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a b s t r a c t

There is an increasing need to decarbonise both heating and transport sectors in the UK, and the uptake
of low carbon technologies (LCTs) will be central to this. The impact of LCTs on electricity network
infrastructure varies both spatially and temporally, and is driven by the diversity in technology type,
consumer behaviour, variable weather patterns, variation of the building stock and the incumbent
network assets. In recognition of this diversity and household energy variability, LCT adoption and
utilisation will be influenced by the distribution of socio-economic factors within a local area. This
has the potential to impact network decision-making across different regions. As such, there is a
requirement to consider socio-technical and socio-spatial dimensions when modelling LCT impact
on network infrastructure. This research, presented within a UK context, demonstrates a novel
high-resolution methodology that enables assessment of electrified heat and transport impact on
transformer headroom using socio-economic indicators to inform the application of LCT consumption.
This includes mapping of spatially linked datasets to identify relationships between consumption and
social deprivation. These relationships are used as inputs to a heat pump modelling methodology
that converts gas demand to equivalent electrical heat demand. This approach is compared with a
generalised trial data approach to ascertain the impact of incorporating socio-economic elements.
Electric vehicles are then introduced, where charging is based on socially disaggregated behaviour
in the form of travel diaries showing the combined impact of different LCTs. Findings are considered
from the perspective of the distribution network operator and other key stakeholders.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Distribution Network Operators (DNOs) face the challenge of
nsuring appropriate investment in infrastructure and the devel-
pment of new management solutions in response to increased
lectrification from the decarbonisation of heat and transport [1].
his is strongly influenced by the UK energy regulator, Ofgem,
ho promote competition in the energy markets and regulate
etworks. Diversity in technology type, consumer behaviour, in-
reasingly variable weather patterns, variation of the building
tock and the network assets is expected to have a significant
mpact on the extent of this electrification, particularly as certain
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areas are likely to engage in radically different decarbonisation
pathways at varying rates [2,3].

The displacement of internal combustion engine vehicles with
electric vehicles (EVs) and conventional gas boilers with heat
pumps (HPs) is expected to be at the forefront of this electrifi-
cation with up to 913,000 EVs and up to 564,000 HPs anticipated
in the north of Scotland by 2045 [4]. Unlike other low car-
bon technologies (LCTs) e.g., solar PV which is predominately
resource-driven, LCTs such as EVs and HPs are in part consumer-
driven. This manifests in a distinct set of locally sensitive demand
profiles that are inherently driven by consumer lifestyle and
comfort or by wider societal rhythms such as work patterns
and affordability [5]. Therefore, in recognition of consumer di-
versity and household energy variability [6–10], the way that
LCTs are adopted and used will be influenced by the distribution
of socio-economic factors within a local area. This, in turn, has
the potential to impact network decision-making across different
regions.

DNOs in Great Britain (GB) and other actors in this space,

specifically policy makers and local authorities are aware of these
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hallenges [11,12]. However, at present, although there exists
ecognition of the issues pertaining to socio-economic factors and
heir impact on LCT demand and subsequent electricity network
nfrastructure, there remains a need for an enhanced modelling
apability that can capture key elements of socio-technical and
ocio-spatial diversity to inform LCT demand consumption in
ifferent areas. There is also a growing requirement to reduce
he uncertainty surrounding the impact LCTs of different types
ill have on existing infrastructure, [4]. These insights will sup-
ort place-based DNO decision making by informing the network
lanning requirements of infrastructure in various locations.
Such strategic ‘intelligent decision-making’ of infrastructure

an help to minimise network interventions (reduce regular re-
nforcement of legacy assets), minimise customer minutes lost
nd customer interruptions which incur heavy financial penal-
ies, maximise profits, maintain (improve) network resiliency as
he network evolves in the transition to net zero and as the
enetration of intermittent technologies increases, to operate
ssets more efficiently improving longevity, reducing losses and
ncreasing life-cycle value. Ultimately the intention of this work is
o improve network planning in business as usual operations and
hile DNOs are regulated, that does not mean that the regulator
akes investment decisions for them: the DNOs are expected

o use best-practice techniques to determine what investment
s needed, and where other methods should be used to defer
r avoid investment. Intelligent decision-making of network in-
rastructure investment also has the potential to inform wider
ecarbonisation pathways and can support timely deployment of
ost-effective decarbonisation solutions.
Therefore, this motivates the focus of this work to investigate
through high-resolution geospatial and socio-technical mod-

lling – the combined impact of electrified residential heat and
ransport on key network infrastructure and the influence of
ocio-technical and socio-spatial dimensions.

. Literature review

.1. The influence of socio-economic factors on household energy
onsumption and LCT uptake

It is well understood that energy consumption and result-
ng emissions are unequally distributed [13]. Research has been
ndertaken at national levels to describe this problem in more
etailed contexts; studies focusing on energy use and resultant
missions in the UK have been many. For instance, Druckman
nd Jackson [14] explore patterns of household energy use in the
K at high levels of socio-economic disaggregation on variables
ncluding household type, index of multiple deprivation (IMD)
nd employment type, supporting the hypothesis that different
egments have very different patterns of consumption. The areas
f focus in [14] are the very least deprived (top 1%) and most
eprived (bottom 1%) of households in terms of the IMD; it is
ound that energy consumption in the top 1% is approaching
wice that of the bottom 1%. Generally, there is a wealth of
esearch on the topic which is in strong agreement: household
nergy use increases with income (e.g., [6–10]) and is also heavily
nfluenced by household composition (including household size
nd number of children) (e.g., [9,15,16]).
Where the research differs on this matter is often what con-

lusions are drawn from the analyses carried out. Chatterton
t al. [17] use a Multiple Analysis of Variance (MANOVA) tech-
ique to explore the dependency of energy demand in the UK –
ncluding direct gas, electricity and petroleum consumption – on
set of proposed explanatory variables covering demographics,
ocio-economics and the built environment. The analysis in [17]
hen focuses on the subset of these variables that are likely to
2

set the degree of control a household has of their energy con-
sumption, and how that relates to the level of energy consumed.
It is concluded that those who are the largest consumers of
energy have the highest incomes and the lowest levels of social
deprivation, but also that they tend to be those who have the
greatest opportunity to reduce their energy consumption, as also
recognised in [18].

Research published on sector-specific analysis has been im-
portant for understanding the influence of socio-economic
indicators on demand across different energy services. For exam-
ple, Büchs and Schnepf [19] examine the associations between
socio-economic factors and UK household energy consumption
by sector (the three sectors are: home energy use from electricity
and gas consumption; transport energy use from motor fuel,
flights and public transport; and indirect emissions from food,
clothing, etc.). It is reported that whilst all energy use is positively
correlated with income, home energy use (i.e., gas and electricity
consumption) is less sensitive to changes in these factors than
transport and indirect consumption. Brand et al. [20] apply multi-
variate linear and logistic regression analyses to survey data from
over 3000 UK adults to examine the distribution of energy and
emissions resulting from motorised passenger travel. Whilst in-
come, education and tenure were found to be predictors of energy
and emissions, the strongest independent predictors are listed
as owning at least one car, being in full-time employment and
having a home-work distance of greater than 10 km. Priessner
et al. [21] conduct a multinomial logistic regression analysis of EV
adoption and a set of socio-economic and psychological factors.
They find that whilst a subset of the socio-economic factors do
serve as predictors (gender, household size, number of cars),
stronger prediction is afforded by psychological factors, including
(as they term it) ‘cultural worldview’: respondents who rate their
own worldview as less egalitarian and more individualistic are
less likely to want to adopt EVs than their culturally opposing
counterparts.

