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Abstract—Recently, part information of pedestrian images has
been demonstrated to be effective for person re-identification
(ReID), but the part interaction is ignored when using Trans-
former to learn long-range dependencies. In this paper, we
propose a novel transformer network named Completed Part
Transformer (CPT) for person ReID, where we design the part
transformer layer to learn the completed part interaction. The
part transformer layer includes the intra-part layer and the
part-global layer, where they consider long-range dependencies
from the aspects of the intra-part interaction and the part-
global interaction, simultaneously. Furthermore, in order to
overcome the limitation of fixed number of the patch tokens in
the transformer layer, we propose the Adaptive Refined Tokens
(ART) module to focus on learning the interaction between
the informative patch tokens in the pedestrian image, which
improves the discrimination of the pedestrian representation.
Extensive experimental results on four person ReID datasets,
i.e., MSMT17, Market1501, DukeMTMC-reID and CUHK03,
demonstrate that the proposed method achieves a new state-
of-the-art performance, e.g., it achieves 68.0% mAP and 84.6%
Rank-1 accuracy on MSMT17.

Index Terms—Person ReID, Transformer, Adaptive Refined
Tokens.

I. INTRODUCTION

PERSON re-identification (ReID) [1]–[4] aims to associate
the target pedestrian across multiple non-overlapping

cameras, which has become an important component in the
intelligent video surveillance system. However, it is a chal-
lenging task because pedestrian images are captured from
unconstrained environments, where the pedestrian appearances
are easily influenced by many factors such as occlusions,
illuminations, viewpoints, poses, etc [5]–[7].

In order to overcome the above-mentioned challenges, a
large number of studies focus on learning robust and dis-
criminative features for person ReID [8]–[11]. With the rapid
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Fig. 1. (a) The patch tokens are obtained from the whole pedestrian image.
(b) The proposed method generates patch tokens from the stripe parts of
pedestrian image, where we build both intra-part interaction and part-global
interaction so as to learn the completed part interaction. The red box and the
red bidirectional arrow indicates to learn the interaction using self-attention
and the cross-attention, respectively.

development of deep learning, deep feature learning methods
[2], [11]–[14] have significantly improved the performance of
the person ReID task. However, most of them usually adopt
the Convolutional Neural Networks (CNNs) as a backbone
to extract deep features, where the long-range dependencies
are neglected. This is because the CNNs-based methods are
mainly composed of a series of convolution filters having
limited receptive field sizes. The long-range dependencies are
also known as the global context dependencies, which are
mainly represented by the interactive learning from the whole
pedestrian image.

Recently, Transformer [15] is proposed to learn long-range
dependencies using self-attention mechanism, and it is suc-
cessfully applied in Natural Language Processing (NLP). Af-
terwards, Vision Transformer (ViT) [16] as a pure transformer
model achieves huge success in image classification, and then
it is rapidly expanded to many vision tasks, such as semantic
segmentation [17], visual object tracking [18] and GANs [19].
As for person ReID, some transformer methods [9], [20], [21]
divide pedestrian image or feature maps into a series of non-
overlapping patch tokens to learn global interaction as shown
in Fig. 1 (a). Here, each patch token is changed into a feature
vector, and the interaction between the patch tokens simul-
taneously represents the interaction between feature vectors,
hence learning the relationships of the patch tokens in different
positions using the self-attention mechanism. However, there
are two limitations of the transformer methods for person
ReID. Firstly, the information of rigid stripe parts has been
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proven to be effective for person ReID, but it is ignored 
when learning the interaction between patch tokens. Secondly, 
the number of patch tokens in the transformer layer keeps 
fixed, w hich l eads t o i nsufficient le arning of  sa lient regions 
for pedestrian images. Hence, the transformer model needs 
to be designed for person ReID so as to overcome these 
shortcomings.

In this paper, we propose a novel transformer network 
named Completed Part Transformer (CPT) for person ReID, 
where we design the part transformer layer to learn the 
completed part interaction. The part transformer layer could 
learn long-range dependencies from the aspects of the intra-
part interaction and the part-global interaction, and it consists 
of the intra-part layer and the part-global layer. Specifically, as 
for the intra-part layer, we first split each pedestrian image into 
several stripes, in which each stripe is divided and mapped into 
a series of non-overlapping patch tokens as shown in the left of 
Fig. 1 (b). Then, it builds long-range dependencies by learning 
the interaction between all patch tokens in each stripe. Unlike 
the traditional global interaction, we focus on the interaction 
between the patch tokens within each part so as to integrate 
the part information when learning the interaction.

