensitive to the incident wave angle. Liu et al. (2022)27 con-
ducted numerical simulations to analyze the hydrodynamic
responses of a novel hybrid modular floating structure sys-
tem. The results demonstrated that this hybrid system showed
good longitudinal expansibility for mild marine environments.
Bispo et al. (2022)28 developed a numerical model to exam-
ine the interaction of waves with a set of hinged plates. The
study found that the rotational stiffness of the hinges greatly
affects the vertical displacement of the structure. Previous
studies typically focused on selecting several variables as tar-
get parameters, such as the maximum motion of modules or
the maximum internal force of connectors. However, inves-
tigating the motion response characteristics of all modules in
the entire array is crucial for arranging the upper facility and
monitoring the overall health of the array. This will be the
objective of the present study.

In the present study, a 3-D panel code based on the Rank-
ine source method, named MHydro, is developed to investi-
gate the motion characteristics of large arrays with hinge con-
straints. The fully hydrodynamic interactions among modules
and the mechanical coupling effect of the hinges are consid-
ered in the analysis. The remainder of this paper is structured
as follows. Section 2 provides a description of the applica-
tion and simplification of hinged arrays. Section 3 outlines
the numerical methodology for analyzing the hydrodynamic
interactions and motion responses of hinged arrays. A hinged
multi-body model test is conducted to validate the in-house
numerical code, and the results can be found in Section 4. The
validated numerical code is then applied to carry out a multi-
parameter study in Section 5. Finally, Section 6 summarizes
the conclusions.

II. PROBLEM DESCRIPTION

Large arrays typically consist of dozens or even hundreds of
modularized floating bodies that are interconnected by hinge

constraints. These floating modules usually have identical ge-
ometric parameters to facilitate manufacturing, assembly, and
maintenance. The motion responses of all modules are cou-
pled due to the presence of hinge constraints, which in turn
reduces the likelihood of collisions or separations between
them. The concept of hinged arrays has been widely applied
to many offshore engineering practices. Fig. 1 illustrates two
common engineering applications: a FPV array for convert-
ing solar energy into electrical energy (Zhang et al., 2023)29,
and a multi-use artificial island used to supply energy for other
marine equipment (Flikkema et al., 2021)30.

The aim of the present study is to conduct fundamental re-
search on the motion characteristics of hinged arrays, and thus
the floating modules are not designed at full-scale dimensions
in this paper. In actual engineering applications, the size of the
modules can be determined based on specific marine condi-
tions and the conclusions drawn from this study. Furthermore,
considering the variability in the layout of hinged arrays, the
arrays are simplified to only be arranged along the longitudi-
nal direction (chain type) in this study. The hinge axes are
assembled along the y-axis at the midline of the gap between
two adjacent floating bodies, allowing only the pitch motion to
be free. The influence of other complex arrangements on the
motion responses of hinged arrays will be further investigated
in future studies.

III. NUMERICAL METHODOLOGY

In order to conduct the present investigation, we employed
a boundary element programme MHydro, which is based on
potential flow theory and Rankine source panel method, to
calculate the motion performance of hinged arrays. Yuan et al.
(2014, 2015)3132gave the details about using MHydro to solve
the ship-to-ship problem. The same method and numerical
programme will be used in the present study.
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A. Coordinate systems

Considering N bodies oscillating in open sea, the cor-
responding right-handed coordinate systems are shown in
Fig. 2. O−XY Z is the global coordinate system with
its origin fixed on the undisturbed free surface and O−Z
axis is positive upwards. The body coordinate systems
om − xmymzm(m = 1,2, . . . ,N) are fixed on each body with
their origins locating on the mean free surface at midships
and om − zm pointing upwards. dm and lm represent the trans-
verse and longitudinal distance between the m-th body coordi-
nate system and the global coordinate system, respectively. In
the present study, the global coordinate system O−XY Z coin-
cides with the first body-fixed coordinate system o1 − x1y1z1.
The incident wave direction β is assumed as the angle be-
tween the wave propagation direction and the positive X-axis,
with β = 0◦ corresponding to the head wave.

The positive 6 degrees of freedom (DoF) are also shown in
Fig. 2. In the computation, the motions and forces of each
body are transferred to the body-fixed coordinate system.

B. Diffraction wave potential

With bodies in the wave field, the propagation of the inci-
dent waves will be affected, and the diffracted waves will be
generated. Assuming the surrounding fluid is ideal, the veloc-
ity potential which satisfies the Laplace equation in the whole
fluid is introduced. The linearized diffraction potential can be
expressed as

ΨD(X⃗ , t) = Re[η7ϕ7(X⃗)e−iω0t ] (1)

where Re(∗) denotes the real part of the argument; ϕ7 is the
unit diffraction potential and η7=η0 is the incident wave am-
plitude; ω0 is the incident wave frequency.

