
1 Introduction 

1.1 Kriging 
In geotechnical engineering, it is common to esti-
mate geotechnical parameters at unsampled loca-
tions. For this purpose, spatial interpolation is typi-
cally used to estimate the parameter based on data 
from nearby sampled locations. Among the many in-
terpolation techniques available, kriging is widely 
used (e.g. Li et al. 2016) as it is a probabilistic ap-
proach that can accommodate correlations among 
the data. Unlike other interpolation techniques that 
prespecify the interpolating function (e.g. polynomi-
al-based), kriging produces an interpolation function 
based on a semivariogram/variogram model that is 
derived from data (Matheron 1963; Cressie 1993). 

1.2 Gaussian Process regression 
In recent years, Gaussian Process (GP) regression 
has been widely used by the machine learning (ML) 
community to model nonlinear functional relation-
ships. GP regression is a flexible, non-parametric 
Bayesian approach towards regression problems. 
Like kriging, GP regression does not prespecify a 
parametric form for the regression function but in-
stead lets the data determine the complexity of the 
function, which allows it to model arbitrarily com-
plex systems. It has been used in many ML applica-
tions such as robotics learning (Deisenroth et al. 
2013) and time-series modelling (Roberts et al. 
2013). 

1.3 Connections 
Despite their apparent differences, the kriging and 
GP regression approaches can actually be shown to 
be intimately connected and in many cases, equiva-
lent. This is because central to each approach is the 
covariance function, which is more commonly called 
a kernel in the ML literature, and is closely related to 
the variogram model in the kriging approach. Alt-
hough the underpinnings of both approaches are 
very similar, the two approaches differ in how they 
derive the interpolating/regression function. This 
may give the impression that differences outweigh 
the similarities and the connections are only superfi-
cial. Consequently, knowledge transfer between 
these two fields has often been inhibited by the dif-
ferent terminology adopted in both fields, which ob-
scures the underlying science and introduces poten-
tial for confusion. Therefore, the main objective of 
this paper is to reconcile these differences and help 
researchers in both fields gain mutual understanding, 
and be able to transfer knowledge across fields. A 
secondary objective of this paper is to provide a 
short and accessible overview of both theories to re-
searchers who are new to either field and may not be 
aware of these connections (as they are typically 
scattered individually and separately across a variety 
of non-related literature). This paper will briefly re-
view the theories behind kriging and GP regression 
Then, their connections are explored in detail, in-
cluding equivalences and differences. 
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2 Theories 

2.1 Kriging 
2.1.1 Introduction 

Kriging originates as a spatial interpolation method 
in the field of mining geology (Krige 1951), where it 
uses the spatial correlation between a finite set of 
sampled data points to estimate the value of a varia-
ble over a continuous field. It has since been adopted 
in geotechnical engineering, primarily for spatial in-
terpolation of soil properties (e.g. Li et al. 2016). 

 
2.1.2 Semivariogram 

Kriging is an interpolation method based on an as-
sumed correlation with existing data. It first requires 
the spatial covariance of the sampled data points be 
determined by fitting a semivariogram 𝛾ℎ, as follows: 

𝛾ℎ =
1

2
E[(𝑦𝑖 − 𝑦𝑖+ℎ)2]                                               (1) 

where 𝑦𝑖 and 𝑦𝑖+ℎ are pairs of sample data points 
that are separated by a distance h. Equation 1 thus 
represents the average squared difference in the val-
ues between pairs of sample data points (Matheron 
1963; Cressie 1993). Associated with the semivario-
gram are three key properties: (i) ‘nugget’, which 
represents the offset value (from zero) of the semi-
variogram when h is zero; (ii) range, which repre-
sents the distance where the semivariogram first flat-
tens out and (iii) ‘sill’, which represents the value of 
the semivariogram at the range. Figure 1 illustrates 
these properties for a typical semivariogram. 

 

 
Figure 1. Example Gaussian semivariogram with its nugget, 
range and sill, where ℎ = |𝑥 − 𝑥′|. 
 