In order to learn the completed part interaction, we further 
learn the interaction between the stripe part and the patch 
tokens of the whole pedestrian image so as to make the 
stripe part incorporate more information. Correspondingly, 
we propose the part-global layer to obtain the part-global 
interaction. Specifically, w e l earn t he i nteraction b etween the 
class tokens of the stripes and the output of the previous part-
global layer to obtain the fused class tokens. Hence, the fused 
class tokens could represent the part information more flexibly 
due to interacting the learnable information. Afterwards, we 
build the part-global interaction between the fused class tokens 
and the patch tokens from the whole pedestrian image by 
applying the cross-attention mechanism as shown in the right 
of Fig. 1 (b), where we take the fused class tokens as queries 
and the patch tokens from the whole pedestrian image as keys 
and values. Finally, we aggregate the output of the last part-
global layer through the max pooling to obtain the global token 
for subsequent optimization.

Furthermore, the fine-grained i nformation o f h uman body 
parts is a vital clue to distinguish the pedestrian, and mean-
while some patch tokens in each stripe contain irrelevant 
information of pedestrian images. But, the fixed n umber of 
patch tokens in the transformer layer is difficult t o mine 
fine-grained i nformation a nd r estrain i rrelevant information 
for person ReID. Hence, we propose the Adaptive Refined 
Tokens (ART) module to retain the patch tokens with more 
information in each stripe during the learning process of the 
intra-part interaction. Since the patch tokens learned by the 
part transformer layer contain the completed part information, 
we generate the part masks based on the affinity m atrices of 
the part transformer layer. Then, we insert the part masks 
into the intra-part layer to select the patch tokens with more 
information in each stripe and build their dependencies in 
order to learn discriminative features.

The main contributions of the proposed method are sum-
marized as follows:

• We propose CPT to learn the completed part interaction
for person ReID, where we design the part transformer
layer to consider long-range dependencies from the as-
pects of the intra-part interaction and the part-global
interaction.

• We propose the ART module to improve the discrimi-
nation of the pedestrian features by retaining informative
patch tokens, where we utilize the part masks to establish
the dependencies of the patch tokens with more informa-
tion in each stripe of pedestrian image.

• Extensive experimental results demonstrate that the pro-
posed method achieves a new state-of-the-art performance
on four person ReID datasets.

II. RELATED WORK

In this section, we first introduce the person ReID, and then
introduce the visual transformer.

A. Person ReID

The existing person ReID methods are mainly divided into
three categories, i.e., hand-crafted descriptors [22], [23], metric
learning methods [24]–[28] and deep learning methods [2],
[8], [11], [13], [29]. In recent years, deep learning methods
have become mainstream approaches in the person ReID task
due to the promising performance. These approaches focus on
learning global features [11], [30]–[34] and local features [1],
[2], [12], [13], [35], [36].

As for the global features, Wang et al. [30] propose a
joint learning framework consisting of single-image glob-
al representation and cross-image global representation for
person ReID. Chen et al. [31] propose to jointly optimize
classification tasks and ranking tasks simultaneously so as to
learn discriminative global features for person ReID. Li et
al. [11] propose Pose-Guided Representation (PGR) learning
for person ReID, where they consider the human part cues to
supervise the training process of global features.

The local features of pedestrian images could offer body
structure information which is beneficial for person ReID. For
example, Sun et al. [2] propose to learn stripe-based local
features by dividing pedestrian images into fixed horizontal
stripes. Wang et al. [12] split pedestrian images into overlap-
ping stripes with different granularities so as to learn multi-
scale local features. Zhang et al. [13] propose Heterogeneous
Local Graph Attention Networks (HLGAT) for person ReID,
in which they learn the intra-local relation and the inter-local
relation by modeling the completed local graph. Ding et al.
[36] propose the Multi-task Part-aware Network (MPN) which
is designed to extract semantically aligned part-level features
from pedestrian images for person ReID.