The linearized incident wave velocity potential ϕ0 is de-
scribed as

ϕ0 =− igη0

ω0

coshk(z+d)
coshkd

ei[k(xcosβ+ysinβ )] (2)

where d is the water depth; β is the angle of wave heading;
and k is the wave number that satisfies the dispersion relation

k · tanhkd = ω0
2/g (3)

The Laplace equation and linearized boundary conditions
used to solve the diffraction velocity potential are summarized
as follows:

∇
2
ϕ7 = 0 in the fluid domain; (4)

g
∂ϕ7

∂ z
−ω0

2
ϕ7 = 0 on the undisturbed free surface S f ; (5)

∂ϕ7

∂n
=−∂ϕ0

∂n
|Sm on the mean wetted surface Sm; (6)

∂ϕ7

∂ z
= 0 on the seabed. (7)

C. Radiation wave potential

The radiated waves are generated by the oscillation of the
bodies. For linearization, the radiation velocity potential can
be written as follows:

ΨR(X⃗ , t) = Re
6

∑
j=1

N

∑
m=1

[
η

m
j ϕ

m
j

(
X⃗
)

e−iω0t
]

(8)

where ϕm
j ( j = 1,2, . . . ,6;m = 1,2, . . . ,N) is the unit radiated

wave potential in the j-th DoF corresponding to the m-th
body; ηm

j ( j = 1,2, . . . ,6;m = 1,2, . . . ,N) is the correspond-
ing oscillation amplitude (η1: surge; η2: sway; η3: heave; η4:
roll; η5: pitch; η6: yaw). The radiation velocity potential can
be solved by the following boundary value problem:

∇
2
ϕ

m
j = 0, j = 1, 2, . . . , 6 in the fluid domain; (9)

g
∂ϕm

j

∂ z
−ω0

2
ϕ

m
j = 0,

j = 1, 2, . . . , 6 on the undisturbed free surface S f ;
(10)

∂ϕm
j

∂n
=

{
−iω0n j|Sm

0|Sothers
,

j = 1, 2, . . . , 6 on the mean wetted surface Sm;
(11)

∂ϕm
j

∂ z
= 0 on the seabed. (12)

Moreover, a suitable Sommerfeld radiation condition must
be imposed on the control surface to complete the above
boundary value problem. The generalized normal vectors are
expressed as

n j =

{
n⃗, j = 1, 2, 3

x⃗× n⃗, j = 4, 5, 6 (13)

where n⃗ = (n1,n2,n3) is the unit normal vector directed in-
ward on body surface Sm; x⃗ = (x,y,z) is the position vector on
Sm.

The entire computational domain consists of the body-,
free-, control- surface and seabed. In the numerical study, the
boundary is discretized into multiple quadrilateral panels with
varying source density. The velocity potential on each bound-
ary panel is solved using the Rankine-type Green function.
Detailed information regarding the numerical implementation
can be found in the work by Zhang et al. (2022)14.

D. Equations of hinged multi-body motion

Once the unknown diffraction velocity potential ϕ7 and ra-
diation velocity potential ϕm

j are obtained, the pressure on
each body surface can be derived from Bernoulli’s equation,

pm
j =−iωρϕ

m
j , j = 0, 1, . . . , 6, 7; m = 1, 2, . . . , N (14)
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where ρ is the fluid density.

The wave excitation force can then be obtained by the inte-
gration of incident and diffraction pressure on the wetted body

surface as

FWm
i =

∫∫
Sm

(p0 + p7)nidS (15)

Moreover, the hydrodynamic forces induced by the oscillatory
motions of Bm in the ith direction can be expressed as

FRm
i =

6

∑
j=1

∫∫
Sm

pm
j nidS·

(
N

∑
n=1

η
n
j

)
=

6

∑
j=1

N

∑
n=1

(
ω

2
0 µ

mn
i j +iω0λ

mn
i j
)

η
n
j , i, j=1, 2, . . ., 6; m,n=1, 2, . . ., N (16)

where µmn
i j is the added mass coefficient of Bm in the ith mode

which is induced by the oscillation motion of Bn in the jth
mode; λ mn

i j is the damping coefficient in which the definitions
of subscript and superscript are the same as those of added
mass. The added mass and damping coefficients can be writ-
ten as

µ
mn
i j =− ρ

ω0

∫∫
Sm

ϕ
n
I jnidS, i, j = 1, 2, . . . , 6; m, n= 1, 2, . . . , N

(17)

λ
mn
i j = ρ

∫∫
Sm

ϕ
n
R jnidS, i, j = 1, 2, . . . , 6; m, n= 1, 2, . . . , N

(18)
where ϕI j donates the imaginary part of jth radiation potential,
and ϕR j is the real part.

Based on Newton’s second law, the motion equation of free-

floating bodies in frequency domain can be expressed as[
−ω

2M− iωB+K
]
{η}= {F} (19)

where M, B and K are the mass, damping and stiffness matrix,
respectively; η is the displacement matrix; F is the external
forces matrix, which includes the wave excitation force FW

and the hydrodynamic forces FR. It should be noted that the
structure damping is assumed to be zero in this study. By rear-
ranging the equation and shifting the hydrodynamic forces to
the left of the motion equation, the equation can be expressed
as [

−ω
2 (M+µ)− iωλ +K

]
{η}=

{
FW} (20)

Thus, the motion of Bm in the i-th mode can be described in
detail as

6

∑
j=1

{
[−ω

2
0 (M

m
i j+µ

mm
i j )−iω0λ

mm
i j +Km

i j ]η
m
j +

N

∑
n=1,n̸=m

(−ω
2
0 µ

mn
i j −iω0λ

mn
i j )ηn

j

}
=FWm

i ,

i, j=1, 2, . . . , 6; m,n=1, 2, . . . , N

(21)

where the term related to ηn
j is the hydrodynamic forces on

Bm generated by the radiation motions in 6 DoF performed by
the structures excluding Bm.