2.2. Evaluation of impacts from LCTs on electricity system infrastruc-
ture

Concerns from DNOs [22], regulators [23] and policy mak-
ers [24,25] that the capacity of distribution networks may not
cope with the increase in electricity demand from their adoption
have contributed to the motivation in the academic literature to
produce methods to characterise the likely impact of LCTs on
electrical infrastructure. Sometimes referred to as spatial load
forecasting (SLF), these methods have become an increasingly
important tool for actors involved in planning and investment of
power networks [26,27].

This field of study is generally broken down into three parts:

1. Plausible levels of uptake of LCTs are modelled, which
are generally returned as time-bound levels of penetration
(e.g. X% of cars will be EVs by year Y );

2. Energy demand, or temporal demand profiles, of those
corresponding LCTs are simulated, sampled or assumed;

3. Those demand profiles are assigned to nodes in a network
that represent served customers (households) of an elec-
tricity network. Specific network analysis is not always
present; rather, some studies seek to return the quantity
of energy demand for a particular area.

Methods used for modelling technology uptake varies signifi-
cantly between studies, and includes statistical methods such as
Bayesian models [28], regression analysis [29–31], agent-based
modelling [32–34] and scenario development [35,36].

Some studies draw upon the significant impacts of socio-
economic indicators on energy demand in modelling LCT uptake.
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or example, Van der Kam et al. [30] use a non-linear regression
ethod to examine the influence of several socio-economic in-
icators, including age, education level, income, and even level
f allegiance to green left-wing political parties on EV and so-
ar PV uptake; using this model, the authors construct ‘S-curve’
echnology uptake analysis based on projected changes in these
ocio-economic indicators over time. Other studies focus their
ptake modelling on spatial influences. For example, Rodrigues
t al. [31] present an autoregression approach to examine the
ffects of peerage – including the neighbourhood effect, a.k.a.
keeping up with the Joneses’ – on EV uptake; this is paired with
logistic regression model to forecast EV uptake into the future
iven these spatial influences.
Demand profiles of LCTs can be derived using one of three

ethods: (i) simple, fixed assumptions can be used, such as
assume all EV drivers plug in at 18:00’ as in [37,38]; (ii) data from
eal EV chargers or HPs can be used, usually from government-
ponsored trials, as in [39–43]; (iii) usage data of incumbent ‘high
arbon technologies’, such as internal combustion vehicles or gas-
ired boilers, can be used to understand energy service demand
nd serve as a basis for simulation of LCT demand, as in [44–47].
The first method is commonly seen in older literature, and has

ince fallen out of favour: for the EV example, while the ‘arrives
n the evening, leaves in the morning’ model of driver behaviour
s used in [37,38] is a fairly common assumption in the literature,
t is shown through analysis of UK National Travel Survey (NTS)
ata by Mattioli et al. [48] that under half of UK cars are driven
ccording to this daily commuter stereotype.
The second method does have one distinct advantage, in that

t can capture the fundamentally different operation of LCTs com-
ared with the technologies they are replacing: EV adoption has
een shown to change driver behaviour [49,50] and HP operation
s fundamentally different to gas boiler operation due to their
omparatively lower output temperature. However, there are two
ey drawbacks to using trial data. Firstly, they are inherently
ied to a particular set of technologies. This is particularly clear
or the EV example, as trial data can date quickly as battery
izes and charging power increase [44]. Secondly, trials are often
escriptive of – or only open to – a particular subset of energy
onsumers. For example, in the 2021/2022 Electric Nation Vehicle
o Grid trial, participants not only had to already own a com-
atible EV (and hence, by definition, be an early adopter of the
echnology), they also had to be homeowners with access to their
wn off-street parking [51].
The main advantage of the third method is that it circum-

ents these problems. In using consumption data from incumbent
echnologies to derive energy service demand, or by simulating
nergy service demands themselves, analyses of LCT demand
annot only be made independent of particular technologies but
an also encompass a wider range of energy consumer types. For
xample, in [44], NTS data (that naturally covers a much wider
et of energy consumption behaviours than an EV trial) is used to
erive potential EV charging schedules for different battery sizes,
harger power levels and levels of access to charging at different
ocations.

Whereas research on the impacts of individual LCTs (i.e., either
Vs or HPs) on distribution networks is plentiful, the literature on
he combined effects of EVs and HPs on network infrastructure
s comparatively scarce. Edmunds et al. [52] present a study on
he potential for smart EV charging to maximise the available
emand capacity (‘headroom’) for HP penetration in GB distri-
ution networks. They conclude that smart EV charging could
ignificantly increase the headroom for EVs, but only marginally
ncrease the headroom for HPs (this is due to the significantly
ower levels of flexibility assumed for heating demand than EV

harging). Navarro-Espinosa et al. [53] assess the voltage and

3

thermal impacts of these technologies for a set of LCT penetration
scenarios by employing a Monte Carlo assessment technique to
sample from HP and EV demand profiles, generated from heat-
ing demand data and EV trial data respectively, and randomly
assign them to models of 128 UK distribution feeders. Neither
of these studies use socio-economic indicators in forming their
analyses, which as previously discussed, has been established as a
major driver of household energy consumption and as such a key
determinant in influencing the necessary network investment.

The spatial mapping of these demands onto electricity net-
works specifically is the final part of the studies in this area.

The use of socio-economic indicators to assign LCT demand
profiles in distribution network models is relatively rare in the
literature. Kelly et al. [45] analyse the impact of a simulated fleet
of plug-in hybrid EVs on a distribution network; in doing so,
disaggregation of travel behaviour via analysis of the US National
Household Travel Survey is carried out to present differences in
driving habits – and expected charging load – from a fleet of
plug-in hybrid vehicles on the basis of age, income and loca-
tion (urban/rural). Dixon and Bell [44] present a model of EV
charging impact on a Scottish distribution network that uses a
set of socio-economic indicators, including employment type and
means of travel to work (which, as aforementioned, were found
in [20] to be amongst the main drivers of household vehicle
energy consumption), to assign disaggregated travel diaries and
simulated charging schedules to a distribution network based
on the socio-economic characteristics of the neighbourhood it
serves. However, in both [44,45], only EVs are considered and
HPs are not included. McKenna et al. [54] present a model to
investigate the impact of HPs on distribution networks by devel-
oping three archetypal socio-economically differentiated neigh-
bourhood clusters, based on analysis of UK Census data, thus
linking socio-economic indicators with HP demand. However,
in [54], only HPs are considered and EVs are not included. Ag-
bonaye et al. [55] present a tool for mapping the impact of EVs,
HPs and other LCTs on electricity network infrastructure. How-
ever, the analysis in [55] is carried out at the resolution of primary
substations; while this is useful for high-level analysis, it misses
the challenges of incorporating LCTs in distribution networks at
the local level.

To the authors’ knowledge, there is no work in the litera-
ture that has sought to simulate the combination of EV and HP
demand on distribution network infrastructure, at a higher reso-
lution than primary substations, using socio-economic indicators
to inform the application of LCT consumption data.