2.1.3 Prediction 
The spatial covariance structure represented by the 
semivariogram is used to calculate the weights that 
are then used to estimate the values at unsampled lo-
cations. The estimated value �̂�∗ at an unsampled lo-
cation 𝑥∗ is obtained through a linear weighting of 
the sampled data 𝑦𝑖: 

�̂�∗ = 𝝀𝑇y                                               (2) 

𝝀 = [𝜆1(𝑥∗), … , 𝜆𝑁(𝑥∗)]𝑇 and 𝒚 = [𝑦1, … , 𝑦𝑁]𝑇 are 
vectors of the weights and sampled data respectively 
(where 𝑁 is the number of data points), and 𝜆𝑖(𝑥∗) is 
the weight assigned to the value of 𝑦𝑖 for the estima-
tion of �̂�∗. Generally, the weights are defined such 
that data near to the point of interest are given more 
influence than those farther away.  

The estimation variance 𝜎𝐸
2 is used to quantify the 

accuracy of the estimation and is defined as: 

𝜎𝐸
2 = Var[𝑦∗ − �̂�∗]                                               (3) 

𝑦∗ represents the true value at location 𝑥∗. Note that 
the actual magnitude of 𝑦∗, which is unknown, is not 
required in the calculation of 𝜎𝐸

2 as expansion of 
Equation 3 will lead to requirement of only 
knowledge of the spatial covariance of the sampled 
data, which is known from the semivariogram.  

To determine the optimal values for the weights, 
the Best Linear Unbiased Predictor (BLUP) criterion 
is used, where ‘best’ means that 𝜎𝐸

2 is at its mini-
mum and ‘unbiased’ means that the expected differ-
ence between the estimated and true values is zero 
(this constrains the sum of the weights to be one). 
Therefore, the weights are determined by solving the 
following optimisation problem: 

minimise
𝜆𝑖

 𝜎𝐸
2  subject to ∑ 𝜆𝑖

𝑁
𝑖=1 = 1             (4) 

Solving Equation 4 for 𝝀 would lead to a linear sys-
tem of equations, called ‘kriging system’, to solve. 

After solving for the weights, �̂�∗ can be obtained 
from Equation 2. �̂�∗ is actually the mean of the 
kriging prediction. Specifically, the kriging predic-
tion is normally distributed with a mean of �̂�∗ and a 
variance of 𝜎𝐸

2.  
 

2.1.4 Theoretical variogram models 
For kriging, a large amount of effort goes into semi-
variogram modelling. An experimental (also known 
as empirical) semivariogram is typically first con-
structed from the sampled data to explore the corre-
lation structure of the data. However, kriging re-
quires theoretically valid semivariograms, which is 
not guaranteed for these experimental semivario-
grams. Thus, experimental semivarigorams are usu-
ally approximated using theoretical semivariogram 
or variogram (defined as twice the semivariogram) 
models that guarantees validity. Some popular theo-
retical variogram models include: 

𝛾EXP(ℎ) = 𝑐𝑛 + 𝑐0 [1 − exp (−
ℎ

𝑎
)]                      (5) 

𝛾GAU(ℎ) = 𝑐𝑛 + 𝑐0 [1 − exp (− (
ℎ

𝑎
)

2
)]                 (6) 

where Equations 5 and 6 are known as the exponen-
tial and Gaussian variogram model respectively. 
Here, 𝑐𝑛 is the nugget, 𝑐0 is the sill minus the nugget 
and 𝑎 is a parameter that controls the range. In ge-
otechnical engineering, the most widely used theo-
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retical variogram model is the exponential model, 
mainly owing to its simplicity. The optimal values of 
the variogram parameters such as 𝑐0 are determined 
by minimising the least squares error between the 
model and experimental variogram data. 
 

2.1.5 Kriging types 
Kriging assumes that the data is stationary i.e. the 
mean and covariance of the data depends only on 
separation, not on the locations. If the data is non-
stationary, the data typically first go through a ‘de-
trending’ transformation, where the trend in the data 
is removed, and kriging is applied to the residuals. 