If a hinge constraint along the y-axis is applied between two
bodies, the displacements in five DoFs (surge, sway, heave,
roll, and yaw) are continuous at the hinge joint and the pitch
motion is free. There are thus five constraints between two in-
terconnected m-th and (m+1)-th bodies and the correspond-
ing constraint equations are

η
m
1 +η

m
5 zm −η

m
6 ym = η

m+1
1 +η

m+1
5 zm+1 −η

m+1
6 ym+1

η
m
2 −η

m
4 zm +η

m
6 xm = η

m+1
2 −η

m+1
4 zm+1 +η

m+1
6 xm+1

η
m
3 +η

m
4 ym −η

m
5 xm = η

m+1
3 +η

m+1
4 ym+1 −η

m+1
5 xm+1

η
m
4 = η

m+1
4

η
m
6 = η

m+1
6

(22)

where (xm, ym, zm) and (xm+1, ym+1, zm+1) are the coordinates

of a hinge joint in the m-th and (m+1)-th body-fixed coordi-
nate systems, respectively. Similarly, if the hinge constraint is
applied along the x-axis, then only the roll motion is free. The
dynamic equation of motion for the hinged multi-body array
in the frequency domain can be written as

[
−ω2

0 (M+µ)+ iω0λ +K DT
J

DJ 0

]{
η

FJ

}
=

{
FW

0

}
(23)

where M and K are the array mass and stiffness matrix of
(6N ×6N), respectively; µ and λ are the array added mass
and potential damping matrix of (6N ×6N); DJ is the dis-
placement constraint matrix of (Q×6N), in which Q repre-
sents the number of hinge joint constraints; η is the frequency-
dependent displacements matrix of (6N ×1); FJ is the joint
force vector of (Q×1); FW is the wave excitation force array
of (6N ×1).
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FIG. 3. Free decay motion of the box in pitch direction.

TABLE I. Main parameters of identical box model.

Parameters Values
Length Lb=0.4 m
Width Bb=0.25 m
Height Db=0.2 m
Draft hb=0.1 m
Mass mb=9.633 kg
Centre of gravity zG=-0.027 m

IV. VALIDATIONS

A validation of the developed numerical programme MHy-
dro is now considered via the comparison with model test
results. Two cases with different model numbers are tested
individually, a single box system and a hinged 5-box sys-
tem. All models have identical geometry dimensions and
physical properties. The main particulars of the identical box
model are shown in Table I. The second moment of the wa-
ter plane about the y-axis can be obtained by the equation
Iw2 = BbL3

b/12=0.0013 m4. The model test is conducted in
a flume tank with a main dimension of 6.7 m length, 3.15 m
width and 1.35 m height at the Kelvin Hydrodynamic Labo-
ratory of University of Strathclyde. The incident wave direc-
tion is β = 180◦, the water depth is d=1 m and the incident
wave amplitude is A=0.01 m. A Qualisys system was ap-
plied to track the motion time series of the physical models
(Yiew et al., 2017)33. Fig. 3 illustrates the free decay pitch
motion of a single model. The box model has a very large
restoring stiffness in the pitch direction, and a small exter-
nal load is applied during the free decay test. This explains
why the free decay results in Fig. 3 are small. Furthermore, it
should be noted that the external force is not released until 15
s, which explains the absence of pitch motion in Fig. 3 prior
to that time. Based on the results of the free decay test, the
natural frequency of a box model ωn=7.306 rad/s is obtained
to compute the pitch moment of inertia M55 = 0.128 kg ·m2.
Once the physical properties of each model are derived, the
5-box models are interconnected along the longitudinal direc-

FIG. 4. Photos of the hinged 5-box system and the hinge assembly.
The gap distance between adjacent boxes is 0.08 m. Two hinges are
assembled on the midline of each gap.

FIG. 5. Computational domain of the 5-box model in head wave.
The free surface is truncated at 1.5Lb upstream, 1.5Lb downstream,
and 3Bb sideward. There are 500 panels on each box surface, 3,220
panels on free surface, and 860 panels on control surface.

tion with hinges assembled at the midline of the 0.08 m gap.
The hinged 5-box system and the hinge assembly are shown
in Fig. 4. A horizontal mooring system is employed to ensure
that the model system can be restored to its original position
after the wave maker stops running, by providing additional
restoring forces in the surge, sway, and yaw directions. This
mooring system comprises of four horizontal light mooring
lines, with each line connected to one of the four corners of
the model system. As shown by the yellow dashed lines, three
holes on the hinge are used to keep the hinge from moving
relative to the connected box. The distance between adjacent



7

FIG. 6. Time series of pitch motion of Box1 at a wavemaker input frequency of 5.0265 rad/s. The blue dashed line represents the actual results
tracked in the tank, and the red solid line shows the results of the curve fitting using a sine function.

FIG. 7. Response amplitude operators of pitch motions of the hinged
5-box array.

boxes can be changed by adjusting the position of three fixed
points. However, the effect of gap distance is not discussed in
this study. The numerical simulation adopts the same geomet-
ric situation as that used in the model test. The panels of the
computational domain are shown in Fig. 5.