3. Contribution

From the related scholarship it is evident that although works
have probed elements within this research space, gaps remain
within the collective knowledge and this paper therefore ad-
dresses them as follows:

• The work carries out mapping of spatially linked gas de-
mand and socio-economic datasets and then through anal-
ysis identifies relationships between gas consumption and
social deprivation/affluence. The relationships support gen-
eralised socio-technical analysis in the absence of suffi-
ciently granular metadata and are used to support novel
spatial and socio-sensitive LCT modelling.

• A localised HP modelling methodology that couples two
established methods of converting gas demand to equivalent
electrical heat demand is incorporated where the developed
relationships between gas demand and social deprivation
are used as inputs to the modelling. The benefits of this

approach are shown by comparison with a generalised HP
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Fig. 1. High-level step-by-step overview of the developed methodology and its application.
modelling approach that uses raw trial data as used in [42].
Findings from this analysis provide novel insights into the
value of localised modelling with respect to socio-technical
analysis.

• In addition to the localised HP modelling, the work incor-
porates modelling of EVs where EV charging schedules are
based on socially disaggregated charging behaviour in the
form of charging diaries synthesised from UK NTS data [56,
57]. This allows for a combined infrastructure assessment
that accounts for both the electrification of heat and trans-
port in consideration of socio-economic indicators.

The core contributions are formalised through a novel high-
esolution assessment methodology that enables assessment of
lectrified heat and transport impact on transformer headroom at
cale using socio-economic indicators to inform the application of
CT consumption data. The methodology is applied to a fleet of
ver 4000 secondary transformers (typically 11/6.6 kV−400 V in
he UK) distributed across the north of Scotland and a subset are
sed to inform the analysis. Findings are then analysed primarily
rom the perspective of the incumbent DNO but the implications
nd value of such modelling capabilities for other stakeholders
.g., policy makers and local authorities are also discussed.
The remainder of the paper is organised as follows. Section 4

escribes the datasets used and their mapping, in addition to the
elational analysis undertaken. Section 5 describes the developed
ethodology and the LCT modelling techniques used to underpin

he approach, also describing the assessment mechanism. Sec-
ion 6 provides the results with accompanying analysis. Section 7
akes a wider contextual view of the presented findings and
ection 8 concludes the work whilst making a recommendation
or future research.

. Mapping and relational analysis

This section provides a brief description of the external data
sed to inform place-based LCT modelling and its conditioning,
t also describes the relational modelling between datasets. Out-
uts from the mapping and relational analysis then feed into
n infrastructure assessment that consists of LCT modelling and
mpact quantification as highlighted in the high-level step-by-
tep overview of the methodology shown in Fig. 1. The fig-
re also highlights the industrial application of this research
here the developed method is used to support engagement be-
ween different stakeholders and to inform interrelated decision-
aking. Mapping of the datasets and analysis was carried out in
ython and the GeoPandas package [58] was used to manage all
eospatial data.
4

4.1. Description and mapping of data

The data concerned includes: GIS data for Scottish Hydro Elec-
tric Power Distribution’s (SHEPD’s) network, the Scottish Index
of Multiple Deprivation (SIMD) published by the Scottish Gov-
ernment [59], gas demand data published by the Department
for Business, Energy & Industrial Strategy (BEIS) [60], Monitored
HP data from the Renewable Heat Premium Payment (RHPP)
scheme [61] and smart meter energy consumption data from the
Low Carbon London (LCL) project [62]. These are described as
follows.

4.1.1. SHEPD network GIS data
DNOs in GB typically record GIS data for their network assets

to assist with network management and planning [63]. In support
of this research, GIS data for SHEPD was made available to the
authors in the form of shapefiles, which is a geospatial vector
data format developed by the Environmental Systems Research
Institute (ESRI) [64]. This includes spatial and technical infor-
mation for their entire licence area which supplies the north of
Scotland. The spatial and technical information associated with
their secondary transformers is of specific relevance to this work.
However, although SHEPD’s GIS data is used, the hierarchical
methodology developed could be applied to any GIS transformer
dataset.

There are approximately 56,000 active secondary/distribution
transformers in the shapefile dataset provided by SHEPD. This is
comprised of approximately 47,000 pole mounted transformers
and around 9000 ground mounted transformers. 4000 ground
mounted transformers, for which technical and customer data are
available, are selected for use here.

4.1.2. Scottish index of multiple deprivation
The SIMD is the Scottish Government’s standard approach to

identifying areas of multiple deprivation [59]. It is an area-based
measure of relative deprivation over 6976 discrete data zones,
which are ranked from most deprived to least deprived [59]. The
2020 SIMD data zones [65] are ranked into 10 deciles. Geospa-
tial data is used to correlate SIMD data zones with transformer
location and to classify transformers by SIMD decile.

4.1.3. Gas demand data
BEIS records annual gas consumption information for every

postcode in the UK [60]. The mean consumption (kWh) is used
for this work. The 2020 gas information is first mapped to a
shapefile containing geospatial digital postcode boundaries for
Scotland [66]. Through this mapping, the spatial diversity in gas
demand for each postcode in Scotland is obtained. Most impor-
tantly, the digital postcode boundaries also identify which data
zone each postcode corresponds to. Note that the dataset is only

intended to consider domestic consumers and therefore excludes
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ndustrial and commercial dominated postcodes. However, it can
nclude postcodes dominated by smaller commercial premises
hich only marginally fail to meet the classification threshold,
uch postcodes are typically outliers within the observed dataset.

.1.4. RHPP: Monitored HP data
The RHPP scheme provided subsidies for households and com-

unities to install renewable heat options in residential proper-
ies [67]. An extensive monitoring campaign was carried out on
00 of these installations between October 2013 and March 2015.
he output dataset contains physical monitoring data including
-minute resolution electrical demand data, and metadata de-
cribing the features of the HP installations and the dwellings in
hich they were installed. A subset of this dataset [61] which
ontains electrical demand data for both air and ground source
Ps was used for the generalised modelling approach in this
ork, as also used in [42]. The raw daily HP demand profiles are
e-sampled from the 2-minute resolution to 30-minutes and a
inter period between 01/12/2013–26/02/2014 is considered.

.1.5. LCL: Smart meter energy consumption data
As smart meter data or transformer SCADA data is unavailable

o the authors for the areas concerned in this work, the domestic
emand is modelled from smart meter data recorded during the
CL project from 2011–2014 [62]. The smart meter readings were
aken at half hourly intervals and the consumer sample was based
n the Greater London population. During the project these con-
umers were classified into three categories based on CACI Acorn
roup [68]; ‘Affluent’, ‘Comfortable’ and ‘Adversity’. Following a
imilar approach as adopted in [52], more than 1800 daily profiles
or each day in a winter period between 01/12/2013–27/02/2014
re considered to represent a winter demand scenario. Therefore,
or each CACI Acorn classification, a bank of smart meter demand
rofiles for a shared winter period are available for sampling.

