
Journal of Combinatorial Theory, Series A 201 (2024) 105801
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

journal homepage: www.elsevier.com/locate/jcta

Singleton mesh patterns in multidimensional 
permutations

Sergey Avgustinovich a, Sergey Kitaev b, Jeffrey Liese c,∗, 
Vladimir Potapov a, Anna Taranenko a

a Sobolev Institute of Mathematics, Prospekt Akademika Koptyuga 4, Novosibirsk, 
630090, Russia
b Department of Mathematics and Statistics, University of Strathclyde, 
26 Richmond Street, Glasgow G1 1XH, United Kingdom
c Department of Mathematics, California Polytechnic State University, San Luis 
Obispo, CA 93407, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2022
Received in revised form 7 August 
2023
Accepted 8 August 2023
Available online 8 September 2023

Keywords:
Mesh pattern
Multidimensional permutation
Avoidability
Enumeration
Stirling numbers of the second kind

This paper introduces the notion of mesh patterns in multidi-
mensional permutations and initiates a systematic study of 
singleton mesh patterns (SMPs), which are multidimensional 
mesh patterns of length 1. A pattern is avoidable if there exist 
arbitrarily large permutations that do not contain it. As our 
main result, we give a complete characterization of avoidable 
SMPs using an invariant of a pattern that we call its rank. We 
show that determining avoidability for a d-dimensional SMP 
P of cardinality k is an O(d · k) problem, while determining 
rank of P is an NP-complete problem. Additionally, using the 
notion of a minus-antipodal pattern, we characterize SMPs 
which occur at most once in any d-dimensional permutation. 
Lastly, we provide a number of enumerative results regarding 
the distributions of certain general projective, plus-antipodal, 
minus-antipodal and hyperplane SMPs.

Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

* Corresponding author.
E-mail addresses: avgust@math.nsc.ru (S. Avgustinovich), sergey.kitaev@strath.ac.uk (S. Kitaev), 

jliese@calpoly.edu (J. Liese), vpotapov@math.nsc.ru (V. Potapov), taa@math.nsc.ru (A. Taranenko).
https://doi.org/10.1016/j.jcta.2023.105801
0097-3165/Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

https://doi.org/10.1016/j.jcta.2023.105801
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcta.2023.105801&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:avgust@math.nsc.ru
mailto:sergey.kitaev@strath.ac.uk
mailto:jliese@calpoly.edu
mailto:vpotapov@math.nsc.ru
mailto:taa@math.nsc.ru
https://doi.org/10.1016/j.jcta.2023.105801
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 S. Avgustinovich et al. / Journal of Combinatorial Theory, Series A 201 (2024) 105801
1. Introduction

Permutation patterns have attracted much attention in the literature in the last couple 
of decades [8]. The notion of a mesh pattern, generalizing several types of patterns, 
was introduced by Brändén and Claesson [4] to provide explicit expansions for certain 
permutation statistics as, possibly infinite, linear combinations of (classical) permutation 
patterns. Systematic studies of avoidance of mesh patterns of short length were conducted 
in [6] and distribution of such patterns in [13].

Singleton mesh patterns are a generalization of well-known permutation statistics 
including left-to-right maxima, left-to-right minima, right-to-left maxima, right-to-left 
minima, and others. These patterns are a particular case of quadrant marked mesh pat-
terns introduced in [10] and studied in several classes of permutations (e.g. [11,12,15]). In 
particular, in [11], classic enumeration results of André [1,2] on alternating permutations 
obtained in 1879 were refined by showing that the distribution of a certain quadrant 
marked mesh pattern is given by (sec(xt))1/x on up-down permutations of even length 
and by 

∫ t

0 (sec(xz))1+ 1
x dz on down-up permutations of odd length.

The goal of this paper is to introduce the notion of a mesh pattern in multidimensional 
permutations and to initiate a systematic study of singleton multidimensional mesh 
patterns. We note that patterns in 3-dimensional permutations have been previously 
considered in the literature [3,19], as well as patterns in multidimensional objects [9]. 
However, the types of patterns introduced in this paper are new for dimensions higher 
than 2. Bringing the studies of (marked) mesh patterns, recorded in a long line of papers 
in the literature, to higher dimensions is a natural next-step in further developing the 
theory of permutation patterns.

A mesh pattern is avoidable if there exist arbitrarily large permutations avoiding it. 
The main result of this paper is Theorem 4, which gives a complete characterization of 
avoidable singleton mesh patterns in terms of their ranks. We show that finding the rank 
of a singleton mesh pattern is an NP-complete problem, while determining avoidability 
for a d-dimensional SMP P of cardinality k is an O(d · k) problem (see Corollary 7). 
Another interesting result is Theorem 13, which characterizes singleton mesh patterns 
occurring at most once in any d-dimensional permutation using the notion of a minus-
antipodal pattern.

The paper is organized as follows. In Section 2, we introduce all necessary definitions 
and preliminary results. In Section 3, we characterize avoidable multidimensional sin-
gleton mesh patterns. In Section 4, we introduce four general classes of singleton mesh 
patterns (projective, hyperplane, plus-antipodal and minus-antipodal) and give a num-
ber of enumerative results for these patterns. In particular, we show how reduction in 
dimension can be used for projective and hyperplane patterns and we find the distri-
butions of all 3-dimensional projective patterns. Also, in Section 4, we find distribution 
of plus-antipodal patterns of next to maximum cardinality (see Theorem 11) and give 
asymptotics for the number of d-dimensional permutations with the maximum num-
ber of occurrences of a simplest non-empty plus-antipodal pattern (see Theorem 12). In 
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Fig. 1. The graph of π = 471569283.

Section 5, we suggest generalizations of singleton mesh patterns on multidimensional per-
mutations to mesh patterns of arbitrary length. Studying these generalizations is largely 
outside of the goals of this paper, but we do provide a couple of relevant enumerative 
results and one bijective result. Finally, in Section 6, we suggest a number of directions 
for further research.

2. Preliminaries

Let π = π1π2 . . . πn be a permutation of length n (n-permutation) in the symmetric 
group Sn. As written, π is in one-line notation, but it will often be useful for us to use 
two-line notation and we write

π =
(

1 2 . . . n

π1 π2 . . . πn

)
.

The complement of π, denoted by c(π), is the permutation obtained from π by replacing 
πi by n +1 −πi for i ∈ {1, 2, . . . , n}. For example, if π = 2134 then c(π) = 3421. The graph
of π, is the set of points {(i, πi)}ni=1. It is worth noting that these points are obtained 
from the columns of the two-line representation of π. The graph of the permutation can 
be visualized in the xy-plane and is usually called the permutation diagram of π. The 
graph of π = 471569283 is shown in Fig. 1. For any n-permutation π, we introduce n
new coordinate systems, each of which is centered at a point (i, πi). We are interested 
in which quadrants (I, II, III or IV) other elements of π are located in with respect to 
each coordinate system. We use the standard ordering for our quadrants and this is also 
depicted in Fig. 1.
Singleton 2-dimensional mesh patterns. We say that an element πi of π, represented by 
the point (i, πi), is an occurrence of the singleton mesh pattern (resp., , , ) 
if there are no points in quadrant I (resp., II, III, IV) in the coordinate system centered 
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at (i, πi). For example, the element 2 in the permutation in Fig. 1 is an occurrence of 
the pattern , but not of the pattern because there are five points in the forbidden 
area, in particular the elements 4, 5, 6, 7, and 9. More generally, we can forbid elements 
from belonging to multiple quadrants. For example, the permutation π in Fig. 1 has no 
occurrence of the pattern . In this situation we say that π avoids .