To obtain the motion RAOs of the models, tests are required
with the models exposed to regular waves. To ensure accurate
results, data should be collected for no less than 10 full wave
cycles during the regular wave tests, as recommended by the
International Towing Tank Conference (ITTC, 2002)34. Tak-
ing the case of a wavemaker input frequency of 5.0265 rad/s
as an example, we will describe the procedure for obtaining
the Pitch RAO. Fig. 6 shows the time series of pitch motion
of Box1. As shown in Fig. 6, the steady range of the acquired
motion response is fitted with a Sine function to obtain the
amplitude, frequency, and phase information. By fitting the
pitch motion in Fig. 6 with a Sine function, the amplitude of
the motion is determined to be 2.6224◦, with a frequency of
5.0265 rad/s. Due to the limitations of the wavemaker and the

FIG. 8. Computational domain and panel distribution of the numer-
ical model for a hinged 7-box array at wavelength λ/L=1. A box
of dimensions at B/L=1, D/L=0.1, respectively. The gap distance d
between two adjacent boxes is 0.1L. The size of the free surface is
wavelength dependent: truncated at 2λ upstream, 2λ downstream,
and 2L sideward. There are 8,060 panels distributed on the entire
computational domain: 300 on each body surface, 4,680 on the free
surface and 1,280 on the control surface.

tank, it may not be possible to precisely replicate the same
wave as that fed into the wavemaker. Hence, the free surface
elevation also needs to be recorded and fitted using the Sine
function. The fitting analysis of the wave elevation reveals
an amplitude of 0.0062 m and a frequency of 5.0265 rad/s.
To facilitate comparison, the unit of pitch motion is converted
to radians. As a result, the pitch motion RAO at the non-
dimensionalized frequency of 1.0155 is 7.3822 rad/m. Simi-
larly, the RAO of pitch motion at other frequencies is obtained
using the same approach. The comparison of pitch motion be-
tween the present numerical results and experimental data is
shown in Fig. 7. In the model test, a total of 20 wave fre-
quencies were individually input into the wavemaker, and the
corresponding motion RAO results were obtained. Each fre-
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(a) (b)

(c) (d)

FIG. 9. Heave and pitch motion of free-floating and hinged 7-boxs arrays. The heave motion is non-dimensionalized by the wave amplitude
η0 and the pitch motion is non-dimensionalized by the wave steepness kη0. (a) Heave motion of free-floating boxes array; (b) heave motion
of hinged boxes array; (c) pitch motion of free-floating boxes array; and (d) pitch motion of hinged boxes array.

quency and its corresponding pitch RAO can be found in Fig.
7. For the numerical simulations, the spacing of wave frequen-
cies was refined to achieve smoother result curves. Larger
peak results can be observed in the numerical results. This is
due to the fact that the viscous effect is ignored in the present
numerical programme. The numerical results calculated by
the present programme generally agree well with the exper-
imental data, indicating that the body motion responses of
hinged multi-body arrays can be predicted by the present 3-
D Rankine source programme.

V. RESULTS AND DISCUSSIONS

The validated numerical programme is applied to a series of
case studies to investigate the influence of various parameters,
e.g. hinge connection, number of modules, external stiffness
constraint, and array arrangement configuration, on the mo-
tion characteristics of large hinged arrays.

A. Comparisons of free-floating and hinged boxes arrays

Large arrays of modularized floating structures are typically
connected by hinge joints, which strongly affect the motion
performance of the arrays. Two case studies are designed
here, based on 7 identical floating boxes oscillating side by
side in head waves, to investigate the effect of hinge connec-
tions. The main particulars of the identical boxes are B/L=1
and D/L=0.1, respectively. The longitudinal and transverse
distance between two adjacent boxes is 1.1L and 0, respec-
tively. In the present study, a reference length of L=1 m is
chosen as the main dimension. Other essential reference pa-
rameters include a mass of 102.5 kg, a roll moment of inertia
of 8.627 kg ·m2, a pitch moment of inertia of 8.627 kg ·m2, a
yaw moment of inertia of 17.08 kg ·m2, and a centre of gravity
located on the calm free surface. However, it is worth noting
that in this study, both the physical particulars and computa-
tional results have been non-dimensionalized. This approach
allows us to quantify the underlying principles that are inde-



9

(a)

(b)

FIG. 10. Heave and pitch motion of free-floating and hinged 7-boxes
arrays at wavelengths λ/L=6, 7, and 8.

pendent of specific scales or units, and facilitates the applica-
tion of the findings to different scales or sizes in real-world
scenarios. The computational domain and discretization of
the boundaries is presented in Fig. 8. For the present hinged
array, the hinge joints are assembled on the undisturbed wa-
terline plane, i.e. zm=0. In this study, the authors would like
to concentrate on wave incident angle β = 0◦, thus the num-
ber of DoFs for the motion of each body can be reduced to
only surge, heave, and pitch. Additionally, the surge motion
is identical for each module. Therefore, only the heave and
pitch motion of each module are of particular interest in this
paper.