.1.6. Summary
The network GIS data is regularly updated and maintained by

he DNO and both the SIMD and Gas demand data are published
nnually by government-bodies. The LCL smart meter data and
he RHPP monitored data are the most recent publicly available
onitored datasets for this demand type in the UK. Whilst so-
iety has evolved since these trials were conducted, accurately
apturing the behavioural changes at the resolutions and scales
oncerned in this work, in terms of demand e.g., post COVID
ocietal changes to working routines, volatility in energy prices
nd technological modal shifts without monitored data remains
n ongoing challenge. Studies such as [69], have highlighted the
hallenges with representative HP demand modelling given the
ack of trial data and that alternatives to using monitored data
re limited by availability of household information at a granular
evel (to develop building physics modelling approaches that can
e validated). The confidence of modelling such granularities at
cale across a diverse housing stock (in consideration of occupant
iversity) is also a significant limitation. As such, the datasets
sed are considered to be largely representative of both current
omestic and HP demand behaviour. Though fundamentally, the
eveloped methodology would be able to take any HP and smart
eter monitored data as an input. Should new trial data become
vailable, the method could be used to investigate to what ex-
ent consumer end-use demand has changed and the subsequent
mpact on electricity networks which could inform modelling of
uture demand scenarios.
5

Fig. 2. Base winter weekday demand profile for each Acorn category compared
with generic Elexon winter weekday profile.

4.2. SIMD - demand relationship

This section provides a breakdown of the relational mod-
elling between the SIMD and both the LCL smart meter data
and the gas demand data. First, describing how the diversity in
conventional household demand is modelled with respect to the
SIMD. Then exploring the relationship between the SIMD and gas
consumption by describing the derivation of representative gas
consumption Cumulative Distribution Functions (CDFs) for each
SIMD decile.

4.2.1. SIMD and LCL domestic demand
From the smart meter daily profiles, an average daily winter

load profile for each Acorn category is obtained. Fig. 2 compares
these with the generic class 1 Elexon profile [70]. The figure
shows that for the smart meter data the daily demand shape is
similar between the Acorn categories. However, variation in mag-
nitude is observed indicating that ‘Affluent’ consumers have the
highest consumption and ‘Adversity’ the lowest, further confirm-
ing that socio-economic factors have an influence on household
energy consumption as described in Section 2.1. The figure also
highlights that smart meter peak demand occurs later in the
evening than the generic Elexon Class 1.

To account for heterogeneity in consumer demographic across
the areas concerned in this work, each transformer is classified
based on its location with respect to the SIMD e.g., each trans-
former located in a geographic area where the SIMD is 10 would
be classified accordingly. To relate the Acorn classified smart
meter profiles with the SIMD classified transformers, a simple
distribution alignment is considered based on the assumption
that all consumers connected to a secondary transformer are of
the category corresponding to the transformer’s assigned SIMD
decile (the average number of consumers for each secondary is
typically much lower than the SIMD data zone resolution which
on average contains 340 households). For transformers classified
with SIMD decile 9–10, connected consumers are considered to
be ‘Affluent’ according to the Acorn classification, 4–8 to be ‘Com-
fortable’ and 1–3 to be ‘Adversity’ where boundaries are defined
based on parallels between the Acorn classification and SIMD.

4.2.2. SIMD and gas demand
The relationship between SIMD decile and annual mean gas

demand is presented in Fig. 3. The interquartile range (IQR)
method was used to clean the dataset to remove any outliers [32].
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Fig. 3. Relationship between SIMD deciles and annual mean gas demand. (a)
ox plot distributions of gas demand for each decile. (b) Cumulative Distribution
unction of central 50% gas demand for each decile.

ig. 3(a) highlights that mean and variance increase with respect
o SIMD decile. This suggests that although there is correlation
etween social deprivation and gas demand, other factors such
s building characteristics e.g., building fabric, floor space and
onstruction type also have an effect on consumption.
As the dataset includes postcodes dominated by smaller com-

ercial premises which only marginally fail to meet the classifi-
ation threshold, these can be attributed to the higher portion of
he gas demand spread, whereas postcodes that are comprised of
oth gas and other heating solutions or dominated by properties
ot in continuous occupation can be attributed to the lower
ortion. As a result, the CDFs shown in Fig. 3(b) are created purely
rom the central 50% portion of each box plot distribution for
ach decile in Fig. 3(a). This is considered to be representative
f typical residential household gas consumption across each
f the deciles whilst accounting for variation in building stock
haracteristics internally within each SIMD data zone.

. Transformer assessment methodology

This section provides a detailed description of the developed
ssessment methodology and the modelling techniques used to
nderpin the approach. This includes details on both HP and EV
odelling and the mechanism used to evaluate the results.
6

Algorithm 1 Monte Carlo Assessment Approach

1: for si ∈ SIMD do
2: for T ∈ Transformers do
3: Use (5) to calculate Pdem
4: for p ∈ Penetrations do
5: while i < 100 do
6: Use (6) to calculate CHP

7: Use method in Fig. 5 and (1)–(4) to create lo-
calised socio-technical electrical heat demand
profiles based on si then sample according to CHP

8: Use (7) to calculate PHP
dem

9: Use (8) to calculate CEV

10: Sample EV charging diaries based on CEV

11: Use (9) to calculate PEV
dem

12: Use (10) to calculate daily headroom h
13: Store h for every iteration
14: i = i + 1
5: end while
6: return average of h for each p
7: end for
8: end for
9: end for

5.1. Methodology overview

The methodology is adaptable subject to the assessment sce-
nario under consideration. This work considers four scenarios:
the uptake of HPs in isolation modelled by using either the
localised method which accounts for social dimensions or the
generalised RHPP trial data method, the uptake of EVs in isola-
tion and the combined uptake of both EVs and HPs (using the
localised HP modelling method). A high-level flowchart of the
developed methodology for the combined assessment scenario is
presented in Fig. 4. The flowchart demonstrates how mapping of
external data is used to support relational analysis which feeds
into socio-technical and socio-spatial LCT modelling and then into
infrastructure assessment. A Monte Carlo assessment technique
is used with multiple iterations to account for variations in the
distribution of gas demand according to the CDFs for each SIMD
decile, HP usage profiles and EV charging profiles as similarly
used in [53]. Algorithm 1 provides a summary of the iterative
process for the combined scenario. For the HP only scenarios
steps 9–11 in Algorithm 1 are excluded and for the EV only
scenario steps 6–8 are excluded. For the generalised HP modelling
approach scenario, step 7 is replaced with the raw re-sampled
daily HP profiles which are stochastically sampled according to
HP penetration levels.

5.2. Localised heat pump modelling

A household’s electrical heat load is directly proportional to its
heat demand [69]. In turn, domestic heat demand is a complex
interdependent function of several components combining build-
ing physical parameters as well as the behavioural habits of the
occupants. This complexity is further compounded by the specific
HP parameters of a household, such as power rating, heat source,
and efficiency [69], as this governs the relationship between heat
output and electrical demand.