Various types of kriging have been developed 
over the years and among the most widely used are: 
(i) simple kriging for stationary data with known 
constant mean, (ii) ordinary kriging for stationary 
data with unknown constant mean, (iii) universal 
kriging for nonstationary data using a deterministic 
trend function, and (iv) cokriging for joint kriging of 
data from multiple correlated sources. 
 

2.1.6 Random field theory 
Kriging is closely related to random field theory 
(Vanmarcke 1977), which has been used extensively 
to characterise the spatial variability of soil proper-
ties (e.g. Lloret-Cabot et al., 2014). In random field 
theory (RFT), the spatial variability of soil proper-
ties is described by a random field, which is defined 
by the mean, variance and a correlation structure 
with a given scale of fluctuation 𝜃.  

The scale of fluctuation is the distance within 
which the properties are significantly correlated. The 
most common method to estimate the scale of fluc-
tuation (e.g. Lloret-Cabot et al., 2014) is to best fit a 
theoretical correlation function to the experimental 
correlation data on a least squares sense. Common 
theoretical correlation functions include: 

𝜌EXP(ℎ) = exp (−2
ℎ

𝜃
)                      (7) 

𝜌GAU(ℎ) = exp (−𝜋 (
ℎ

𝜃
)

2
)                 (8) 

where Equations 7 and 8 are known as the Exponen-
tial and Gaussian correlation function respectively.  

2.2 Gaussian Process regression 
2.2.1 Introduction 

A Gaussian Process (GP) is a stochastic process (i.e. 
a set of random variables) such that any finite num-
ber of them have a multivariate Gaussian distribu-
tion (Rasmussen and Williams 2006). As there is po-
tentially an infinite number of random variables in a 
stochastic process, a GP can be intuitively thought of 
as an infinite-dimensional multivariate Gaussian dis-
tribution. Moreover, as a function can be thought of 
as an infinite-dimensional vector, a GP can also be 

thought of as a probability distribution over random 
functions. In GP regression, the output 𝑦 of a func-
tion 𝑓 at input 𝑥 can be written as: 

𝑦 =  𝑓(𝑥) +  𝜀                      (9) 
where 𝜀 ~ 𝑁(0, 𝜎𝜀

2) is a noise term, which represents 
randomness such as measurement errors. 
 

2.2.2 GP regression model 
A GP prior distribution is assumed over the un-
known function 𝑓. The GP is completely defined by 
its mean function 𝑚(𝑥) and covariance function 
𝑘(𝑥, 𝑥′) (also known as a kernel in ML literature): 

𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))                    (10) 

where 𝑚(𝑥) = 𝐸[𝑓(𝑥)] and 𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) −
𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]. 𝑚(𝑥) is the average of all 
possible functions in the distribution evaluated at in-
put 𝑥, while 𝑘(𝑥, 𝑥′) is the covariance between the 
function values at different inputs 𝑥 and 𝑥′. If meas-
ured data (typically called ‘observations’ in the ML 
literature) are available, the GP prior distribution is 
updated by conditioning on the observations.  
 

2.2.3 Prediction 
Suppose that some observations 𝒚 = [𝑦1, … , 𝑦𝑁]𝑇 
have been obtained for some inputs 𝒙 =
[𝑥1, … , 𝑥𝑁]𝑇. To predict the output �̂�∗ for a new in-
put 𝑥∗, the GP regression model assumes that 𝑦∗ is 
jointly Gaussian distributed with the observations 𝒚. 
Thus, the model predicts the output �̂�∗ for an input 
𝑥∗ (given observations of 𝒚) by computing the con-
ditional distribution, which can be obtained analyti-
cally using the standard conditioning rules for the 
multivariate Gaussian distribution: 

𝑝( �̂�∗|𝑥∗, 𝒙, 𝒚) = 𝑁(𝜇∗, 𝑐∗)                    (11) 
where 
𝜇∗ = 𝑚(𝑥∗) + 𝒌∗

𝑇𝑲−1(𝐲 − 𝑚(𝒙)) 
 𝑐∗ = 𝑘(𝑥∗, 𝑥∗) − 𝒌∗

𝑇𝑲−1𝒌∗ 
𝒌∗ = [𝑘(𝑥1, 𝑥∗), … , 𝑘(𝑥𝑁 , 𝑥∗)]𝑇 

𝑲 = 𝑁x𝑁 covariance matrix, 𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) 
 