A left-to-right maximum (resp., minimum) in a permutation π is an element πi such 
that πi > πj (resp., πi < πj) for j < i. A right-to-left maximum (resp., minimum) in a 
permutation π is an element πi such that πi > πj (resp., πi < πj) for j > i. Occurrences 
of , , and are precisely occurrences of right-to-left maxima, left-to-right 
maxima, left-to-right minima and right-to-left minima respectively. Hence, the singleton 
mesh patterns generalize the notions of these permutation statistics. As each quadrant 
is either forbidden (shaded) or not, it is clear that the number of 2-dimensional singleton 
mesh patterns is 24 = 16.
d-dimensional permutations. A d-dimensional permutation Π of length n is an or-
dered (d − 1)-tuple (π2, π3, . . . , πd) of n-permutations where for each 2 ≤ i ≤ d, 
πi = πi

1π
i
2 . . . π

i
n ∈ Sn. For example, (231, 312, 231) is a 4-dimensional permutation of 

length 3. We let Sd
n denote the set of d-dimensional permutations of length n. Note that 

S2
n corresponds naturally to Sn. We also generalize two-line notation to d-line notation 

and we write

Π =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 . . . n

π2
1 π2

2 . . . π2
n

π3
1 π3

2 . . . π3
n

... . . .
...

πd
1 πd

2 . . . πd
n

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

π1
1 π1

2 . . . π1
n

π2
1 π2

2 . . . π2
n

π3
1 π3

2 . . . π3
n

... . . .
...

πd
1 πd

2 . . . πd
n

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

so that Π corresponds naturally to a d × n matrix. It is also helpful to let π1 denote the 
permutation 12 . . . n so that we can succinctly write

Π =
{
πi
j

}
1≤i≤d
1≤j≤n

.

Motivated by two-line notation, we say that the columns of this matrix represent the 
elements of Π which we denote by Πi. In particular, we write Π = Π1Π2 . . .Πn where Πi is 
the d-tuple (i, π2

i , π
3
i , . . . , π

d
i )T . Analogously, the graph of a d-dimensional permutation Π

of length n is the set of d-tuples {Πi}ni=1. For example, if Π = (π2, π3) is a 3-dimensional 
permutation of length 5 with π2 = 12534 and π3 = 51243, then we write

Π =

⎛
⎜⎝ π1

π2

π3

⎞
⎟⎠ =

⎛
⎜⎝ 1 2 3 4 5

1 2 5 3 4
5 1 2 4 3

⎞
⎟⎠ ,

or Π = Π1Π2Π3Π4Π5 where
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Fig. 2. The graph of Π = (12534, 51243).

Π1 = (1, 1, 5)T

Π2 = (2, 2, 1)T

Π3 = (3, 5, 2)T

Π4 = (4, 3, 4)T

Π5 = (5, 4, 3)T .

The graph of Π is the set {Πi}5
i=1 and is depicted in Fig. 2. Note that the usual graphs 

of π2 and π3 can be seen as projections onto two of the coordinate planes in the graph 
of Π.

Singleton d-dimensional mesh patterns. We define a d-dimensional singleton mesh 
pattern (d-SMP) P as a collection of distinct d-tuples that specify which d-hyperoctant 
should be forbidden (shaded). These tuples can be coalesced as columns of a matrix 
which we denoted by T (P ). Specifically a d-SMP of cardinality k, P , has an associated 
matrix

T (P ) =

⎛
⎜⎜⎜⎜⎝

p1
1 p2

1 . . . pk1
p1
2 p2

2 . . . pk2
... . . .

...
p1
d p2

d . . . pkd

⎞
⎟⎟⎟⎟⎠

where each pji ∈ {+, −}. The columns of T (P ) (as tuples) are the elements of the set 
P , so when considering T (P ) as a pattern, the order of columns is unimportant. Each 
d-tuple in P is responsible for specifying a d-hyperoctant which is to be shaded. For 
example, the 2-dimensional mesh pattern is of cardinality 3 and is defined by the 
2-tuples (−, +), (−, −) and (+, −) corresponding to the matrix
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T (P ) =
(
− − +
+ − −

)
.

These tuples (columns of T (P )) correspond to shading the quadrants II, III and IV 
respectively. In short, pji indicates whether to move in the positive or negative direction 
with respect to the i-th coordinate.

Definition 1. Given a d-dimensional permutation Π = Π1Π2 . . .Πn, we say that an el-
ement Πi of Π is an occurrence of a d-SMP P of cardinality k if there does not exist 
an element Πj such that sign(Πj − Πi) ∈ P . Here, sign represents component-wise 
application of the usual sign function returning + and − instead of 1 and −1 re-
spectively. Equivalently, Πi is an occurrence of P if for any element Πj , we have that 
sign(Πj − Πi) /∈ P . If Π has no occurrences of P , we say that Π avoids P .

Note that by this definition, a permutation of length 1 is always an occurrence of any 
such pattern. In Combinatorics on Words [14], a given set of prohibitions is avoidable
if there exist arbitrarily long words avoiding it and it is unavoidable otherwise. The 
following definition introduces the relevant notions for multidimensional permutations.

Definition 2. A d-SMP P is avoidable if there exist arbitrarily long d-dimensional per-
mutations Π that avoid P . If P is not avoidable, it is unavoidable. Also, P is weakly 
avoidable if there exists a d-dimensional permutation Π of length > 1 that avoids P . If 
P occurs in every d-dimensional permutation then P is strongly unavoidable.

Remark 1. Clearly, strong unavoidability implies unavoidability, and avoidability implies 
weak avoidability.

To illustrate Definition 2, note that in the 2-dimensional case, the pattern is 
strongly unavoidable as the minimal element of any permutation will be an occurrence, 
while the pattern is avoidable as any permutation 12 . . . n, for n ≥ 2 avoids it.

Let us state some simple properties related to avoidability of multidimensional mesh 
patterns.

Proposition 2. Suppose that P and P ′ are d-SMPs and P ⊆ P ′.

• If P is (weakly) avoidable, then P ′ is (weakly) avoidable.
• If P ′ is (strongly) unavoidable, then P is (strongly) unavoidable.