Fig. 9 shows the heave and pitch motion of each module at
different wavelengths. The non-dimensionalization for heave
motion is made by the incident wave amplitude η0, while the
non-dimensionalization for pitch motion is made by the wave
steepness kη0. It can be clearly found that the motion col-
ormap of the free-floating boxes array is much messier com-
pared to the motion results of the hinged array. It indicates
that when the hinge joints are assembled between the floaters,
the wavelengths at which the floaters would be strongly ex-

cited become more concentrated. For example, the pitch mo-
tion of the hinged B1 in Fig. 9 (d) shows a very significant
peak around λ/L=2.3, while the response of B1 with inde-
pendent oscillations is clearly chaotic around the wavelengths
λ/L=1.7-2.2 where the pitch motion is strong. From Fig. 9
(b) and (d), we can see that when the floaters are hinged, the
colormap of heave motion is basically devoid of red and or-
ange regions, except for B7 around λ/L=3.3. However, there
is a significant increase in the red and orange areas of the pitch
colormap. This means that there will essentially be no longer
strong heave motions when the hinges are assembled in the
array, but noticeable pitch motions will occur over a wider
wavelength range. As outlined in Section 2, the application of
a hinge joint along the y-axis between two adjacent bodies al-
lows only the pitch motion is unrestricted, while the other five
DoFs are constrained. Specifically, these constrained motions
must maintain continuity at the hinge point. Additionally, the
module experiences forces in the z-direction induced by the
waves, but its displacement in the z-direction is limited due
to the presence of hinge joints. However, this constraint at
the hinge point results in the release of some of the vertical
forces into moments around the hinge point. This explains
why the heave motion of the hinged array is suppressed while
the pitch motion is easy to be excited. Meanwhile, by com-
paring the four figures in Fig. 9, it can also be seen that when
the floaters are hinged, the blue regions of both the heave
and pitch motion colormap become significantly greater at
short wavelengths. It suggests that longer wavelengths are re-
quired for the floaters to be significantly excited when they are
hinged. However, at long wavelengths, the colormaps of the
free-floating floaters have more distinct green regions, which
represent smaller motion responses. Fig. 10 shows the heave
and pitch motion of two arrays at long wavelengths λ/L=6,
7, and 8. As with the results shown in the motion colormap,
both the heave and pitch motion of the hinged floaters are no-
ticeably greater than the motion of floaters with independent
oscillations at long wavelengths. It can also be observed from
Fig. 10 that the response of the floaters at the trailing end of
the hinged array is significantly greater than that of the floaters
at the front end. Besides, as the wavelength increases, the
non-dimensionalized motions of the floaters in both arrays are
convergent to 1. This is due to the fact that when the waves
are long enough, the near-zero values of the inertia and damp-
ing terms in the motion equation enable the floaters will travel
with the waves.

Fig. 11 shows the statistical results of the motion colormaps
presented in Fig. 9. The bars in the charts indicate the propor-
tion of a particular floater that shows the strongest responses
in the array across the entire wavelength range. And the lines
represent the average response value of the responses of a
given floater when it displays the strongest response. For
the strongest heave motion of the free-floating array, the sixth
floater shows the highest proportion, up to 0.6, while its adja-
cent floater B5 has the strongest response at only a very few
wavelengths. Moreover, except for B5, the mean values of the
maximum heave motion of the other floaters are large. This
indicates that the maximum heave motions of most floaters are
relatively large when there is no hinge constraint. This can be



10

(a) (b)

(c) (d)

FIG. 11. Proportion of floating bodies with the strongest responses and mean values of the maximum motions. The statistical range of
wavelengths is from 0.5L to 8L at 0.1L intervals. The right y-axis is the average of the non-dimensionalized maximum values. (a) Statistical
results of heave motion of an array of free-floating 7-bodies; (b) statistical results of heave motion of an array of hinged 7-bodies; (c) statistical
results of pitch motion of an array of free-floating 7-bodies; and (d) statistical results of pitch motion of an array of hinged 7-bodies.

explained by Fig. 9 (a), where less blue area indicates that
larger oscillations are more likely to occur. Different from the
results shown in Fig. 11 (a), in the hinged case, the first floater
accounts for the highest ratio of over 0.65 as shown in Fig. 11
(b). The proportions of floaters located in the middle of array
are relatively lower, and the mean values are also smaller, indi-
cating that they are less likely to be excited to generate a large
heave motion. Similar to the heave motion of hinged floaters,
the middle-positioned floaters have a low proportion of the
maximum pitch motion. The floater with the highest ratio is
also the first floater, followed by the last floater. However,
when the floaters are free-floating, the proportions of these
two floaters become significantly lower, and the floaters lo-
cated in the middle position have a higher proportion. From
Fig. 11 (d), large average values of the maximum pitch mo-
tion only can be found in several floaters located at the ends

of the hinged array. As a result, for the arrays of hinged float-
ing bodies, the motion responses of several floaters at either
end, especially the first couple of floaters in the weather side,
should be of particular interest.

B. Longitudinal expansibility of hinged boxes arrays

The arrays of hinged floating structures can provide a larger
deck area by increasing the number of modules, allowing
more marine equipment to work simultaneously or providing
a greater living space for people. Fig. 12 shows a sketch of
an array of N ×1 hinged floating bodies. To investigate the
longitudinal expansibility of hinged bodies arrays, four arrays
with different numbers of modules are designed, with N being
5, 7, 10, and 14 respectively. Fig. 13 and Fig. 14 show the
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FIG. 12. Sketch of N ×1 hinged boxes array.