Furthermore, some person ReID methods [37]–[40] utilize
the attention mechanism to enhance the representations of
pedestrian images. For example, Wang et al. [38] propose the
fully attentional block which creates both channel-wise and
spatial-wise attention information to deal with the misalign-
ment problem and localize discriminative local features so as
to mine the useful features. Chen et al. [39] propose the self-
critical attention learning method to improve the effectiveness
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Fig. 2. The overall framework of the proposed method for person ReID. We first split each pedestrian image into several stripes, and then feed them into L
part transformer layers where each part transformer layer consists of the intra-part layer and the part-global layer. Furthermore, we propose the ART module
to generate the part masks based on the affinity matrices of the part-global layers, and we insert the part masks into the intra-part layer to retain informative
patch tokens in each stripe. In the test stage, we employ the global token from the part-global layer and the class tokens from the intra-part layer for inference.

of the attention model by considering the attention confidence
level. Ren et al. [40] build an end-to-end network S2-Net
which designs the semantic attention to learn the human
semantic partition and the saliency attention to capture the
salient non-human parts.

B. Visual Transformer

In recent times, the transformer model has been widely
used in computer vision fields [16], [41], [42]. Due to its
powerful modeling capability, the transformer model is applied
in the field of person ReID. He et al. [9] propose a pure
transformer model to learn discriminative features by using
the side information embedding and a jigsaw patch module,
and achieve promising performance on person ReID.

Furthermore, some methods [20], [21], [43]–[47] combine
CNNs and the transformer model for person ReID. For ex-
ample, Liao et al. [21] propose TransMatcher to consider
image-to-image attention via the encoder-decoder transformer
architecture, where the first transformer layer is replaced
by CNNs. Li et al. [43] propose Part Aware Transformer
(PAT) to learn robust human part discovery by combining
both the CNNs backbone and a transformer encoder-decoder
architecture. Zhang et al. [20] present Hierarchical Aggre-
gation Transformers (HAT) to learn multi-scale features by
embedding the transformer model into each layer of CNNs.
Wang et al. [46] exploit CNNs to learn pose information of
pedestrian, and then disentangle semantic components using
the transformer model. Wang et al. [47] propose Neighbor
Transformer Network (NFormer) to explicitly model the inter-
action across all images, where promising results are obtained
by using ABDNet [48] as the backbone.

Different from the above-mentioned methods, we propose
CPT to learn the completed part interaction via the well-
designed part transformer layer for person ReID. Furthermore,
we propose the ART module to improve the discrimination of

the pedestrian features by retaining the patch tokens with more
information.

III. APPROACH

In this section, we initially review the mechanism of ViT,
and then describe the major parts of the proposed method, i.e.,
the part transformer layer and the ART module in detail.

A. ViT Revisit

Given a pedestrian image X ∈ RH×W×C , some meth-
ods [9], [16] divide the image into a sequence of patches
{xi ∈ R1×K2·C |i = 1, . . . , N}, where C, H and W denote
the number of channels, height and width of pedestrian image,
respectively. Here, K × K is the size of image patch, and
N = HW/K2 is the number of patches. Then, these patches
are mapped as the patch tokens using a trainable linear
projection E(·) implemented by a fully-connected layer with
the neuron number D. Finally, these patch tokens are fed into
L transformer layers, and the input of the first transformer
layer is represented as:

Z0 = cat1(cls, E(x1), · · · , E(xN )) + P + λJ, (1)

where cat1 indicates the concatenation operation along the
column, cls ∈ R1×D denotes the learnable class token which
retains the information of the pedestrian image by interacting
with all patch tokens, P ∈ R(N+1)×D is the learnable
position embedding, J ∈ R(N+1)×D is the camera embedding,
and λ is a parameter to balance the weight of the camera
embedding. After multiple transformer layers, the output of
the l-th transformer layer is formulated as:

Zl = Ẑl−1 +MLP (LN(Ẑl−1)), (2)

Ẑl−1 = Zl−1 +MSA(LN(Zl−1)), (3)

Completed part transformer for person re-identification



4

MSA

MLP

Intra-part Layer

Part Transformer Layer

M
erge

M
C

A

MCA

MLP

Part-global Layer

.  .  .