Proof. The statements follow directly from the fact that if an element in a permutation 
is an occurrence of P ′ then it is necessarily an occurrence of P , so that if a permutation 
avoids P then it avoids P ′ (the mesh pattern P is more restrictive than P ′ in the sense 
that there are more permutations avoiding P ′ than P ). �
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Proposition 3. Suppose that a d-SMP P is avoidable (resp., unavoidable). Then every d-
SMP P ′ that is obtained from P by one, or several of the following operations is avoidable 
(resp., unavoidable):

• a permutation of the rows of T (P );
• complementing a row of T (P ), that is, replacing in the row each + by −, and vice 

versa.

The same statements hold for weak avoidability and strong unavoidability.

Proof. Suppose that Π is a P -avoiding d-dimensional permutation and P ′ is obtained 
from P by a permutation τ ∈ Sd of the rows of T (P ). Permuting the rows of Π according 
to the permutation τ and then reordering the columns so that the first row is increasing 
(if necessary) yields d-dimensional permutation Π′ avoiding P ′.

Also, if P ′ is obtained from P by changing each entry to the opposite in row i �= 1
in T (P ) and Π = (π2, π3, . . . , πd) is a P -avoiding permutation, then the permutation 
Π′ = (π2, . . . , πi−1, c(πi), πi+1, . . . , πd) obtained from Π by taking the complement of πi

is P ′-avoiding. If P ′ is obtained from P by changing the sign of each entry in the first 
row in T (P ), then the permutation Π′ = (c(π2), . . . , c(πd)) is P ′-avoiding.

Thus, in either case, P is (weakly) avoidable/(strongly) unavoidable if and only if P ′

is. �
To illustrate the operations in Proposition 3, consider the 5-SMP P defined by

T (P ) =

⎛
⎜⎜⎜⎜⎜⎝

+ − +
+ + +
− − +
+ − +
+ + −

⎞
⎟⎟⎟⎟⎟⎠

Then, the patterns defined by

⎛
⎜⎜⎜⎜⎜⎝

+ − +
+ + −
− − +
+ − +
+ + +

⎞
⎟⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎜⎝

+ − +
− − −
− − +
+ − +
+ + −

⎞
⎟⎟⎟⎟⎟⎠

are equivalent to P in the sense that they have the same number of avoiders of each 
size. The first matrix is obtained from T (P ) by swapping rows 2 and 5 and the second 
is obtained from replacing the entries in row 2 to the opposite.
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3. Characterization of avoidable multidimensional singleton mesh patterns

Let P be a d-SMP. Define the rank of the pattern P to be the minimum cardinality of 
a pattern P ′, P ′ ⊆ P , such that T (P ′) has both a + and − in each row. If there is a row 
in T (P ) consisting entirely of +’s (or −’s), then we say that rank(P ) = ∞. Otherwise, it 
is not hard to see that 2 ≤ rank(P ) ≤ d. The lower bound is trivial and we can provide 
a construction that verifies the upper bound. Suppose d ≥ 3 and P is a pattern of finite 
rank defined by the k ≥ 3 d-tuples P 1, P 2, . . . , P k. There must exist two tuples P i and 
P j such that they differ in sign in at least two positions. Let S = {P i, P j}. If T (S) has 
both a + and − in each row, we are done. Otherwise, let c be index of the first row which 
does not contain both a + and −. Thus, as P has finite rank, there must be a P r that 
could be added to S to ensure that the c-th row of T (S) has both a + and −. Continue 
this process until you arrive at a set S such that T (S) has both a + and − in each row; 
by construction |S| ≤ d.

Note that computing the rank of a d-SMP is an NP-hard problem. In particular, it is a 
special case of the set cover problem, which is one of Karp’s 21 NP-complete problems [7]. 
Suppose S = {S1, S2, . . . , Sk} is a collection of subsets of the set X = {1, . . . , d}. The 
set cover problem looks to identify the smallest sub-collection of S whose union is X.

To illustrate the connection, consider P = {P 1, . . . , P k+1}, a finite-rank pattern. 
Suppose we seek a P ′ of minimal cardinality such that T (P ′) has both a + and − in 
every row and suppose further, without loss of generality, that P k+1 is an element of 
such a set P ′ (going over all k + 1 possibilities for including an element P i in P ′ has no 
influence on the hardness of the problem). For each 1 ≤ j < k + 1, we could identify P j

with a subset Sj = {i|P j
i �= P k+1

i } and then let S = {Sj}1≤j≤k. It is then clear that 
finding a minimal P ′ is equivalent to finding the smallest sub-collection of S whose union 
is X = {1, . . . , d}.

The following theorem completely characterizes the avoidability of multidimensional 
mesh patterns.

Theorem 4. Let P be a d-SMP. If rank(P ) = ∞ then P is strongly unavoidable. If 
rank(P ) < ∞ then P is avoidable.

The theorem is a consequence of the following two lemmas.

Lemma 5. Let P be a d-SMP such that rank(P ) = ∞. Then, every d-dimensional per-
mutation Π has an occurrence of P , that is, P is strongly unavoidable.

Proof. By Proposition 3, we can assume without loss of generality that every d-tuple in P
is of the form (−, pj2, . . . , p

j
d), p

j
i ∈ {+, −}. Then, for every d-dimensional permutation Π, 

the element Π1 is an occurrence of the pattern P as the first component of sign(Πj−Π1)
is always + which ensures that sign(Πj − Π1) /∈ P for any j �= 1. �
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Note that the following lemma establishes a stronger fact than avoidability; it shows 
that pattern-avoiding permutations exists of each length greater than or equal to 
rank(P ) < ∞.

Lemma 6. Let P be a d-SMP of rank k < ∞. If n ≥ k, then there exists a d-dimensional 
permutation Π of length n that avoids P .

Proof. By Proposition 2, we can assume that d-SMP P has cardinality k. Suppose that 
T (P ) is the matrix

T (P ) =

⎛
⎜⎜⎜⎜⎝

p1
1 p2

1 . . . pk1
p1
2 p2

2 . . . pk2
... . . .

...
p1
d p2

d . . . pkd

⎞
⎟⎟⎟⎟⎠

where pji ∈ {+, −}. Since rank(P ) < ∞, every row of T (P ) contains both + and −.
Given any permutation τ ∈ Sn, we define the signature of τ to be the tuple s(τ) =

(s1, . . . , sn) where for 1 ≤ i ≤ n, si = + if there is an ascent of τ at position i and 
si = − if there is a descent. Similarly, sn is + if τn < τ1 and − otherwise. For any tuple 
s = (s1, . . . , sn), let Ss

n denote the set of n-permutations with signature s. It is not hard 
to show that |Ss

n| �= 0 if and only if s contains both + and −.
Suppose that n = tk + r, t ≥ 1, 0 ≤ r ≤ k − 1. Let τ1, τ2, . . . , τd be a collection of 

permutations, where τi ∈ Sn has signature

si = (p1
i , . . . , p

k
i , p

1
i , . . . , p

k
i , . . . , p

1
i , . . . , p

k
i , p

1
i , . . . , p

r
i ).