Equation 11 is called the predictive distribution and 
it showcases the key benefit of the GP regression 
model: it can provide the full probability distribution 
of the predictions, instead of merely pointwise pre-
dictions. To model noise in the observations, 𝑲 may 
be replaced with 𝑲 + 𝜎𝜀

2𝑰, where 𝜎𝜀
2 is the variance 

of the noise and 𝑰 is the identity matrix. Figure 2 
shows the sampled functions obtained from a GP re-
gression model, before and after observations are 
collected. 
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(a) 

 

 
(b) 

 
Figure 2. Example of sampled function values from GP (a) Pri-
or (before observations) (b) Posterior (after observations). Grey 
dotted lines represent samples from the GP, and black solid 
line represents the mean. Black circles represent observations. 
 

2.2.4 Semi-parametric GP regression model 
Equation 11 only applies if 𝑚(𝑥) is known (e.g. zero 
for mean-centered data). If the functional form of 
𝑚(𝑥) is known but the parameters are unknown (e.g. 
one may know that 𝑚(𝑥) varies linearly but the gra-
dient and offset are unknown), the semi-parametric 
GP regression model (Rasmussen & Williams 2006), 
which combines a parametric model with a zero-
mean GP regression model, may be used.  

This model is defined as: 

𝑓𝑆𝑃(𝑥) = 𝒉(𝑥)𝑇𝜷 + 𝑓0(𝑥)                    (12) 

where 𝑓0(𝑥) ~ 𝐺𝑃(0, 𝑘(𝑥, 𝑥′)), 𝒉(𝑥) are some basis 
functions (e.g. monomials) and 𝜷 are unknown pa-
rameters. Equation 12 uses a parametric model 
𝒉(𝑥)𝑇𝜷 to approximate the unknown function and a 
zero-mean GP regression model 𝑓0(𝑥) to estimate 
the residuals.  

If 𝜷 ~ 𝑁(𝝁𝜷, 𝑩), the semi-parametric GP regres-
sion model is equivalent to (Rasmussen and Wil-
liams 2006):  

𝑓𝑠𝑝(𝑥) ~ 𝐺𝑃 (
𝒉(𝑥)𝑇𝝁𝜷,

 𝑘(𝑥, 𝑥′) + 𝒉(𝑥)𝑇𝑩𝒉(𝑥′)
)          (13) 

The corresponding prediction of output �̂�∗ for an in-
put 𝑥∗ by this model is: 

𝑝(�̂�∗|𝑥∗, 𝒙, 𝒚) = 𝑁(𝜇∗∗, 𝑐∗∗)                    (14) 
where 
𝜇∗∗ = 𝒉∗

𝑇�̅� + 𝒌∗
𝑇𝑲−1(𝐲 − 𝑯�̅�) 

𝑐∗∗ = 𝑐∗ + 𝒓𝑇(𝑩−1 + 𝑯𝑲−1𝑯𝑇)−1𝒓 
�̅� = (𝑯𝑻𝑲−1𝑯 + 𝑩−1)−1(𝑯𝑇𝑲−1𝒚 + 𝑩−1𝝁𝜷) 
𝒓 = 𝒉∗ − 𝑯𝑻𝑲−1𝒌∗ 
 
H is a matrix that collects the 𝒉(𝒙) vectors for all 
data points and 𝒉∗ is a vector for 𝒉(𝑥∗). 𝑐∗, 𝒌∗ and 𝑲 
are as defined in Equation 11.  
 