𝐸(𝑥1,1)  ⋯ 𝐸(𝑥1,M)

1−lC

1−lGM
erge

.  .  . 1-lY

lY

1−lT

LN

LN

LN

LN

LN

𝐸(𝑥𝑆,1)  ⋯ 𝐸(𝑥S,M)

.  
.  

.

𝑐𝑙𝑠1 𝑐𝑙𝑠𝑆.  .  .

Patch Tokens

C
lass Tokens

Fig. 3. The structure of the part transformer layer. When l = 1, Y l−1 ∈ RS×D indicates the learnable parameters.

where LN , MLP and MSA denote the layer normalization,
the multi-layer perceptron and the multi-head self-attention,
respectively. Specifically, the multi-head self-attention is de-
fined as:

MSA(Zl−1) = cat2(αl
1V

l
1 , · · · , αl

hV
l
h, · · · , αl

HV
l
H)U l, (4)

V l
h = Zl−1W l,h

v , (5)

where cat2 indicates the concatenation operation along the
row, H indicates the number of heads, αl

h is the affinity matrix
of the h-th head in the l-th transformer layer, and W l,h

v ∈
RD×d and U l ∈ RD×D are the linear projections. Here, the
affinity matrix is defined as:

αl
h = Softmax(

Ql
h(K

l
h)

T

√
d

), (6)

Ql
h = Zl−1W l,h

q ,Kl
h = Zl−1W l,h

k , (7)

where d = D/H ,
√
d is used to normalize for numerical

stability, and W l,h
q ∈ RD×d and W l,h

k ∈ RD×d are the linear
projections.

B. Part Transformer Layer

The part information has exhibited effective results for
person ReID [1], [2], [8], [13], however the existing trans-
former methods cannot explicitly learn the part information
of pedestrian [9], [20], [47]. To overcome this drawback, we
propose CPT to learn the completed part interaction via the
well-designed part transformer layer for person ReID. The
framework of our method is shown in Fig. 2. We first split each
pedestrian image into several stripes, and then learn long-range

dependencies from the aspects of the intra-part interaction and
the part-global interaction via L part transformer layers. Here,
the part transformer layer consists of the intra-part layer and
the part-global layer.

Intra-part Layer. Since the stripes indicate the spatial
distribution of human parts, we propose the intra-part layer
to learn the intra-part interaction as shown in the red box
of Fig. 3. The intra-part interaction represents the interaction
between the patch tokens in each stripe part, where each patch
token is a feature vector and the patch tokens in one stripe
part learn from each other by using self-attention mechanism
so as to mine the long-range dependencies within stripe parts
of pedestrian images.

Before feeding the intra-part layer, we first divide each
pedestrian image X ∈ RH×W×C into S stripes, where each
stripe is also partitioned into a series of patches {xs,i ∈
R1×K2·C |s = 1, 2, . . . , S; i = 1, . . . ,M} using a sliding
window with non-overlapping pixels. Here, M = N/S is
the number of patches in a stripe. Subsequently, similar to
Eq. 1, the input of the first intra-part layer for the s-th stripe
is formulated as:

Z0
s = cat1(clss, E(xs,1), · · · , E(xs,M )) + Ps + λJs, (8)

where clss ∈ R1×D denotes the learnable class token of the
s-th stripe which maintains the information of the stripe, Ps ∈
R(M+1)×D indicates the learnable position embedding of the
s-th stripe, and Js ∈ R(M+1)×D is the camera embedding of
the s-th stripe. Correspondingly, we utilize Eq. 2 and Eq. 3
to obtain the output of the l-th transformer layer for the s-th
stripe {Zl

s ∈ R(M+1)×D|l = 1, 2, . . . , L}.