Note that each si still contains both + and −. Consider the d-dimensional permutation 
Π = (τ−1

1 τ2, τ
−1
1 τ3, . . . , τ

−1
1 τd) of length n. We have that Π avoids the pattern P , since 

the i-th element of Π, 1 ≤ i < n, is not an occurrence of P because of the (i + 1)-st 
element, while the n-th element of Π is not an occurrence of P because of the first 
element. �

As an immediate corollary of Theorem 4 we have the following result.

Corollary 7. Let P be a d-SMP of cardinality k. Then, recognizing avoidability of P is 
an O(d · k) problem.

Proof. By Theorem 4, P is avoidable if and only if there is no row in T (P ) consisting 
entirely of +’s or −’s. To check this condition, we need k − 1 comparisons of adjacent 
elements in each row that proves our claim since there are d rows. �

The following theorem complements Lemma 6 by proving that any permutation of 
length less than rank(P ) < ∞ necessarily has an occurrence of P .
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Table 1
Avoidability/unavoidability of P1

∨
P2

and P1
∧

P2 for P1 �= P2.

P1 P2 P1
∨

P2 P1
∧

P2

A A A I
A U A U
U U I U

Theorem 8. Let P be a d-SMP of rank k, 2 ≤ k < ∞. Then every d-dimensional permu-
tation of length n, 1 ≤ n < k has an occurrence of P .

Proof. The statement is true for n = 1 by definition. Let n ≥ 2 and assume, in contrast, 
that some d-dimensional permutation Π = (π2, π3, . . . , πd) of length n, n < k, avoids 
P , where πj = πj

1π
j
2 . . . π

j
n. From Definition 1, it follows that there is a collection of �, 

2 ≤ � ≤ n < k, elements Πi1 , . . . , Πi� of Π such that, for all 1 ≤ j ≤ � − 1, the tuples

sign(Πij+1 − Πij ) (1)

and the tuple

sign(Πi1 − Πi�) (2)

can be found as columns in T (P ) (with possible repetitions). That is, Πi1 is not an 
occurrence of P because of Πi2 , Πi2 is not an occurrence of P because of Πi3 , etc., Πi�

is not an occurrence of P because of Πi1 . Let T ′(P ) be the set of all columns in T (P )
that are given by (1) and (2). Since � < k = rank(P ), T ′(P ) ⊂ T (P ) and by definition of 
rank, there is a row in T ′(P ), say row i whose elements are all of the same sign. Without 
loss of generality, let’s assume that the entire row consists of +’s. But then

πi
i1 < πi

i2 < · · · < πi
i�
< πi

i1 ,

which is a contradiction. Thus, Π has an occurrence of P . �
Definition 3. For d-SMPs P1 and P2, P1

∨
P2 (resp., P1

∧
P2) is the d-SMP obtained by 

taking the union (resp., intersection) of the columns of T (P1) and T (P2).

Table 1 is a direct corollary of Theorem 4. In this table A indicates avoidable, U 
indicates unavoidable and I indicates indeterminate. To illustrate indeterminate, consider 
unavoidable P1 = and P2 = giving unavoidable P1

∨
P2 = , while unavoidable 

P1 = and P2 = give avoidable P1
∨
P2 = . For avoidable P1 and P2, T (P1

∧
P2)

can be a single column or empty, so that P1
∧

P2 is unavoidable, while it is easy to 
construct an example of avoidable P1

∧
P2 for avoidable P1 and P2. Also, for unavoidable 

P1 and P2, T (P1
∧

P2) is either empty, or it contains a row having the same sign.
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Let Avd
n(P ) be the set of d-dimensional permutations of length n avoiding P and 

|Avd
n(P )| is the cardinality of Avd

n(P ). For d-SMPs P1 and P2 such that P1 ⊆ P2, clearly, 
|Avd

n(P1)| ≤ |Avd
n(P2)|. This observation immediately leads to the following results:

• |Avd
n(P1

∨
P2)| ≥ max{|Avd

n(P1)|, |Avd
n(P2)|};

• |Avd
n(P1

∧
P2)| ≤ min{|Avd

n(P1)|, |Avd
n(P2)|}.

Definition 4. A d-dimensional permutation Π avoids simultaneously patterns in a set 
S = {P1, P2, . . . , P�}, � ≥ 2, if Π avoids each pattern Pi. The set S is avoidable if there 
exist arbitrarily long d-dimensional permutations Π that avoid simultaneously patterns 
in S. If S is not avoidable, it is unavoidable. Also, S is weakly avoidable if there exists 
a d-dimensional permutation Π of length > 1 that avoids S. If every d-dimensional 
permutation contains an occurrence of a pattern in S then S is strongly unavoidable.

The following notion generalizes the notion of an inflation of an element in a 2-
dimensional permutation used in the literature, namely, when an element is replaced by 
a permutation of consecutive elements.

Definition 5. Let Π = Π1Π2 . . .Πn = (π2, π3, . . . , πd) and Σ = (σ2, σ3, . . . , σd) be d-
dimensional permutations of lengths n and m respectively. Then, the inflation of Πi

by Σ is the d-dimensional permutation of length n + m − 1 obtained from the tuple of 
permutations (τ2, . . . , τd) where

τ j = (μj
1, . . . , μ

j
i−1, ν

j
1 , ν

j
2 , . . . , ν

j
m, μj

i+1, . . . , μ
j
n)

with μ and ν defined as follows: μj
1 . . . μ

j
i−1ν

j
1 . . . ν

j
mμj

i+1 . . . μ
j
n is a permutation of 

{1, 2, . . . , n + m − 1} such that μj
s < μj

t if and only if πj
s < πj

t for s, t �= i, νjs < νjt
if and only if σj

s < σj
t , and μj

s < νjt if and only if πj
s < πj

i for all t and s �= i.

For example, the inflation of the second element of the permutation (2413, 1243) by 
the permutation (21, 12) is the permutation (25413, 12354).

Lemma 9. Referring to the notation in Definition 5, if Π (weakly) avoids a d-SMP P1
and Σ (weakly) avoids a d-SMP P2 then the d-dimensional permutation Γ obtained by 
inflation of each element of Π by Σ (weakly) avoids both P1 and P2.

Proof. It is clear that Γ avoids P2 because each element Γi in it is part of a smaller per-
mutation obtained from the P2-avoiding Σ by replacing elements in an order-isomorphic 
way (for Γi there will be another element in Γ in a shaded area given by P2). On the 
other hand, no element Γi can be an occurrence of P1. Indeed, Γi belongs to many sets 
of elements of Γ that are placed in Γ in an order-isomorphic to Π way, and since Π is 
P1-avoiding, Γi cannot be an occurrence of P1. �



12 S. Avgustinovich et al. / Journal of Combinatorial Theory, Series A 201 (2024) 105801
Theorem 10. A set of d-SMPs S = {P1, P2, . . . , P�} is (strongly) unavoidable if there 
exists a Pi that is (strongly) unavoidable. S is (weakly) avoidable if each pattern Pi is 
(weakly) avoidable.