2.2.5 Kernels 
Several kernels have been developed and the most 
widely used include: 

𝑘SE(𝑥, 𝑥′) = 𝜎𝑓
2 exp (−

1

2
(

𝑥−𝑥′

𝑙
)

2

)    (15) 

𝑘MAT(𝑥, 𝑥′) =
21−𝜈

Γ(𝜈)
(

√2𝜈|𝑥−𝑥′|

𝑙
)

𝜈

𝐵𝑣 (
√2𝜈|𝑥−𝑥′|

𝑙
)    (16) 

where Equations 15 and 16 are known as the 
Squared Exponential (also known as the Radial Ba-
sis or Gaussian) and Matérn kernel respectively. 𝜎𝑓

2 
is a scaling factor that determines the variation of the 
function values from the mean value, while 𝑙 is the 
lengthscale of the process (i.e. distance between in-
puts within which the outputs are highly correlated).  

For multi-dimensional inputs, the lengthscale 𝑙 
can be assumed to be either identical or different for 
each input dimension. The kernel is called ‘iso-
tropic’ and ‘anisotropic’ for the former and latter 
case respectively. 𝜈 is a parameter that governs the 
smoothness of the functions, 𝐵𝑣 is the modified Bes-
sel function of the second kind and Γ(𝜈) is the 
gamma function evaluated at 𝜈. As 𝜈 → ∞, the Ma-
térn kernel becomes the Squared Exponential kernel, 
which produces very smooth functions.  

The kernel is typically chosen to reflect one’s 
prior knowledge or belief about the regression func-
tion such as its smoothness. For example, if the 
function is expected to be very smooth, the Squared 
Exponential kernel is selected. For rougher func-
tions, the Matérn kernel is selected.  

2.2.6 Kernel hyperparameter learning 
The values of the kernel hyperparameters, such as 
𝜎𝑓

2 and 𝑙 in Equation 15, are optimised by maximis-
ing the marginal log likelihood of the data given the 
hyperparameters (Rasmussen and Williams 2006). 

3 Connections 

3.1 Lengthscale 
Kriging and GP regression are closely connected, 
although this is obscured by the different terminolo-

Demystifying the connections between Gaussian Process Regression and Kriging

4



gies and conventions adopted in each field. Funda-
mentally, both theories assume that the data can be 
modelled using a Gaussian random field (which is 
synonymous with a Gaussian Process). Conceptual-
ly, the kriging range, the RFT scale of fluctuation 
and GP lengthscale are very similar. This is evident 
if you compare their definitions or observe the role 
each term plays in Equations 6, 8 and 15 respective-
ly. In geotechnical engineering, the vertical and hor-
izontal scale of fluctuations, which are usually dif-
ferent, are of particular interest. Using GP 
regression, the anisotropic kernel may be used to 
identify different lengthscales along the vertical and 
horizontal directions.  

3.2 Nugget 
The nugget is usually due to measurement errors or 
sources of variation at distances less than the sam-
pling interval. The nugget is usually referred to in 
the ML literature as simply the noise in the data and 
the magnitude of this effect is the variance of the 
noise (i.e. 𝜎𝜀

2 for 𝜀 in Equation 9). 

3.3 Covariance function 
The RFT correlation function and GP kernel are 
analogous to each other (e.g. compare Equation 8 
with Equation 15), although each operates on differ-
ent levels (correlation versus covariance). The 
kriging variogram, on the other hand, is like the op-
posite of the correlation or covariance function. 
Comparing Equation 6 with Equation 8, as ℎ gets 
larger, the variogram value increases while the cor-
relation value decreases. Thus, the variogram and 
correlation/covariance function can be thought of as 
a dissimilarity and similarity function respectively. 

For a second-order stationary process, a covari-
ance function 𝐶 (sometimes called covariogram or 
autocovariance function) may be obtained from a 
variogram (Wackernagel 2003): 

𝐶(ℎ) = 𝛾(∞) − 𝛾(ℎ)                    (17) 
Note that 𝐶(ℎ) is analogous to the kernel 𝑘(𝑥, 𝑥′) 
defined in the ML literature, except for the different 
input parameter (i.e. ℎ = |𝑥 − 𝑥′|).  