(a) (b)

(c) (d)

FIG. 13. Heave motion of four arrays with different number of hinged boxes at four typical wavelengths. (a) λ/L=1.1; (b) λ/L=2.4; (c)
λ/L=3.8; (d) λ/L=7.6.

heave and pitch motions of these four arrays at four typical
wavelengths of λ/L=1.1, 2.4, 3.8, and 7.6, respectively. The
four wavelengths are chosen based on the motion colormap
shown in Fig. 9: a short wave with very weak motions for
the hinged 7-boxes array, two intermediate waves with strong
motion responses, and a long wave where the array basically
travels with the wave. From Fig. 13 and Fig. 14, we can find
the motion responses of all four arrays have essentially the
same trend at the same wavelength. Similar observations were
made by Jiang et al. (2021)26 in the case of hydrodynamic
sensitivity of a hinged modular floating structure to the num-
ber of modules. However, special attention should be paid on
the motion responses of the 5-box array. Although the 5-box

array shows a similar overall trend to the other three arrays,
the trend of the 5-box array differs in detail at some wave-
lengths. Taking Fig. 13 (a) as an example, the heave responses
of the first floater is significantly larger and the response of
the last one is noticeably smaller, while the trend of the re-
sponses of the other floaters are very smooth. However, the
responses of the middle-positioned floaters in the 5-box ar-
ray are clearly jerkier. It is very interesting to find that when
the array is subjected to short or long waves, the motion re-
sponses of the front-end floaters in the three long arrays are
largely overlap. Combining the conclusion from sub-section
5.1 that the hinged array exhibits an overall increase in heave
and pitch motions at long wavelengths, it can be concluded
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(a) (b)

(c) (d)

FIG. 14. Pitch motion of four arrays with different number of hinged boxes at four typical wavelengths. (a) λ/L=1.1; (b) λ/L=2.4; (c)
λ/L=3.8; (d) λ/L=7.6.

(a) (b)

FIG. 15. Heave and pitch motion of hinged 14-boxes arrays. The heave motion is non-dimensionalized by the wave amplitude η0 and the pitch
motion is non-dimensionalized by the wave steepness kη0. (a) Heave motion; (b) pitch motion.
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(a)

(b)

FIG. 16. Sketch of a 7×1 hinged boxes array with two kinds of external stiffness constraints. (a) Rotational spring constraints symmetrically
assembled at H1 and H6; (b) vertical mooring constraints symmetrically assembled at B2 and B6.

that longer hinged arrays exhibit larger responses at the trail-
ing end in long waves, as shown in Fig. 13 (c) and (d) and
Fig. 14 (c) and (d). However, when the responses of the en-
tire array are very strong, as shown in Fig. 13 (b) and Fig. 14
(b), the motion responses of the arrays consisting of different
number of floaters no longer overlap, but still show the exactly
identical trend along the longitudinal direction of the arrays.
It can be concluded from the numerical case study that the
response trend of a shorter array can be used to characterize
the response trend of an array with more floaters. However,
the number of floaters in such a short array should not be too
small, as the response trend at certain locations may not be
accurate enough in an array that is too short.

Fig. 15 presents the non-dimensionalized heave and pitch
motions of a hinged 14-box array. As can be seen from Fig. 9
(b), (d) and Fig. 15, although the number of floaters in the
two arrays differs, they still display a generally similar per-
formance over the entire range of wavelengths. For the heave
motion, both arrays exhibit a small response peak around the
wavelength of λ/L=1.1. Additionally, a distinct peak can be
observed near the wavelength λ/L=2.2 for the first floater in
both arrays, and a prominent peak can also be found for the
last floater in the wavelength range of λ/L=2.8-4.3. For the
pitch motion, strong responses can be found for both arrays
in the wavelength range of λ/L=2.3-5. From Fig. 9 (d) and
Fig. 15 (b), it is clear that with increasing the floater number
(No.1 - No,14), the red and orange regions in the upper-middle
position of the motion colormap become broader. It indicates
that the floaters at the aft end of the array will have strong
pitch motions over a wider wavelength range, highlighting the
importance of monitoring the responses of the last couple of
floaters in the array. Moreover, an apparently larger red region
observed in the 14-box array suggests that a greater number of
floaters will lead to stronger pitch motion responses when the
array experiences significant motion. This finding is consis-

tent with the above conclusion drawn from Fig. 14 (b). As
can also be seen from Fig. 13 (c), (d) and Fig. 14 (c), (d) that
the heave and pitch motions of the floaters located at the trail-
ing end of the array become increasingly strong as the number
of hinged floaters increases, when the wavelength exceeds the
range of the intense motion responses of the entire hinged ar-
ray.

C. External stiffness constraints effect

The motion performance of a hinged array can be signif-
icantly affected by other external constraints, among which
external stiffness constraints are very common. There are two
commonly used external stiffness constraints: one is the rota-
tional spring located at the hinge, and the other is the vertical
mooring connecting the floater to the seabed, as shown in Fig.
15. The stiffness of the former is added to the motion equa-
tions of the two floaters connected by the spring, while the
stiffness of the latter is only applied to the equation of the one
floater connected to the vertical mooring constraint.