Proof. The first statement is trivially true. As for the second statement, assume that a 
d-dimensional permutation Π(i) (weakly) avoids Pi for 1 ≤ i ≤ �. Then, by Lemma 9, 
inflation Σ(2) of each element in Π(2) by Π(1) (weakly) avoids both P1 and P2; inflation 
Σ(3) of each element in Π(3) by Σ(2) (weakly) avoids P1, P2, and P3; and so on, until we 
obtain that inflation Σ(�) of each element in Π(�) by Σ(�−1) (weakly) avoids all patterns 
in S. Since Π(i)’s can be arbitrary long, we see that Σ(�) can be arbitrary long showing 
that S is (weakly) avoidable. �
4. Enumerative results for singleton mesh patterns

For a d-SMP P , the bivariate generating function

FP (x, q) :=
∑
n≥0

xn
∑
σ∈Sd

n

q#occurrences of P in σ

gives the distribution of P . Let Fd(x) :=
∑

n≥0(n!)d−1xn = FP (x, 1) be the generat-
ing function of all permutations. For a formal power series F (x), [xn]F (x) denotes the 
coefficient of xn.

4.1. Projective patterns

Definition 6. A d-SMP P defined by the d-tuples

(p1
1, p

1
2, . . . , p

1
d),

...

(pk1 , pk2 , . . . , pkd)

is projective in direction i if (pj1, . . . , p
j
i−1, +, pji+1, . . . , p

j
d) is a column in T (P ) if and only 

if (pj1, . . . , p
j
i−1, −, pji+1, . . . , p

j
d) is also a column in T (P ). The (d −1)-SMP P ′ where T (P ′)

is obtained by removing the i-th row of T (P ) is the projection of P in direction i. For 
a projective P , we shorten T (P ) twice by placing a � in the i-th row. For projective 
patterns in several directions, we place a � in each projective direction.

Up to symmetries, there are just two projective 2-SMPs, namely and . Regard-
ing the former pattern, each 2-dimensional permutation of length ≥ 1 contains exactly 
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one occurrence of it, and thus F (x, q) = 1 + q(F2(x) − 1). As for the latter pattern, 
only the permutation of length 1 contains an occurrence of it, so

F (x, q) = qx + (F2(x) − x) = (q − 1)x + F2(x).

By Theorem 4, in Definition 6, the projective pattern P is avoidable (strongly un-
avoidable) if and only if the projection P ′ is avoidable (strongly unavoidable). Moreover, 
if a d-dimensional permutation Π of length n contains k occurrences of P , then the per-
mutation Π′ obtained from Π by removing the i-th row contains k occurrences of P ′

(if the first row is removed then we sort the columns of the obtained permutation (if 
needed) to make the new first row be increasing). In the opposite direction, if a (d − 1)-
dimensional permutation Π′ of length n contains k occurrences of P ′ then, by inserting 
a new i-th row, there are n! ways to extend Π′ to a d-dimensional permutation Π of 
length n with k occurrences of P . The latter observations allow us to find distribution 
of all 3-dimensional projective patterns.

In what follows, Proposition 3 allows us to assume that P ′ is the projection of P in 
direction d (i.e. i = d) without loss of generality. For d = 3, using the symmetries, we 
can assume that P ′ in Definition 6 is given by one of the following five patterns whose 
distribution is found below. The subscripts of the function F correspond to the columns 
of T (P ).

Case 1 Case 2 Case 3 Case 4 Case 5

Case 1. The distribution of the pattern on 2-dimensional permutations is the dis-
tribution of right-to-left maxima, which is the same as the distribution of cycles in 
permutations given by signless Stirling numbers of the first kind. It is not difficult to see, 
and can be found in [17, Proposition 1.3.7], that

∑
σ∈Sn

q (σ) = q(q + 1) · · · (q + n− 1) = q(n)

is the rising factorial, where (σ) is the number of occurrences of the pattern in σ. 
Hence, F++�(x, q) =

∑
n≥0 n!xnq(n). A straightforward generalization of this result is

F++ � · · · �︸ ︷︷ ︸
d−2 times

(x, q) =
∑
n≥0

(n!)d−2xnq(n)

where the entries of + + � · · · �︸ ︷︷ ︸
d−2 times

can be permuted without changing the distribution.

Case 2. Each 3-dimensional permutation of length ≥ 1 contains exactly one occurrence 
of the pattern, and thus F+��(x, q) = 1 + q(F3(x) − 1). More generally, it is easy to see 
that
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F+ � · · · �︸ ︷︷ ︸
d−1 times

(x, q) = 1 + q(Fd(x) − 1) (3)

where the entries of + � · · · �︸ ︷︷ ︸
d−1 times

can be permuted without changing the distribution.

Case 3. According to [13],

F (x, q) = F2(x)
1 + x(1 − q)F2(x) .

Hence,

F+−�,−+� =
∑
n≥0

n!xn[xn] F2(x)
1 + x(1 − q)F2(x) ,

which can be easily generalized to

F+− � · · · �︸ ︷︷ ︸
d−2 times

,−+ � · · · �︸ ︷︷ ︸
d−2 times

=
∑
n≥0

(n!)d−2xn[xn] F2(x)
1 + x(1 − q)F2(x)

with the result being unchanged when the rows of the pattern are permuted.
Case 4. It is easy to see that

F++�,+−�,−−�(x, q) = 1 +
∑
n≥1

n!(q(n− 1)! + (n! − (n− 1)!))xn =

F3(x) + (q − 1)
∑
n≥1

n!(n− 1)!xn.

It is straightforward to generalize this result to

F++ � · · · �︸ ︷︷ ︸
d−2 times

,+− � · · · �︸ ︷︷ ︸
d−2 times

,−− � · · · �︸ ︷︷ ︸
d−2 times

(x, q) = Fd(x) + (q − 1)
∑
n≥1

(n!)d−2(n− 1)!xn

where rows in the pattern can be permuted.
Case 5. The distribution is clearly given by qx + (F3(x) − x) = (q − 1)x + F3(x), and 
more generally,

F� · · · �︸ ︷︷ ︸
d times

(x, q) = (q − 1)x + Fd(x).

4.2. Antipodal patterns

Definition 7. Let P be a singleton mesh pattern. For a column C in T (P ), the complement 
c(C) is obtained by replacing each + by − and each − by + in C. The pattern P is 
plus-antipodal (resp., minus-antipodal) if C is a column in T (P ) if and only if c(C) is 
(resp., not) a column in T (P ).
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Examples of plus-antipodal patterns are and 
⎛
⎝ + + − −

+ + − −
− + + −
+ − − +

⎞
⎠. Examples of minus-

antipodal patterns are and 
( + + + −

+ + − +
+ − + +

)
. Note that for each minus-antipodal d-SMP 

P , T (P ) has 2d−1 columns, while for a plus-antipodal d-SMP P , T (P ) has an even 
number of columns between 0 and 2d.