Note that whilst some ‘large’ heat loads such as commer-
cial and industrial loads may be decarbonised via electrification
e.g., industrial sized HPs or district heating/heat networks. They
may also follow alternative pathways e.g., use of hydrogen, and
other evolving technologies in this space. As this work is focused
at the secondary transformer resolution (by extension the LV



C. McGarry, J. Dixon, I. Elders et al. Sustainable Energy, Grids and Networks 35 (2023) 101118

l
h
h
d
h
s
b
i
b
p

Fig. 4. High-level representation of the developed assessment methodology.
evel) and primarily on space heating demand (the amount of
eat required to heat a building and to maintain a particular
eating profile), ‘large’ commercial and industrial modelling of
emand is excluded as it is considered that the bulk of this
eating demand, at least in the UK, will be connected above the
econdary transformers i.e., at 11/6.6 kV and above. There may
e scope in future work to include small-scale commercial and
ndustrial HP demand, though at the time of writing no trials have
een conducted yet to obtain monitored data in the UK for these
remises.
7

For the studies considered in this paper, in the absence of suf-
ficiently granular technical information surrounding household
physical and behavioural parameters, two established approaches
of converting gas demand to equivalent electrical heat demand
are employed, the Heat Demand Magnitude Localisation Model
and the Electrical Heat Demand Shape Model developed in [69].
These are combined to construct locally sensitive half hourly
electrical heat demand profiles where the developed relation-
ships between gas demand and social deprivation are used as
inputs to the modelling. A summary of the combined modelling
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Fig. 5. Methodology used to convert annual gas demand to localised electrical heat demand profiles.
pproach is outlined by Fig. 5 and a brief description of each
odel component is provided as follows.

.2.1. Heat demand magnitude localisation model
The Heat Demand Magnitude Localisation Model is used to

ransform the CDF sampled gas demand into a daily demand
agnitude that is proportionally scaled to local physical and
ehavioural components that influence heat demand. This gas de-
and serves as a proxy for local building, climate and behavioural
arameters. Firstly, a gas conversion efficiency (η) is used to
ransform the raw annual gas demand (Dannual

G ) into an equivalent
nnual direct heat demand (Dannual

H ) as shown in (1). For this
ork, a fixed gas boiler efficiency of 80% has been used. This has
een obtained by taking an average of over 2000 different mains
as boiler models with efficiencies ranging from 55% to 90.3%.
he recorded efficiencies are based on the Seasonal Efficiency
f Domestic Boilers in the UK (SEDBUK) rating scheme and are
tored in a database that is used to support UK building energy
erformance assessments [71]. Dannual

H is then converted into a
aily heat demand (Ddaily

H ) through (2) and (3) by assuming that
eat demand varies sinusoidally throughout the year in accor-
ance with temperature variation, Dannual

H provides the area under
he sinusoid which defines the amplitude and offset parameters
nd subsequently the daily demand variation throughout the year
nd x corresponds to day of year.

annual
H =

Dannual
G

η
(1)

Dannual
H =

∫
f (x) dx =

∫ 365

0
Damp × sin(

2π
365

x + φ) + Doff dx (2)

daily
H = f (x) = Damp × sin

(
2π
365

x + φ

)
+ Doff (3)

Ddaily
E =

Ddaily
H

COP
(4)

The default amplitude (Damp) and offset (Doff ) parameters have
een applied. These fit parameters were tested versus moni-
ored gas meter data collected at 30-minute intervals for several
housands of customers in 2010 as part of the Energy Demand
esearch Project (EDRP) [72] and monitored HP heat and elec-
rical demand data obtained from the RHPP dataset [61]. The
aily heat demand is transformed into a daily electrical demand
Ddaily
E ) via a coefficient of performance (COP) through (4). From

he RHPP dataset HP COP typically ranges from 2 to 4 [61] which
s comparable to the air and ground source HP COPs presented
n [73]. A fixed COP of 3 is used for the studies considered in this
aper.
8

5.2.2. Electrical heat demand shape model
The Electrical Heat Demand Shape Model developed in [69]

is then used to transform the daily electrical demand into a
set of half hourly demand figures sensitive to local temperature
conditions. The modelling approach incorporates monitored HP
data from the RHPP dataset and is validated against operational
demand data collected during the LCL HP trials [74]. Fundamen-
tally, the work in [69] identified common recurring electrical heat
demand profiles that repeat within the RHPP dataset, despite the
disparate geographical and demographic conditions. These have
been normalised for an ambient temperature of 0°Celsius which is
used to simulate winter cold conditions. The normalised profiles
are then used as the basis for HP daily load shape forming and
are sampled accordingly.

5.3. Electric vehicle modelling

In addition to traditional power rating and capacity challenges,
a significantly challenging aspect of EV modelling is the un-
certainty surrounding consumer behaviour. External factors are
expected to influence consumer travel routines and as a conse-
quence EV charging patterns. In this work, residential EV charging
schedules synthesised from the UK NTS [75] are used to cap-
ture elements of the significant variation in energy demand for
car usage across society. This method was previously developed
in [56,57] and used in other works including [52].

EV modelling in this work follows the government-lead as-
sumption that the majority charging in the UK will take place
at home [25]. The area modelled also has high instances of off-
street parking. Additionally, from the perspective of the DNO,
modelling at-home charging only is more conservative, as it is
reasonable to expect they will have to deal with scenarios where
all vehicle chargers in a given area are home-chargers rather
than work-chargers or a combination of (particularly in purely
residential areas where HPs are more likely to be installed). Also,
it is considered that fast charging stations or charging hubs are
more likely to attract specific attention and study from DNOs
and would typically fall within the remit of the local authority
planning system. Therefore, there would be scope for DNOs to
anticipate their connection and to influence their location to
ensure compatibility with network capacity.

As in [57], EV modelling considers routine charging schedules
to be the primary charging scenario. These charging schedules
consider the principle of ‘least inconvenience’ to the consumer
where charging behaviour has become routine and reflective
of social behaviour. EVs are connected when consumers arrive
at their households irrespective of the vehicle’s state of charge
seeking the maximum feasible state of charge gain during the
parked duration and by the charging constraints. These charging
patterns are essentially ‘dumb’ in that there is no incentivisa-
tion for scheduling or optimisation that facilitates demand-side
management. In addition, this work assumes all households have
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he necessary EV charging infrastructure at each residence and
ssumes that a maximum of one EV can be charged at each
esidence at any given interval. A set of 10,000 winter weekday
harging schedules have been derived with a fixed 7.4 kW rating
high power ‘fast’ home charging, typically a single phase 32 A,
30 V connection) across a range of ‘typical’ vehicle battery sizes:
4, 30, 40, 60 and 75 kWh. An inverter efficiency of 88% [76] has
een used for the heuristic which is further described in [56,57].