1. Effect of rotational spring stiffness

Fig. 17 and Fig. 18 show the heave and pitch motions of a
hinged 7-box array with rotational springs applied symmetri-
cally at different positions. The comparison between the black
and blue solid lines indicates that the motion performance of
the entire array is highly sensitive to the external spring stiff-
ness, as even a spring stiffness as low as 0.1K55 leads to sig-
nificant changes in the array’s motion response. Here, K55
denotes the hydrostatic restoring stiffness of a modularized
box in the pitch direction. It can also be noticed that, except
for the case where springs are continuously applied at H3 and
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(a)

(b)

(c)

FIG. 17. Heave motion of the hinged 7 boxes with different spring
connection positions at λ/L=3.8. (a) Springs are symmetrically as-
sembled at H1 and H6; (b) springs are symmetrically assembled at
H2 and H5; (c) springs are symmetrically assembled at H3 and H4.

H4 resulting in obvious differences in the motion results cor-
responding to stiffnesses of 1K55 and infinity, the difference
between the red dashed line and the purple dotted line is very
small in all other cases. However, despite the existence of the
discrepancies in the motion response at the two stiffnesses,
the motion trend along the longitudinal direction of the array

(a)

(b)

(c)

FIG. 18. Pitch motion of the hinged 7 boxes with different spring
connection positions at λ/L=3.8. (a) Springs are symmetrically as-
sembled at H1 and H6; (b) springs are symmetrically assembled at
H2 and H5; (c) springs are symmetrically assembled at H3 and H4.

remains consistent. This suggests that it is feasible to achieve
motion properties similar to those achieved by applying infi-
nite stiffness without the need for very large spring stiffnesses.
From the purple dotted lines in Fig. 18 (b), we can find that
the pitch responses of B2 and B3 connected by springs are all
smaller than those of B1 and B4, which are adjacent to these
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(a)

(b)

(c)

FIG. 19. Statistical results on whether the heave motions of the array
with rotational springs satisfy the found trend over the full range of
wavelengths. ‘1’ means that the motion response at this wavelength
conforms the trend, while ‘-1’ denotes that it deviates from the trend.
The springs are assembled at H2 and H5. The statistical conditions
are: (a) the response of B1 is lower than that of B2, the response of
B7 is less than that of B6; (b) the response of B1 is lower than that
of B2; (c) the response of B7 is lower than that of B6.

two floaters. Moreover, the pitch responses of B5 and B6 con-
nected by springs are also smaller than those of B4 and B7
adjacent to them. It indicates that the pitch motions of the
two floaters connected to the rotational spring are suppressed,
while the pitch motions of the floaters adjacent to these two
floaters are significantly greater. This phenomenon arises due
to the presence of an applied rotational spring, which imparts
an additional level of restraint stiffness to the interconnected
floating body in the pitch direction. The same properties can
also be observed in Fig. 18 (a) and (c). Since the heave mo-
tion of the hinged array is coupled with the pitch motion, the
heave motion of each module is also affected by the rotational

(a)

(b)

(c)

FIG. 20. Statistical results on whether the pitch motions of the array
with rotational springs satisfy the found trend over the full range of
wavelengths. ‘1’ means that the motion response at this wavelength
conforms the trend, while ‘-1’ denotes that it deviates from the trend.
The springs are assembled at H2 and H5. The statistical conditions
are: (a) the response of B1 is greater than that of B2, the response of
B7 is higher than that of B6, and the response of both B3 and B5 are
lower than that of B4; (b) the response of B1 is greater than that of
B2, the response of B7 is larger than that of B6, and the response of
B5 is less than that of B4; (c) the response of B1 is greater than that
of B2, the response of B7 is larger than that of B6.

spring stiffness. As we can see from Fig. 17 (b), when the ro-
tational springs are symmetrically applied at H2 and H5, the
heave response of B2 is higher than that of B1, while the heave
response of B6 is lower than that of B7. However, in Fig. 17
(a) and (c), the two floaters adjacent to the spring-connected
floaters both show larger heave motions, indicating that a clear
pattern of the effect of the rotational spring stiffness on the
heave motion cannot be summarized from Fig. 17. Fig. 19
and Fig. 20 are used to further investigate the generality of the
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impact of rotational spring stiffness on the motion response
within the studied wavelength range. If the motion response
at a given wavelength satisfies the observed properties, it will
be marked as ‘1’ in the figure with a circle dot; otherwise, if
it does not follow the summarized patterns, it will be marked
with a square dot as ‘-1’. The rotational springs are assem-
bled at H2 and H5. Compared to the pitch motion in Fig. 20,
the statistical results for the heave motion in Fig. 19 are more
chaotic, once again indicating there is no clear pattern of the
effect of rotational spring stiffness on the heave motion of the
hinged array. However, as shown in Fig. 20 (a), the observed
characteristics of the impact of rotational spring stiffness on
pitch motion occur in 85.33% of the entire wavelength range.
Another more easily observed pitch behaviour is that in the
floaters adjacent to the spring-connected floaters, the ones to-
wards the ends of the array have a greater response, while
the response of the bodies towards the middle position is less
than that of the front spring-connected ones but larger than
that of the rear spring-connected ones. Combining Fig. 18
and Fig. 20 (c), it can be concluded that when some of the
bodies in the hinged array are connected by springs, the ones
adjacent to these spring-connected bodies and facing the ends
of the array will inevitably have greater pitch responses.