Theorem 11. Let P be a plus-antipodal d-SMP with T (P ) having 2d − 2 columns and let 
an denote the number of d-dimensional permutations of length n avoiding P . Then,

A(x) :=
∑
n≥0

anx
n = Fd(x)

1 + Fd(x) ;

FP (x, q) = Fd(x)
1 + (1 − xq)Fd(x) .

Proof. Without loss of generality, assume that the columns that cannot be found in 
T (P ) are + · · ·+ and − · · · −. Each permutation either avoids P or contains at least 
one occurrence of P . In the latter case, consider the lowest occurrence of P , that is, 
the element a such that no other occurrence of P has each coordinate smaller than 
the respective coordinate in a. The occurrence a gives the term xq, and we obtain the 
following functional equation, because with respect to a, in the region defined by − · · ·−
we must have a P -avoiding permutation (giving the term A(x)), while the region defined 
by + · · ·+ is independent from the rest of the permutation (giving the term F (x, q); also 
note that there are no elements in any other region with respect to a because of the 
element a). Therefore, we have

FP (x, q) = A(x) + xqA(x)FP (x, q),

so that

FP (x, q) = A(x)
1 − xqA(x) . (4)

To complete the proof, we derive the expression for A(x) to be substituted in (4). Note 
that

an+1 = ((n + 1)!)d−1 −
n∑

i=0
ai((n− i)!)d−1 (5)

where the first term is the number of all d-dimensional permutations of length n +1, and 
the second term is the number of all permutations containing at least one occurrence of P
(obtained by considering the lowest occurrence as in the arguments above). Multiplying 
both parts of (5) by xn+1 and summing over all n ≥ 0, we obtain

A(x) − 1 = Fd(x) − 1 − xA(x)Fd(x)

that leads to the desired result by solving for A(x). �
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Our next result concerns plus-antipodal patterns of cardinality 2 and follows from a 
much stronger and more general Theorem 3.4 in [5]. It is interesting that the maximum 
number of occurrences of such patterns in d-dimensional permutations is equivalent to 
pattern-avoiding permutations in Theorem 3.4 in [5].

Theorem 12. The number of d-dimensional permutations R(n) having n occurrences of 
a plus-antipodal pattern P with cardinality 2 satisfies

logR(n) = (d− 1)2 − 1
d− 1 n · log n(1 + o(1))

as n → ∞.

Proof. The symmetries described in Proposition 3 allow us to consider the pattern P with 

T (P ) =

⎛
⎜⎜⎜⎝

+ −
+ −
...

...
+ −

⎞
⎟⎟⎟⎠. It is clear that Π = (π2, π3, . . . , πd) is a d-dimensional permutation of 

length n with n occurrences of P if and only if there are no indices i, j with 1 ≤ i < j ≤ n

such that πk
i < πk

j for all 2 ≤ k ≤ d. This can be phrased in the language of parallel 
pattern-avoidance (see Definition 2.5 and Definition 3.2 in [5]). In their language, we 
have that R(n) = Sd−1

n (12, . . . , 12). Applying Theorem 3.4 [5] then yields the result. �
With help of minus-antipodal patterns, we can characterize d-SMPs that have no 

more than one occurrence in any permutation.

Theorem 13. A d-SMP P has no more than one occurrence in any d-dimensional permu-
tation of length n if and only if there is a minus-antipodal d-SMP P ′ such that P ′ ⊆ P .

Proof. Assume that a pattern P does not contain a minus-antipodal pattern. W.l.o.g. 
we can assume that columns + · · ·+ and − · · · − do not belong to T (P ). Then the 
permutation Π = (σ2, σ3 . . . , σd), where each σi is the increasing permutation of length 
12 . . . n, has n occurrences of P .

On the other hand, assume that P ′ ⊆ P for some minus-antipodal d-SMP P ′. Suppose 
that element Πi is an occurrence of P in some permutation Π. Then for every j �= i an 
element Πj is not an occurrence of P because of Πi. So Π has at most one occurrences 
of P . �
Corollary 14. Let P be a d-SMP. If some d-dimensional permutation has at least two 
occurrences of P , then for every n there is a d-dimensional permutation of length n with 
exactly n occurrences of P .

Proof. The statement follows from the first paragraph in the proof of Theorem 13. �
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4.3. Hyperplane patterns

Definition 8. A d-SMP P is an i-hyperplane d-SMP if

� · · · �︸ ︷︷ ︸
i−1 times

+ � · · · �︸ ︷︷ ︸
d−i times

⊆ P,

that is, if T (P ) contains all possible columns with a + in the i-th row.

Examples of 1-hyperplane patterns are , and 
( + + + + − −

+ + − − + −
+ − + − + −

)
.

Since � · · · � + � · · · � is a minus-antipodal pattern, Theorem 13 implies that any 
d-dimensional permutation (π2, π3, . . . , πd−1) has at most one occurrence of an i-
hyperplane d-SMP P .

Note that if P = � · · · �︸ ︷︷ ︸
i−1 times

+ � · · · �︸ ︷︷ ︸
d−i times

then P is a projective pattern and its distribution, 

1 +q(Fd(x) −1), is given by (3) since a permutation of the rows of T (P ) does not change 
the distribution of the pattern (similar to the statement of Proposition 3). Thus, in what 
follows, we assume � · · · �︸ ︷︷ ︸

i−1 times

+ � · · · �︸ ︷︷ ︸
d−i times

⊂ P . The following theorem shows that finding 

the distribution of an i-hyperplane d-SMP can be reduced to finding the distribution of 
a (d − 1)-SMP.

Theorem 15. Let P = � · · · �︸ ︷︷ ︸
i−1 times

+ � · · · �︸ ︷︷ ︸
d−i times

∨
B, B �= ∅, be an i-hyperplane d-SMP and 

B(i) is obtained from B by removing the i-th entry, which is a minus, in each d-tuple. 
Also, assume that there are f(n, k) (d − 1)-dimensional permutations of length n with k
occurrences of B(i). Then, there are 

∑n
k=1 k(n − 1)!f(n, k) d-dimensional permutations 

of length n with one occurrence of P , and the remaining (n!)d−1−
∑n

k=1 k(n −1)!f(n, k)
permutations in Sd

n avoid P .

Proof. The second claim follows from the first one and the observations that |Sd
n| =

(n!)d−1 and that P occurs at most once in any permutation. We thus need to prove the 
first statement.

Let Π = Π1Π2 . . .Πn = (π2, π3, . . . , πd) ∈ Sd
n. For 2 ≤ i ≤ d, we let

Π(i) = Π′
1Π′

2 . . .Π′
n := (π2, . . . , πi−1, πi+1, πi+2, . . . , πd) ∈ Sd−1

n

and Π(1) = Π′
1Π′

2 . . .Π′
n ∈ Sd−1

n is obtained from Π by removing π1 and replacing any 
other πi by the permutation (π2)−1πi.