Completed part transformer for person re-identification
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s

Finally, we extract the class token clss of each stripe from 
the output of the last intra-part layer ZL, and utilize the ID
loss and the triplet loss [9] to optimize the deep model. The
ID loss and the triplet loss of the s-th stripe are denoted as
Ls
ID and Ls

TRI , respectively.
Part-global Layer. In order to learn the completed part

interaction, we propose the part-global layer to learn the part-
global interaction, as shown in the blue box of Fig. 3. The
part-global interaction indicates the interaction between each
stripe and all patch tokens from the whole pedestrian image.
Here, each stripe is represented by a feature vector, and the
interaction between the stripe and all patch tokens in the
whole pedestrian image is implemented by the cross-attention
mechanism, thus aggregating global information for each
stripe. The output of the l-th part-global layer Y l ∈ RS×D

is defined as:
Y l = I(T l−1, Gl−1), (9)

where I is implemented by the multi-head cross-attention
(MCA), MLP and LN , and T l−1 ∈ RS×D and Gl−1 ∈
RN×D represent the fused class tokens and the patch tokens
from the whole pedestrian image, respectively. In particular,
Gl−1 are obtained by merging the patch tokens of all stripes
from {Zl

s|s = 1, 2, . . . , S}. Since Zl
s learns the interaction

between the patch tokens in the s-th stripe, Gl−1 not only
contains the stripe part information, but also represents the
global pedestrian representation. Hence, the multi-head cross-
attention in I is implemented by MCA(T l−1, Gl−1) of the
l-th part-global layer, and it is defined as:

MCA(T l−1, Gl−1) = cat2(CAl
1; · · · ;CAl

h; · · · ;CAl
H)Û l,

(10)
CAl

h = βl
hG

l−1Ŵ l,h
v , (11)

where Û l ∈ RD×D and Ŵ l,h
v ∈ RD×d are the linear

projections, and the affinity matrix βl
h is defined as:

βl
h = Softmax(

(T l−1Ŵ l,h
q )(Gl−1Ŵ l,h

k )T
√
d

), (12)

where Ŵ l,h
q ∈ RD×d and Ŵ l,h

k ∈ RD×d are the linear
projections.

Correspondingly, the fused class tokens T l−1 in Eq. 9 are
defined as:

T l−1 = F(Y l−1, Cl−1), (13)

where F is implemented by MCA and LN . Similar to
Eq. 10, the multi-head cross-attention in F is implemented
by MCA(Y l−1, Cl−1) of the l-th part-global layer. Here,
Cl−1 ∈ RS×D is the class tokens of all stripes extracted from
{Zl

s|s = 1, 2, . . . , S}. Y l−1 ∈ RS×D is the output of the
(l−1)-th part-global layer, and it is initialized to the learnable
parameters when l = 1. Hence, the fused class tokens could
represent the part information more flexibly due to interacting
the learnable information.

After L part-global layers, we obtain the output Y L of the
L-th part-global layer and then aggregate it using the max
pooling to obtain the global token. Finally, we apply the ID
loss Lg

ID and the triplet loss Lg
TRI to optimize the deep model.

C. Adaptive Refined Tokens Module

The number of patch tokens in the transformer network
for person ReID is fixed [9], [20], [47], which results in
failing to capture effective regional information. To overcome
this limitation, we propose the ART module to retain the
patch tokens with more information in each stripe during the
learning process of the intra-part interaction. The ART module
generates the part masks to select the informative patch tokens
in each stripe, which is beneficial to learn accurate fine-grained
information of human body parts.

In particular, the part transformer layer learns the completed
part interaction, and each element in the affinity matrix repre-
sents the attention between the patch tokens, that is, the larger
the value is, the more information the patch token aggregates.
Hence, we design the ART module to generate the part masks
based on the affinity matrices of the part transformer layers.
It is important to notice that since the part transformer layer
consists of the intra-part layer and the part-global layer, the
output of the intra-part layer is treated as the input of the part-
global layer. The affinity matrix from the part-global layer
contains more information of interaction. Hence, we utilize
the affinity matrix from the part-global layer as the affinity
matrix of the part transformer layer. Correspondingly, the s-th
row of the affinity matrix βl

h ∈ RS×N in the l-th part-global
layer represents the attention weights of the s-th stripe, and
it is denoted as βl

s,h. Since each head in each layer learns
different representations, we sum the attention weights of all
heads in previous part-global layers:

β̂l
s =

1

H

l−1∑
j=1

H∑
h=1

βj
s,h[((s−1) ·M+1):(s ·M)], (14)

where s = 1, 2, · · · , S, l = 2, · · · , L, and β̂l
s ∈ R1×M . The

part mask Ml
s ∈ R1×M of the s-th stripe is formulated as:

Ml
s[i] =

{
1, β̂l

s[i] > τ

0, otherwise,
(15)

where i = 1, 2, · · · ,M , and τ is the threshold to retain the
informative patch tokens for each stripe.