.4. Transformer headroom

Transformer headroom is one of the key indicators as to when
NO intervention may be necessary. Headroom relates to the
emaining capacity after the downstream demand has been met.
s in [52], headroom is used analogous to hosting capacity (HC).
hilst DNOs in the UK may carry outing HC assessments of their

nfrastructure, they often use ‘headroom’ and ‘footroom’ as the
etrics for doing so. Note that ‘headroom’ is used to distinguish

rom ‘footroom’ which could also fall under the HC bracket, where
n the presence of certain LCTs ‘footroom’ would be the possible
ncrease (or decrease) in injection by e.g., vehicle-to-grid or solar
V within export limits.
Network planners historically adopted a ‘fit and forget’ philos-

phy, oversizing transformers by building in additional headroom
o accommodate marginal demand growth. The demand growth
ssociated with the uptake of LCTs is expected to significantly
rode existing headroom. Across the distribution network this
ay lead to overloading and eventual degradation of assets as

hey operate closer to their physical limits.
To determine the daily headroom profile for each individual

ransformer, the aggregated demand, Pdem,t at time t , where t =

1, 2, 3, . . . , 48 for all consumers (i = 1, 2, 3, . . . , TC , where TC is
the total number of consumers), is first calculated as follows:

Pdem,t =

TC∑
i=1

lpi,t (5)

here lpi,t is the measurement of the ith consumer load profile
t the tth interval. The aggregated HP demand, PHP

dem,t , at the tth
nterval, is then calculated as follows:
HP

= TC × HPpen (6)

HP
dem,t =

CHP∑
i=1

HPi,t (7)

here CHP is the number of customers with a HP based on TC ,
Ppen is the HP penetration percentage and HPi,t is the measure-

ment of the ith HP profile at the tth interval. The aggregated EV
demand PEV

dem,t , at the tth interval, is similarly calculated:

EV
= TC × EVpen (8)

PEV
dem,t =

CEV∑
i=1

EVi,t (9)

where CEV is the number of customers with an EV based on TC ,
EVpen is the EV penetration percentage and EVi,t is the measure-
ment of the ith EV profile at the tth interval. The headroom, ht ,
at the tth interval, is then obtained from:

ht =
Pmax − (Pdem,t + PHP

dem,t + PEV
dem,t )

Pmax
× 100 (10)

here Pmax is the transformer rating.
To visualise the results geospatially the daily headroom is split

nto four bands as shown in Fig. 6. These bands are based on
9

Fig. 6. Example of daily headroom profiles for both the localised and generalised
HP modelling approaches with associated constraint banding.

the constraints in (11) and are primarily used to determine the
priority state of the transformer.

hx =

⎧⎪⎪⎨⎪⎪⎩
L, ht ≥ 75
M, 75 > ht ≥ 50
H, 50 > ht ≥ 25
C, 25 > ht

(11)

here hx is a set containing the priority classification of ht , L is
ow-priority, M is Medium-priority, H is High-priority and C is
ritical-priority. The final priority state S is that in which the
ransformer spends most time over the 48 daily time periods.
or example, in Fig. 6, for the generalised approach, as the trans-
ormer spends the most time in 75 > ht ≥ 50, the transformer’s
would be Medium-priority. For the localised approach, as the

ransformer spends the most time in 50 > ht ≥ 25, the
ransformer’s S would be High-priority. This provides a means
f classifying all transformers in terms of their criticality with
espect to the urgency of a network management intervention.

. Results and analysis

The results section is split into two subsections; firstly, a com-
arative analysis between the localised socio-technical approach
o HP modelling and the generalised RHPP approach is presented.
hen EVs are introduced, independently and in combination with
he localised HP modelling approach which enables combined
mpact assessment analysis.

.1. Comparative analysis between localised socio-technical and
eneralised HP modelling

To determine the spread of social deprivation impact, analysis
s focused on transformers classified by SIMD deciles 1, 5 and 10.
subset of the relevant transformers are used to demonstrate

he impacts of both the localised and generalised HP modelling
pproaches. The subset and examples presented are selected to
apture variation in both transformer rating and the number of
onnected consumers to provide an indication of the expected
ariance and impact across the asset base. A larger subset is
hen used to support geospatial analysis which demonstrates
calability of the methodology. The larger subset is also selected
o allow for cross-comparison between areas with differing levels
f social deprivation.



C. McGarry, J. Dixon, I. Elders et al. Sustainable Energy, Grids and Networks 35 (2023) 101118
Fig. 7 provides the daily headroom profile of two different
transformers at varying HP penetrations (25%/50%/75%/100%) for
SIMD decile 1. Figs. 8 and 9 show the profiles for SIMD deciles 5
and 10, respectively. From the two examples provided in Fig. 7,
the headroom for the socio-technical localised HP modelling ap-
proach varies compared with the generalised approach. Variation
is also observed in Fig. 9. In Fig. 8 the headroom under both ap-
proaches is similar with marginal variation. The figures highlight
that the generalised model tends to underestimate headroom in
the most socially deprived areas and to over-estimate it in the
least socially deprived. This infers that the localised model pro-
vides an improved assessment of the true headroom in compar-
ison with the generalised approach. Note that although daily HP
demand profile shape is sensitive to temperature variation [69],
as winter scenario is considered for both approaches, the impact
of temperature variation is negated and due to the numbers of
consumers concerned, diversity in consumer behaviour is also
negated [42]. This explains why similar daily headroom shapes
are observed for both approaches. It is considered that with the
variation in magnitude observed the similar-but-scaled curves are
sufficiently modelling local diversity for the purpose of this study.
Fig. 10 further demonstrates this by highlighting the daily trans-
former headroom for multiple different transformers at 100%
penetration each with related SIMD deciles 1, 5 and 10, respec-
tively. Fig. 10 also confirms that headroom is highly dependent
on transformer rating and number of connected customers. More
importantly, Fig. 10(c) specifically highlights that in taking a gen-
eralised approach to modelling HP demand, in certain instances,
the headroom would be underestimated to the extent that it fails
to capture an overloading scenario that would otherwise be iden-
tified by taking a localised HP modelling approach. Conversely, in
Fig. 10(a), by taking a generalised approach, a network manage-
ment intervention may be triggered before necessary due to an
overestimation of the headroom. Fig. 10 highlights that inaccurate
estimation of headroom does not apply for all transformers and
as such, the proposed classification method allows for prioritisa-
tion in terms of their criticality. In general terms, the localised
HP modelling approach can capture generic demand variation.
However, by directly linking demand to socio-technical charac-
teristics, the headroom can be better quantified with respect to
socio-spatial diversity.

The variation in headroom at each transformer as demon-
strated in Fig. 10 is geospatially represented in both Figs. 11
and 12. A geospatial snapshot of daily transformer headroom at
the four levels of HP penetration studied using the generalised
HP modelling approach and constraint bands is presented in
Fig. 11. The figure demonstrates the spatial diversity in secondary
transformer headroom across a region in Scotland encapsulat-
ing a portion of the 4000 transformers considered. The figure
provides a visualisation of the impact HP uptake has on trans-
former headroom in different areas of network. The available
headroom noticeably declines as HP penetrations are increased.
Fig. 12 presents a snapshot of the same area using the localised
HP modelling approach and constraint bands. The impact of the
localised approach in comparison with the generalised is visually
evident.

Figs. 13 and 14 show the effect of localised modelling in
relation to relative affluence. Fig. 13 provides an area snapshot
with emphasis specifically on areas with lower social deprivation
(SIMD deciles 9 and 10). The figure compares the generalised
approach (top) with the localised approach (bottom). As these
areas have lower social deprivation, HP demand is likely to have
a greater impact on headroom in these regions. Fig. 14 provides
an area snapshot with emphasis specifically on areas that have
higher social deprivation in terms of SIMD (deciles 1, 2 and 3). The

opposite effect can be observed, where the impact of HP uptake

10
is less prominent for the localised modelling approach compared
with the generalised (as also demonstrated in the presented
examples in both Figs. 7 and 10(a)).