For i ≥ 2, it is easy to see that if Πj is an occurrence of P in Π then Π′
j is an occurrence 

of B(i) in Π(i). Conversely, any occurrence Π′
j of B(i) in Π(i) can be “lifted” to the unique 

occurrence of P in Π by inserting a new i-th row (permutation) with the largest element 
being in column j. Note that this is the only possibility to create an occurrence of P in 
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Π from an element in Π′ by inserting a new i-th row. Indeed, if Π′
j is not an occurrence 

of B(i) because of an element Π′
m (i.e. sign(Π′

m − Π′
j) is a column in T (B(i))) then Πj

is not an occurrence of P since sign(Πm −Πj) is either a column in T (B) (if the largest 
entry in a new row i is in column j) or another column in T (P ). On the other hand, if 
Π′

j is an occurrence of B(i) and the largest element in a new i-th row is not in column 
j but in column m, m �= j, then sign(Πm − Πj) is a column in T (P )\T (B) so Πj is not 
an occurrence of P .

For i = 1, again it is easy to see that if Πj is an occurrence of P in Π then Π′
j is 

an occurrence of B(1) in Π(1) as a permutation of columns does not affect anything. 
Conversely, any occurrence Π′

j of B(1) in Π(1) can be “lifted” to the unique occurrence 
of P in Π by inserting a new first row (permutation) with the largest element being in 
column j and then by multiplying each row by (π1)−1 (to make the first row be the 
increasing permutation). A justification that this describes the unique way to create a 
permutation Π with a single occurrence of P by inserting the first row is similar to the 
case of i ≥ 2 and hence is omitted.

In either case, for any permutation counted by f(n, k), there are k ways to choose 
an occurrence of B(i) to be made the only occurrence of P , and there are (n − 1)! ways 
to choose a permutation of length n to insert (since the largest element n must be in 
a specified position). The desired result is then obtained by summing over all possible 
k ≥ 1. �
5. Generalizations

In the 2-dimensional case, a permutation τ = τ1τ2 . . . τk of length k occurs as a 
subpermutation in a permutation σ = σ1σ2 . . . σn of length n, k ≤ n, if there exist 
1 ≤ i1 < i2 < · · · < ik ≤ n such that τ� < τm if and only if σi� < σim , for 1 ≤ � < m ≤ k. 
Similarly, a d-dimensional permutation Ψ = (τ2, τ3, . . . , τd) of length k occurs as a 
subpermutation in a d-dimensional permutation Π = (π2, π3, . . . , πd) of length n, k ≤ n, 
if there exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that for each j = 1, 2, . . . , d − 1, τ j� < τ jm if 
and only if πj

i�
< πj

im
, for 1 ≤ � < m ≤ k.

5.1. General multidimensional mesh patterns

A d-dimensional mesh pattern (d-MP) P of length k is a pair (T, P ), where T is a 
d-dimensional permutation of length k and P is a d-dimensional (0, 1)-matrix of order 
k + 1. We denote by supp(P ) the support of P , which is the set of all nonzero entries in 
the matrix P defining the forbidden areas.

We say that a d-dimensional permutation Π = Π1Π2 . . .Πn defined by (π2, π3, . . . , πd)
contains an occurrence of a mesh pattern P = (T, P ) of length k if

• T occurs in Π as a subpermutation Πi1Πi2 . . .Πik such that
• there is no r ∈ {1, . . . , n}\{i1, . . . , ik} and no entry (p1, . . . , pd) ∈ supp(P ) such that
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• ip1−1 < r < ip1 (where i0 := 0 and ik+1 := ∞) and
• either πj

ipj+1−1
< πj

r < πj
ipj+1

or πj
ipj+1−1

> πj
r > πj

ipj+1
for all j = 1, . . . , d −1 (where 

the inequalities involving the non-defined πj
0 or πj

k+1 are assumed to be satisfied), 
that is, no element in Π occurs in a forbidden area with respect to the subpermutation 
Πi1Πi2 . . .Πik .

If Π has no occurrences of P then Π avoids P.
Our definition of a d-MP is consistent with the notion of a (2-dimensional) mesh 

pattern introduced in [4]. We next derive an enumerative result, to be referred to in 
Section 5.2, for the pattern Pd = ((12, . . . , 12︸ ︷︷ ︸

d−1 times

), ∅). Let Fn,d(q) be the generating function 

for the distribution of Pd on Sd
n, the set of d-dimensional permutations of length n. 

Clearly, F1,d(q) = 1 and F2,d(q) = 2d−1 − 1 + q (as all permutations but (12, . . . , 12︸ ︷︷ ︸
d−1 times

)

avoid Pd). Moreover, F3,2(q) = q3 + 2q2 + 2q + 1, where the coefficient of q3 is given by 
the 2-dimensional permutation (123), the coefficient of q2 is given by (132) and (213), 
the coefficient of q is given by (231) and (312), and the coefficient of q0 is given by (321). 
One can also compute

F3,3(q) = q3 + 6q2 + 12q + 17 and F3,4(q) = q3 + 14q2 + 50q + 151.

The following result generalizes the last three formulas.

Theorem 16. For the pattern Pd, d ≥ 2,

F3,d(q) = q3 + 2(2d−1 − 1)q2 + (3d − 2d+1 + 1)q + (6d−1 − 3d + 2d).

Proof. Clearly, any permutation in Sd
3 has at most three occurrences of Pd and the only 

d-dimensional permutation with three occurrences is (123, . . . , 123︸ ︷︷ ︸
d−1 times

).

For convenience, we will denote elements of a permutation Π ∈ Sd
3 by a, b, and c. To 

have two occurrences of Pd in a permutation abc given by (π2, π3, . . . , πd) ∈ Sd
3 , either

• each πi ∈ {123, 132} and there exists πj = 132, for 1 ≤ j ≤ d − 1 (ab and ac are 
occurrences, bc is not an occurrences because of πj), or

• each πi ∈ {123, 213} and there exists πj = 213, for 1 ≤ j ≤ d − 1 (ac and bc are 
occurrences, ab is not an occurrences because of πj).

As the cases are not overlapping, and in each of them we have 2d−1−1 permutations, we 
get the desired coefficient of q2. Similarly, to have exactly one occurrence of Pd, either

(a) each πi ∈ {123, 132, 231} and there exists πj = 231, for 1 ≤ j ≤ d − 1 (ab is the 
occurrence; there are 3d−1 − 2d−1 possibilities here), or
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(b) each πi ∈ {123, 213, 312} and there exists πj = 312, for 1 ≤ j ≤ d − 1 (bc is the 
occurrence; there are 3d−1 − 2d−1 possibilities here), or

(c) each πi ∈ {123, 132, 213} and there exists πj = 132 and πm = 213, for 1 ≤ j, m ≤
d − 1 (ac is the occurrence; using the inclusion-exclusion principle, there are 3d−1 −
2 · 2d−1 + 1 possibilities here).