3.4 Equivalent models 
For a second-order stationary process (where the co-
variance function is known to exist), the various 
types of kriging models can be shown to be special 
cases of the GP regression model. For simple 
kriging, the mean is a known constant 𝜇0 and the es-
timated output �̂�∗ for an input 𝑥∗ can be obtained by 
applying Equation 2 to the de-trended data and 
thereafter adding back the known mean: 

�̂�∗ = 𝜇0 + 𝝀𝐒𝐊
𝑇 (𝐲 − 𝜇0𝟏)                    (18) 

where 𝟏 represents a vector of ones. The unique so-
lution for the weights are 𝝀𝐒𝐊

𝑇 = 𝒌∗
𝑇𝑲−1 (Cressie 

1993). It can be observed that Equation 18 is equiva-
lent to Equation 11 when 𝑚(𝒙)  =  𝜇0. 

For ordinary kriging, the mean is an unknown 
constant 𝜇1 and the estimated output �̂�∗ for an input 
𝑥∗ is obtained using Equation 2 with the weights 
𝝀𝐎𝐊

𝑇 = [𝒌∗ + 𝟏(𝟏𝑇𝑲−1𝟏)−1(𝟏 − 𝟏𝑇𝑲−1𝒌∗)]𝑇𝑲−1 
(Cressie 1993). This is a special case of the semi-
parametric GP regression model in Equation 14, 
when 𝒉(𝑥) = 1, 𝝁𝜷 = 𝜇1 and 𝑩 = 0 (since 𝜇1 is de-
terministic); this gives 𝜇∗∗ = 𝟏𝑇�̅� + 𝒌∗

𝑇𝑲−1(𝐲 −
𝟏�̅�) and �̅� = (𝟏𝑇𝑲−1𝟏)−1(𝟏𝑇𝑲−1𝒚), which can be 
rearranged to get 𝜇∗∗ = 𝝀𝐎𝐊

𝑇 𝒚. 
For universal kriging, the mean is an unknown 

deterministic trend function. The estimated output �̂�∗ 
for an input 𝑥∗ can similarly be obtained using Equa-
tion 2 with the weights (Cressie 1993) 𝝀𝐔𝐊

𝑇 =
[𝒌∗ + 𝑯(𝑯𝑇𝑲−1𝑯)−1(𝒉∗ − 𝑯𝑇𝑲−1𝒌∗)]𝑇𝑲−1. This 
is also a special case of Equation 14, when 𝑩 = 0 
(since the trend function is deterministic); this gives 
𝜇∗∗ = 𝒉∗

𝑇�̅� + 𝒌∗
𝑇𝑲−1(𝐲 − 𝑯�̅�) and �̅� =

(𝑯𝑇𝑲−1𝑯)−1(𝑯𝑇𝑲−1𝒚), which can be rearranged 
to get 𝜇∗∗ = 𝝀𝐔𝐊

𝑇 𝒚. Table 1 lists the correspondence 
(not necessarily equivalence) of various terms in the 
two theories. 

 
Table 1. Correspondence of terms in kriging and GP regression 
Kriging GP regression 

Range / Scale of  
fluctuation 

Lengthscale 

Nugget Gaussian noise variance in  
observations 

Covariance / Covariogram 
/ Autocovariance function 

Kernel 

Exponential correlation 
function 

Laplace / Exponential kernel 

Gaussian correlation  
function 

Squared Exponential / Gaussian 
/ Radial Basis kernel 

Whittle-Matérn  
correlation function 

Matérn kernel 

Simple kriging GP regression 

Ordinary / Universal 
kriging 

Semi-parametric GP regression 

Co-kriging Multi-output GP regression 

3.1 Differences 
While both theories have been shown to be closely 
related, there are some philosophical and practical 
differences between kriging and GP regression. 
First, kriging methods are founded on optimisation 
notions (e.g. BLUP criterion), while GP methods are 
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founded on Bayesian notions (e.g. assume a prior 
distribution over functions and then updating this 
distribution by conditioning on the observations). 
This difference in the derivation of the models is 
usually the main source of confusion. 