Using the classification defined by (11), each transformer is
classified in terms of S as determined by the modelled ‘worst-
case’ daily headroom scenario. Figs. 15(a) and 15(b) compare
transformer intervention priority for each SIMD decile and mod-
elling approach, respectively. In Fig. 15(a), the proportion of High-
priority transformers, particularly for 100% HP penetration, are
relatively consistent across the SIMD deciles with only minor
variation. However, in Fig. 15(b) there is a trending increase from
decile 1 to 10 and a reduction in the number of transformers
classified as Low-priority is observed. This reduction trend is
present but less pronounced in Fig. 15(a). This is likely a conse-
quence of the variation in domestic demand from the diversified
base load profiles shown in Fig. 2. In broad terms, the figures
emphasise the impact socio-technical and socio-spatial diversity
may have in influencing network decision-making. They highlight
that failing to consider socio-economic diversity may lead to
an over/underestimation of transformer headroom in different
locations which may feed into reinforcement and flexibility plan-
ning. This confirms the need for consideration of socio-economic
indicators in the decision-making process. Also noting that this
diversity may have an impact on rate of LCT uptake which has
the potential to influence decision-making further.

6.2. Combined LCT assessment

In this section the combined impact of electrified heat and
transport is investigated. Both HPs and EVs are initially con-
sidered independently, then they are integrated, as shown in
Fig. 4, to assess the cumulative impact. Fig. 16 shows the aver-
age daily transformer headroom for the localised HPs only, EVs
only and combined scenarios for two transformers with varying
penetrations of each (0%/25%/50%/75%/100%). It is noted that HP
and EV uptake are assumed to be the same here, though the
developed methodology can account for independent variation.
As previously, the transformers have been selected to highlight
the general impact of LCT uptake on the daily headroom pro-
file shape and magnitude. The figure highlights that for both
transformers under the HP only scenario there is a noticeable
reduction in headroom in the early morning and early evening.
This can be attributed to space heating requirements which gen-
erally align with standard daily social rhythms. As penetrations
increase, the headroom is significantly reduced, although the
extent varies between the examples presented. In the EV only
scenario, a noticeable evening peak can be observed, this is a
consequence of the ‘least inconvenience’ consumer charging be-
haviour as described in Section 5.3. Both scenarios in isolation
have remaining headroom at 100% penetration. However, in the
combined scenario for both cases, when penetrations exceed
75%, the headroom becomes negative during the evening peak
which indicates that overloading has occurred. In the combined
scenario, due to HP early morning demand and combined HP/EV
evening demand, the daily headroom is significantly reduced
across the day which may have negative consequences for their
long-term health and serviceability [77]. Fig. 17 presents the
geospatial visualisation of daily transformer headroom for the
combined HP and EV uptake scenario based on the defined con-
straint bands. In comparison with the HP only scenario using the
localised modelling approach shown in Fig. 12, the headroom is
significantly more challenged across the asset base, particularly
at higher penetrations.

This analysis emphasises the extent of the cumulative chal-
lenge with both the decarbonisation of heat and transport via
electrification. The combination of both HPs and EVs, and the
changes in headroom indicates that demand-side management
techniques such as peak shaving through EV charge scheduling

must consider the mix of LCTs and their relative demand.
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Fig. 7. Daily transformer headroom at different penetrations for SIMD decile 1. (a) Example 1. (b) Example 2.

Fig. 8. Daily transformer headroom at different penetrations for SIMD decile 5. (a) Example 1. (b) Example 2.

Fig. 9. Daily transformer headroom at different penetrations for SIMD decile 10. (a) Example 1. (b) Example 2.
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Fig. 10. Daily transformer headroom for multiple different transformers at 100% penetration. (a) SIMD 1. (b) SIMD 5. (c) SIMD 10.
7. Discussion

The discussion presented in this section takes a wider con-
textual view of the described findings and considers the broader
implications. The value of the developed methodology is also
established with respect to key parties that are actively involved
in the energy transition.

7.1. Distribution network operators

The developed methodology allows for broad infrastructure
assessments at a local level whilst accounting for socio-technical
and socio-spatial diversity. This is attractive for DNOs due to
the high uncertainty associated with LCT uptake and impact
across different regions [4]. Having a better understanding of LCT
demand allows for improved quantification and understanding
of the associated impact. This is necessary when considering
local flexibility options; there is a need to understand how much
flexibility is available and when [52]. By having better foresight
into the impact of local diversity on LCT usage, the value in
adopting flexible solutions can be better quantified in comparison
with conventional reinforcement.

The findings presented in this work demonstrate the impact
of place-based socio-technical analysis in this regard, emphasis-
ing that whilst a non-localised modelling approach may still be
considered an improvement to conventional simplistic load mod-
elling techniques for headroom quantification, such approaches
can risk misallocation of planning resources and failure to re-
inforce in time in certain areas. The findings also indicate that
as the network evolves, local level challenges will emerge as to
12
when and where investment in infrastructure and management
solutions should be focused, emphasising the challenge with both
heat and transport electrification and the extent that this may
impact existing infrastructure.

Historically, due to the relatively predictable nature of do-
mestic demand there was a lack technical need for extensive
monitoring and modelling of LV networks. As such, the vast
majority of system wide demand related studies are conducted
at a primary level [55] given the volume of secondary transform-
ers and the data related challenges. However, with the uptake
of locally sensitive LCTs, this work takes a higher resolution
approach and is targeted at the secondary level. The findings
are generalised indicators of the true headroom (downstream
voltage limit breaches and low voltage cable overloads are not
considered) and are used predominantly to reveal the impact of
localisation and the need to consider socio-technical and socio-
spatial dimensions in detailed technical studies. The final decision
between adopting a flexible solution or reinforcement to manage
the electrification of heat and transport as part of a development
plan would ultimately require detailed technical analysis, but the
developed method, through the prioritisation criteria, can help
identify where such detailed targeted assessment studies should
be performed.

In terms of validation, as it was common for DNOs to only
install monitoring equipment at the primary level as a business
as usual practice, monitored data for secondary transformers is
relatively scarce. As part of RIIO-ED2, there is ongoing work
being carried out by the DNOs to increase visibility and au-
tomation of the distribution networks, this includes installing LV
on-load tap changing transformers and monitoring equipment at
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Fig. 11. Visualisation of daily transformer headroom for each penetration using the generalised HP modelling approach and constraint bands.

Fig. 12. Visualisation of daily transformer headroom for each penetration using the localised HP modelling approach and constraint bands.
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Fig. 13. Comparison of the generalised approach (top) and the localised (bottom) in less deprived areas (SIMD deciles 9 and 10) at 100% penetration.

Fig. 14. Comparison of the generalised approach (top) and the localised (bottom) in more deprived areas (SIMD deciles 1, 2 and 3) at 100% penetration.
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Fig. 15. Transformer intervention priority for each SIMD decile. (a) Generalised HP modelling approach. (b) Localised HP modelling approach.
Fig. 16. Average daily transformer headroom for HP, EV and combined uptake scenarios for each penetration. Example 1 (top) Example 2 (bottom).
the secondary level (with ground mounted transformers more
of a priority than pole mounted) [78]. Whilst this is a positive
step, representative data for comparative statistical analysis and
validation of the presented method for the areas concerned in this
work may not be available for some time. Any monitored data
that currently exists is limited for validation purposes as the pen-
etrations of EVs/HPs simulated in this analysis are not yet seen
on distribution networks. Therefore, any existing monitored data
would not allow for direct statistical comparison, as the power
flows and voltages would be reflective of the existing demand
and not representative of high EV and HP penetration scenarios.
Additionally, whilst field trial datasets for different areas with
monitored data have been made publicly available over the years,
these typically do not capture the demographic and geospatial
information that is relevant to this analysis limiting the ability to
carry out sufficiently detailed ‘equivalent analysis’. Furthermore,
these trials tend to be limited to either HPs or EVs and data for
combined trials is extremely limited. Therefore, to validate the
analysis, it is recommended that a bespoke field trial be carried
out to obtain actual field data that the modelling methodology
15
could be compared and benchmarked against using various sta-
tistical metrics e.g., mean absolute percentage error or coefficient
of determination to robustly validate modelling accuracy and
confidence. Analysis of detailed simulations and field trial data
has been carried out in the likes of [79,80] emphasising that
similar techniques could be used when representative monitored
data becomes available in the future.