Since the three cases are not overlapping, we obtain the desired coefficient of q. The 
coefficient of q0 is obtained by subtracting the other coefficients from the total number 
of permutations 6d. �

We note that the coefficient of q in Theorem 16 appears as the sequence A028243 in [16]
(2, 12, 50, 180, 602, 1932, 6050, . . .), which is doubled Stirling numbers of the second kind, 
given by the formula 2S(n, 3) and has several interesting combinatorial interpretations. 
We can explain combinatorially, for example, the fact that permutations in Sd

3 with one 
occurrence of the pattern Pd are in bijection with strings over the alphabet {0, 1, 2} of 
length d that contain at least one 0 and one 1. For example, for d = 2 such strings 
are 01 and 10, and for d = 3 such strings are the three permutations of 100, the three 
permutations of 110, and the three permutations of 210. Referring to the respective cases 
in the proof of Theorem 17, a bijection can be described as follows. We map a string 
s1s2 . . . sd in question to a permutation (π2, π3, . . . , πd) so that

(a) if s1 = 0 then si �→ πi, 2 ≤ i ≤ d, as 0 �→ 132, 1 �→ 231, and 2 �→ 123 thus giving a 
permutation in (a) (note at least one appearance of 231);

(b) if s1 = 1 then si �→ πi, 2 ≤ i ≤ d, as 0 �→ 312, 1 �→ 213, and 2 �→ 123 thus giving a 
permutation in (b) (note at least one appearance of 312);

(c) if s1 = 2 then si �→ πi, 2 ≤ i ≤ d, as 0 �→ 132, 1 �→ 213, and 2 �→ 123 thus giving a 
permutation in (c) (note appearances of at least one 132 and at least one 213).

The map described above is clearly a bijection.

5.2. Multidimensional marked mesh patterns

In the 2-dimensional case, marked mesh patterns (MMPs) are defined similarly to 
mesh patterns, but now each region (given by P ) can be either shaded or it contains a 
non-negative integer. If a region in an MMP has an integer t, then in an occurrence of this 
MMP we require the respective region to have at least t elements. The simplest marked 
mesh patterns of length 1 are known as quadrant marked mesh patterns (QMMPs) and 
they have been studies in several papers, e.g. in [10–12,15].

We generalize the notion of a QMMP by modifying the definition of a d-SMP. A d-
dimensional simplest marked mesh pattern (d-SMMP) P of cardinality k is a collection 
of k (d + 1)-tuples
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(p1
1, p

1
2, . . . , p

1
d, x

1),

(p2
1, p

2
2, . . . , p

2
d, x

2),
...

(pk1 , pk2 , . . . , pkd, xk),

where pji ∈ {+, −}, (pi1, . . . , pid) �= (pj1, . . . , p
j
d) for i �= j, and xj is a positive integer or a 

�. We think of the collection as a table T = T (P ) whose columns are the listed tuples.

Definition 9. An element Πi in a d-dimensional permutation Π, is an occurrence of a 
d-SMMP P of cardinality k if

• for any element Πj , we have that

(sign(j − i), sign(π1
j − π1

i ), sign(π2
j − π2

i ), . . . , sign(πd−1
j − πd−1

i ),�)

is not a column in T (P ) (that is, no element is in the shaded region), and
• if (ps1, ps2, . . . , psd, x) is a column in T (P ) then there are at least x elements Πj such 

that sign(j−i) = ps1, sign(π1
j −π1

i ) = ps2, sign(π2
j −π2

i ) = ps3, etc., sign(πd−1
j −πd−1

i ) =
psd.

If Π has no occurrences of P , we say that Π avoids P .

Merging the approaches in Section 5.1 and Definition 9, one can introduce the notion 
of a (general) d-dimensional marked mesh pattern (d-MMP) where each region is required 
either to be empty or to contain at least t ≥ 0 elements (the case of t = 0 corresponds 
to having no requirements for such a region). However, due to space concern, we omit 
a formal definition of a d-MMP, instead stating an enumerative avoidance result for a 
d-SMMP P with the single column in T (P ) being (+, . . . , +, 1).

Theorem 17. The number of permutations in Sd
3 avoiding the d-SMMP P defined by 

(+, . . . ,+,︸ ︷︷ ︸
d times

1) is given by 6d−1 − 3d + 2d.

Proof. We observe that a permutation in Sd
3 avoids P if and only if it avoids the pattern 

Pd in Section 5.1, so that the desired quantity is given by the coefficient of q0 in F3,d(q)
in Theorem 16. �
6. Directions of further research

A d-dimensional permutation of length n can contain k, 0 ≤ k ≤ n, occurrences of 
a d-SMP P . The extreme cases of k = 0 (avoidance) and k = n, whenever they are 
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feasible, are particularly interesting here. While the avoidance is a classical direction of 
research in the theory of permutation patterns, the other extreme case is rather specific 
to the patterns in question, and it ought to bring us to some interesting (enumerative 
or structural) results. A starting point could be understanding permutations of length n
having n occurrences of the pattern + · · ·+ in ≥ 3 dimensions. More generally, finding 
the distribution of the pattern + · · ·+, that would generalize the known distribution 
result for the pattern in two dimensions (corresponding to the right-to-left max-
ima in permutations and given by the signless Stirling numbers of the first kind [17, 
Proposition 1.3.4]), is a good open challenging problem.

In Definition 7, we introduce the notion of a minus-antipodal SMP, but apart from 
the pattern � · · · �︸ ︷︷ ︸

i−1 times

+ � · · · �︸ ︷︷ ︸
d−i times

(that is also projective and hyperplane) and Theorem 13, 

we do not provide any results for minus-antipodal patterns, while it seems to be an 
interesting and natural class of patterns. A similar situation is with another natural 
class, the class of plus-antipodal patterns (introduced in Definition 7) as essentially the 
only result we give for such patterns are those in Theorems 11 and 12.

Generalizing Theorem 17 to finding the distribution of the d-SMMP P defined by 
(+, . . . ,+,︸ ︷︷ ︸

d times

1), or more generally, of the d-SMMP P defined by (+, . . . ,+,︸ ︷︷ ︸
d times

x) for x ≥ 1, 

would give an interesting generalization of the respective results in [10] for quadrant 
marked mesh patterns. We note that the arguments in [10] cannot be extended in a 
straightforward way to 3 or more dimensions.

Finally, a natural step is initiating (systematic) studies of d-dimensional mesh patterns 
of length 2, d ≥ 3, that would extend the systematic studies in [6] and [13] to higher 
dimensions. Also, various general equivalences of 2-dimensional mesh patterns [6,18]
can be considered to be extended to higher dimensions. We note that the question on 
avoidability of a mesh pattern of length 2 or more is uninteresting (unlike the length 1 
case) as at least one of the two monotone permutations (each column of which is the same 
monotone permutation, 12 . . . n or n(n − 1) . . . 1) will always avoid any such pattern.
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