Moreover, the kriging approach for achieving the 
best fit to observations involves a two-step process. 
Firstly, the observations are transformed into an in-
termediate dataset (experimental variogram data). 
Then, the parameters of the theoretical variogram 
are optimised by minimising the least squares errors 
between the theoretical variogram and the experi-
mental variogram data. On the other hand, the GP 
regression approach optimises the kernel hyperpa-
rameters by maximising the marginal log likelihood 
of the observations, without the need for an interme-
diate dataset transformation. Since these two ap-
proaches optimise for different objectives, the opti-
mal parameters obtained through kriging and GP 
regression may differ, leading to different predic-
tions. This distinction is illustrated in Figure 3. 

 
Figure 3. Mean predictions of simple kriging and GP regres-
sion, and their corresponding 95% confidence interval. 

4 Applications beyond spatial interpolation 

Kriging applications in geotechnical engineering are 
predominantly spatial interpolation. To demonstrate 
the benefits of knowledge transfer from the ML 
field, the following describes some common ML ap-
plications that could be applied in geotechnics. 

4.1 Automated feature selection 
A GP regression application that is often applied in 
ML is automated feature selection via Automated 
Relevance Determination (ARD) (Rasmussen & 
Williams 2006), where an anisotropic kernel is used 
to learn the lengthscale for each input based on the 
data and the learnt lengthscales are regarded as im-
portance measures. Inputs with very large 
lengthscales (relative to the typical scale of the sam-

pled data e.g. |𝒙𝑖 − 𝒙𝑖
′| values) result in the covari-

ance being almost independent of those inputs, mak-
ing them effectively irrelevant for the prediction of 
the output. To illustrate this, a zero-mean GP regres-
sion model with the anisotropic Matérn (𝜈 = 5/2) 
covariance function is used to predict the undrained 
vertical capacity for a suction caisson foundation of 
different ‘length to diameter’ ratios (𝐿/𝐷) and ‘soil 
Young’s modulus to undrained shear strength’ ratios 
(𝐸/𝑠𝑢). A dataset that was previously used to devel-
op failure envelopes and Winkler models for suction 
caisson foundations (Suryasentana et al. 2018, 2019, 
2020, 2021, 2022) was used to train the GP regres-
sion model, where the inputs for the current study 
are the two ratios (𝐿/𝐷 and 𝐸/𝑠𝑢) and the output is 
the vertical capacities of suction caisson foundations 
computed using finite element (FE) analysis.  

Figure 3 shows the computed FE capacities for 
different inputs, where it can be observed visually 
that 𝐸/𝑠𝑢 has a negligible effect on the capacities. 
Figure 4 shows the mean capacities (and the 95% 
confidence interval) predicted by the GP regression 
model for a range of inputs (0 ≤ 𝐿/𝐷 ≤ 2 and 
𝐸/𝑠𝑢 = {100, 500, 1000}), which shows increased 
prediction uncertainty for values of 𝐿/𝐷 with no 
nearby training data. The learnt lengthscales for 𝐿/𝐷 
and 𝐸/𝑠𝑢 are 1.6 and 15000 (which is much larger 
than the typical scale of the 𝐸/𝑠𝑢 training data) re-
spectively; this indicates that the GP regression 
model identifies 𝐸/𝑠𝑢 as an input that is irrelevant 
for the prediction task. This identification is logical 
from an engineering perspective, as the ultimate ca-
pacity of the foundation is independent of the stiff-
ness of the soil. Automated feature selection is use-
ful for geotechnical engineering problems with a 
large input dimension space, where it is more diffi-
cult to visualise the effect of each input on the out-
put. For example, this could be applied to identify 
which of the multitude of sensor measurements are 
relevant for predicting some geotechnical output. 