7.2. Local authorities and policy makers

The presented analysis takes the perspective of the DNO focus-
ing primarily on distribution transformers. However, the benefits
and implications of such modelling for external stakeholders is
also considered of value.

Local authorities and policy makers are partly responsible for
ensuring decarbonisation targets are met [81]. They have the po-
tential to influence and guide specific decarbonisation pathways
as there are various means of achieving these targets, particularly
in terms of heat decarbonisation. This could include subsidies for
retrofitting building stock with energy efficiency improvements
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Fig. 17. Visualisation of daily transformer headroom for each penetration for combined HP and EV uptake based on the constraint bands.
n areas of high social deprivation to support specific technology
ptake or subsides for the technologies and installation costs.
his requires high-level planning and a significant understand-
ng of local requirements. The Scottish Government’s Local Heat
nd Energy Efficiency Strategies (LHEES) aim to establish local
uthority area-wide plans and priorities for improving the energy
fficiency of buildings and decarbonising heat [82]. However, it is
ecognised that the feasibility of interventions from such parties
re highly dependent on future network capability and head-
oom. As such, works including [83], are recommending that local
overnment should have a statutory role in guiding the future
evelopment of local energy infrastructure, including investment
ecision-making. To do so effectively, whilst also addressing so-
ial objectives, they need an understanding of the capability of
he network and future flexibility potential based on a localised
nderstanding of consumer behaviour. This would allow for net-
ork investment to be optimised with better foresight of regional
conomic plans and local area energy plans.
The development of this methodology and the findings pre-

ented demonstrate the influence local sensitivities may have
n relation to electrical infrastructure impact and subsequent
nvestment requirements. As such, the analysis presented in this
ork has the ability to support a ‘just transition’ which is a
ey component of many national government-strategies [11], by
nabling policy makers and local authorities to better understand
he wider impacts of place-based electrification i.e., by having a
etter understanding of HP uptake impact in a specific region thus
nabling co-developed plans with the DNO to be determined. This
hen allows for planning and funding allocation to be optimised
ith respect to 2030 targets in the Net Zero transition. This is
articularly valuable when considering social welfare and fuel
overty [84]. It is highlighted in [83], that English regions with
he highest fuel poverty and coldest winter climates are not
16
receiving the most heat funding. This reiterates that the social
imbalance of wealth may inadvertently have an influence on
network investment as early adopters and ‘able-to-pay NOW’
consumers are typical located in areas with lower social depri-
vation. The methodology and findings presented can therefore
provide the Government and local authorities with insight into
the implications of their strategies and frameworks with respect
to the consequential impacts on electrical network infrastructure
and the associated costs. Additionally, a more direct application of
the method may see social investors support increased uptake of
HPs in less affluent areas as there is likely to be more headroom
for them to do so without reinforcement. Equally funders may
(through participation in the regulatory process) promote and po-
tentially contribute financially to support reinforcement in more
affluent areas so that those who can afford to install HPs have
the ability to do so unimpeded by network capacity and lengthy
reinforcement times.

More broadly, although the work focuses on the decarbon-
isaton of heat and transport with an emphasise on EVs and
HPs, the developed method has the ability to support wider
decarbonsiation analysis and assessment of diverse technological
impacts on electricity infrastructure e.g., to investigate trade-
offs between multi-carrier decarbonisation pathways. For ex-
ample, by identifying areas where electricity infrastructure is
particularly challenged by electrification, alternative methods of
decarbonisation can be explored and the full ramifications and
costs associated with deploying these solutions assessed. With
limited knowledge into the impacts of decarbonisation pathways
on electrical network infrastructure, local authorities and policy
makers may inadvertently make decisions that would see decar-
bonisation become significantly more expensive than necessary.
Exactly how to perform this multi-carrier analysis at sufficiently
localised resolutions and at scale with consideration for socio-
economic factors and existing infrastructure is a challenge many
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takeholders in the energy transition are struggling to overcome.
he developed method has the potential to feed into wider multi-
isciplinary collaborative works that are seeking to tackle this
roblem.

. Conclusions and future work

This work has presented a novel assessment methodology that
nables quantification of electrified heat and transport impact on
ransformer headroom at scale using socio-economic indicators
o inform the application of LCT consumption data. The value of
his quantification has been demonstrated on an existing physical
ransformer dataset and findings have been contextualised for
ifferent actors involved in the energy transition.
Findings from the analysis provide novel insights into the

alue of localised modelling with respect to socio-technical and
ocio-spatial analysis. In particular, they indicate that the broad
ink between social diversity and heat demand variation has
he potential to influence decision-making. This is of particular
oncern in the near-term where affordability and access to LCTs
s expected to be a barrier for those in areas with higher social
eprivation. The findings also highlight an increasing need to con-
ider the combined uptake of different LCTs with respect to the
lectrification of heat and transport. In particular, they emphasise
he cumulative severity of this combined impact and confirm
hat demand-side management services will be required to avoid
ignificant evening peak demands. This may include scheduling
f EV charging, adoption of time-of-use tariffs and changes in
onsumer energy awareness and behaviour.
Future work would expand on this research through use of de-

ailed localised forecasting of LCT uptake, this would provide en-
anced insight into the challenges which social diversity presents
or local network infrastructure investment planning. Addition-
lly, in recognition that this work focuses primarily on EVs and
Ps, there would be scope to investigate a wide array of diverse
CTs e.g., solar PV, thermal storage and combined heat and power
CHP), to ascertain the combinatorial impacts of electrification on
ey infrastructure.
The future of decarbonised domestic heating is highly uncer-

ain with numerous different technological options available and
hat different areas may take radically different decarbonisation
athways e.g., use of HPs, CHP, district heating and hydrogen.
his is expected to have varying impacts on electricity network
nfrastructure and how consumers interact with heating systems
n different locations. Whilst this work has in part captured the
mpact of place-based localisation and diversity in relation to
Ps there is scope to conduct further research to include differ-
nt heating technologies. Supporting analysis is also required of
he behavioural and economic triggers for switching to EVs and
Ps which will influence to what extent changes in transport
nd heating will be clustered in space and time (this may be
ffected by local affluence and could lead to local changes in
oad shape). Future research would also further demonstrate how
uch modelling techniques can directly support decision-making
ith respect to fuel poverty beyond the current understanding
nd demonstrate the value of local flexible demand-side manage-
ent options with consideration for socio-economic indicators

or informing ahead of need investment decision-making.
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