2. Effect of vertical mooring stiffness

Fig. 21 shows the heave and pitch motions of an array of
hinged 7-boxes with vertical moorings symmetrically assem-
bled at B2 and B6, as presented in Fig. 16 (b). Even a small
external stiffness of 0.1K33 in the heave direction could cause
significant changes in the array’s heave and pitch responses,
indicating that the responses of hinged arrays are also sen-
sitive to the external stiffness of vertical mooring. When a
vertical mooring stiffness of 1K33 is applied, the heave and
pitch responses of the array show the same trend as the array
response with an infinite mooring stiffness applied. As can be
seen from Fig. 21 (a) that the heave motion of the floater is
completely restricted to 0 when an infinite mooring stiffness
is applied. This is different from the restriction on pitch mo-
tion by an infinite rotational spring stiffness, as illustrated in
Fig. 18, where the pitch motion of the hinged array cannot be
completely restricted to 0. When an infinite rotational spring
stiffness is applied, the two spring-connected bodies will no
longer have relative rotation but will rotate together as a sin-
gle unit. This can explain why the heave motion is completely
limited by infinite vertical stiffness, while the pitch motion is
not completely restrained by infinite rotational stiffness. Two
remarkable peaks can be observed in Fig. 21 (b) at B2 and B6,
which indicates that the pitch response of the moored floater
with vertical stiffness will be greater than that of the adjacent
bodies. Since infinite vertical stiffness inevitably restricts the
heave of moored bodies to 0, only the universality of the effect
of vertical stiffness on pitch is further investigated here. The
statistical results are shown in Fig. 22. It is very interesting
to find that the observed pattern holds within the wavelength
range of λ/L=2.6-7.2, where the pitch motion of the entire
array is relatively significant, as shown in Fig. 9 (d). More-

(a)

(b)

FIG. 21. Heave and pitch motion of the hinged 7 boxes with vertical
mooring constraints at λ/L=3.8. The vertical mooring constraints
are assembled at B2 and B6. (a) Heave motion; (b) pitch motion.

over, the possibility of two other trends is also examined and
presented in Fig. 22 (b) and (c), respectively. The results in
Fig. 22 (b) are identical to those in Fig. 22 (a), indicating that
when the pitch of the moored bodies with vertical stiffness is
larger than the response of the adjacent bodies towards to the
ends of the array, it will also be greater than that of the ad-
jacent bodies towards the inside of the array. The last trend
is that the pitch motion of the floater with vertical mooring
stiffness is greater than that of the adjacent floater facing the
array’s interior. As shown in Fig. 22 (c), this trend occurs at
more wavelengths, reaching a proportion of 78.67%.

VI. CONCLUSIONS

In the present study, an in-house 3-D boundary element pro-
gramme was validated through a model test with a 5-box ar-
ray, and then applied to model the dynamic motions of large
arrays of floating bodies with hinge constraints. Extensive nu-
merical simulations were performed in the frequency-domain
to investigate the effects of the hinge constraints, the number
of longitudinal modules, and the external stiffness constraints
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(a)

(b)

(c)

FIG. 22. Statistical results on whether the pitch motions of the array
with vertical moorings satisfy the found trend over the full range of
wavelengths. ‘1’ means that the motion response at this wavelength
conforms the trend, while ‘-1’ denotes that it deviates from the trend.
The vertical moorings are assembled at B2 and B5. The statistical
conditions are: (a) the response of B2 is larger than that of B1 and
B3, the response of B6 is higher than that of B5 and B7; (b) the
response of B2 is larger than that of B1, the response of B6 is higher
than that of B7; (c) the response of B2 is larger than that of B3, the
response of B6 is higher than that of B5.

on the motion responses of hinged arrays. Some conclusions
can be drawn as follows.

1) With the application of hinge constraints, the heave mo-
tion of the array is significantly suppressed, but strong pitch
motion occurs over a wider range of wavelengths. Com-
pared to the responses of an array of floaters with independent
oscillations, the motions of the hinged array require longer
wavelengths to be significantly excited, and the responses are
greater at long wavelengths.

2) The floaters located at the two ends of the hinged ar-
ray are most likely to be excited with the strongest motion re-

sponses throughout the array, especially the couple of floaters
facing the incident waves.

3) The motion response trend along the longitudinal direc-
tion exhibited by a shorter hinged array is consistent with that
of an array with a greater number of hinged floaters in the
longitudinal direction. As the wavelength exceeds the wave-
length range of the intense motion responses of the entire ar-
ray, the motion responses of the floaters at the trailing end of
the array become more prominent with an increasing number
of hinged floaters.

4) The motion responses of a hinged array are highly sensi-
tive to the external spring stiffness. If some floaters in a hinged
array are connected by rotational springs, the floaters adjacent
to the ones and facing the ends of the array will inevitably
have larger pitch motion responses, but there is no clear reg-
ularity of the spring stiffness on the heave response. A high
vertical mooring stiffness will cause the heave response of the
connected floaters to approach zero, and the most likely per-
formance of its effect on pitch motion is that the response of
the connected floaters will be greater than that of the adjacent
floaters facing inward toward the array.

The operational performance of hinged arrays is greatly in-
fluenced by hydrodynamic interactions and the mechanical
coupling effect of connectors. The findings of this study pro-
vide valuable insights for optimizing the design and opera-
tional strategies, enhancing the efficiency of hinged arrays in
engineering applications. In this preliminary study, certain
factors such as fluid viscosity, large-area arrangement of mod-
ules, and variations in incident wave angles were not specifi-
cally examined. Future research will be dedicated to investi-
gating these factors to gain a comprehensive understanding of
the motion behaviour of hinged multi-body arrays.
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