 
Figure 4. Vertical capacities (normalised by 𝐴𝑠𝑢) of a suction 
caisson (where 𝐴 is the cross-sectional area of the caisson). 
Note that the GP regression model predictions for different 
𝐸/𝑠𝑢 values overlap each other). 
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4.1 Forecasting with composite kernels 
A common approach in ML that has not been widely 
adopted in geotechnical engineering is the composi-
tion of kernels to create custom, composite kernels. 
This is a powerful tool as it provides a set of reusa-
ble building blocks (Duvenaud et al. 2013) for com-
plex regression problems. This is particularly useful 
for the task of forecasting. With an appropriate 
choice of covariance function, GP regression may 
also be used reliably for extrapolation or forecasting 
over a short horizon (in general, extrapolation is re-
liable only for one unit of lengthscale away from the 
data). For example, Sheil et al. (2020a, b) has 
demonstrated the use of a GP regression model (with 
the Matérn covariance function) to forecast near-
term jacking forces as an intermediate step towards 
detecting anomalies during microtunnelling. 

To demonstrate the influence of the kernel com-
position on the forecasting abilities of the GP regres-
sion model, three different covariance functions are 
used to forecast the accumulated axial strain for 
Karlsruhe Kaolin clay under undrained cyclic triaxi-
al loading (Wichtmann & Triantafyllidis 2018). A 
zero-mean function is used for all three GP regres-
sion models and the three covariance functions em-
ployed are: a Squared Exponential (SE) covariance 
function, a custom covariance function which is the 
sum of a linear covariance function and an SE covar-
iance (LE+SE), and another custom covariance func-
tion which is the sum of a linear covariance function 
and the product of an SE and a periodic covariance 
function (LE+SE*PER).  

Figure 5 shows the measured axial strain for an 
undrained cyclic triaxial test on Karlsruhe Kaolin 
clay, with initial mean stress 𝑝0 = 200 kPa, initial 
deviatoric stress 𝑞0 = 100 kPa and cyclic deviatoric 
stress amplitude 𝑞amplitude = 30 kPa. The figure al-
so shows the forecast predictions of the GP regres-
sion models with the three covariance functions. The 
results indicate that the SE covariance function does 
not perform well for the extrapolation task as the 
forecast tends to revert back to the (assumed zero 
prior) mean; the time interval over which this occurs 
is governed by the lengthscale learnt from the train-
ing dataset. The second model (LE+SE covariance 
function) performs better than the first by capturing 
the global linear trend, but it fails to capture the local 
periodic trend. The third model (LE+SE*PER covar-
iance function) provides the best performance by 
capturing both the global linear trend and the local 
periodic trend. The optimised log marginal likeli-
hood values obtained for the three GP regression 
models are 214.46, 232.66 and 328.03 for the GP re-
gression models with the SE, LE+SE and 
LE+SE*PER covariance function respectively; 
comparing the log marginal likelihood values indi-

cate that the covariance function that is most appro-
priate for this problem is the LE+SE*PER covari-
ance function, as it has the highest likelihood value.  

 
(a) 

 
(b) 

 
(c) 

 
Figure 5. Comparison of the measured axial strain for an un-
drained cyclic triaxial test on clay and the forecasted axial 
strain (shaded bounds are the 95% confidence interval of the 
forecast) by the GP regression model predictions with the (a) 
SE covariance function, (b) LE+SE covariance function, and 
(c) LE+SE*PER covariance function. 
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An important aspect of forecasting is not only pre-
dicting future values but also expressing the uncer-
tainty associated with those predicted values. Figure 
5 shows that the confidence interval increases over 
time, which expresses increasing uncertainty for 
forecasts over a longer time horizon. Figure 6 pro-
vides an alternative view of Figure 5c in the devia-
toric stress-axial strain space. 
 

 
Figure 6. Comparison of the deviatoric stress-axial strain 
measurements for an undrained cyclic triaxial test on Karlsruhe 
Kaolin clay with the mean prediction of the GP regression 
model with the LE+SE*PER covariance function. 

5 Conclusions 

This paper provides a review of the kriging and GP 
regression theories and unpacks some of their equiv-
alences and differences. It is important to understand 
these connections to facilitate the transfer of 
knowledge from one field to the other. It is hoped 
that this paper is a useful contribution towards de-
veloping a bridge between the two fields, which will 
hopefully lead to further advances in each. 
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