Finally, we insert the part masks into the intra-part layer
to learn the interaction between the patch tokens with more
information, and the corresponding affinity matrix in the l-th
intra-part layer is redefined as:

αl
s,h = Softmax(

R(Ml
s)� (Ql

s,h(K
l
s,h)

T )
√
d

), (16)

where R(Ml
s) ∈ RM×M indicates to repeat Ml

s in the row
direction, and � denotes the element-wise multiplication. Note
that the part mask only selects the patch tokens and abandons
the class token for each stripe. In a word, the proposed ART
module retains the informative patch tokens in each stripe of
the pedestrian image so as to learn the dependencies between
them, which improves the discrimination of the pedestrian
features.

Completed part transformer for person re-identification
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Algorithm 1: Training procedure

Require: The pedestrian image X ∈ RH×W×C ,
initialized backbone, initialized Y 0, λ for Eq. 8,
τ for Eq. 15;

1 for i in [1, num iters] do
2 Divide X into S stripes;
3 Obtain {Z0

s ∈ R(M+1)×D|s = 1, 2, . . . , S} by Eq. 8;
4 for l in [1, L− 1] do
5 Obtain {Zl

s ∈ R(M+1)×D|s = 1, 2, . . . , S} by
Eq. 2 and Eq. 3;

6 Obtain Y l ∈ RS×D by Eq. 9;
7 end
8 Obtain {ML

s ∈ R1×M |s = 1, 2, . . . , S} by Eq. 15;
9 Obtain {ZL

s ∈ R(M+1)×D|s = 1, 2, . . . , S} by Eq. 2
and Eq. 3;

10 Obtain Y L ∈ RS×D by Eq. 9;
11 Calculate the final loss L by Eq. 17;
12 Backward to update the deep model;
13 end

D. Optimization

We employ the ID loss and the triplet loss to optimize the
deep network, and the overall loss of the proposed CPT is
formulated as:

L = Lg
ID + Lg

TRI +
1

S

S∑
s=1

(Ls
ID + Ls

TRI). (17)

The training procedure of the proposed CPT is shown in
Algorithm 1, where the part masks generated by the proposed
ART module are inserted in the last intra-part layer.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the datasets and the evalu-
ation protocols, and present the implementation details. Then,
we conduct the ablation studies to verify the effectiveness of
the key components of our method, and compare our method
with the state-of-the-art approaches on the four person ReID
datasets. Afterwards, we analyze the influence of important
parameters for the proposed method. Finally, we visualize our
results for intuitive verification.

A. Datasets and Evaluation Protocols

We evaluate the proposed method on four person ReID
datasets, i.e., MSMT17 [49], Market-1501 [50], DukeMTMC-
reID [51], and CUHK03 [52].

MSMT17 [49] consists of 126, 441 annotated images of
4, 101 identities captured by 15 cameras, and it is a large-scale
dataset closer to the real scene because of covering multiple
scenes and multiple time periods. MSMT17 contains 32, 621
images of 1, 041 identities for training and 93, 820 images of
3, 060 identities in the test stage.

Market-1501 [50] (Market) consists of 32, 668 annotated
images of 1, 501 identities captured by 6 cameras, where each
pedestrian is captured by at least 2 cameras, and it contains

12, 936 training images of 751 identities and 19, 732 test
images of 750 identities. The pedestrian detection rectangles
of 3368 query images are drawn manually, while the pedes-
trian detection rectangles in the gallery are detected by the
deformable part model [53].

DukeMTMC-reID [51] (Duke) has 36, 411 annotated im-
ages taken by 8 cameras, in which it contains 16, 522 training
images of 702 identities and 19, 889 test images of another
702 identities.

CUHK03 [52] consists of 1, 467 identities captured by 5
cameras, where 767 identities are used for training and the
other 700 identities for testing. The dataset contains two kinds
of settings which are the labeled images and the detected
images. The labeled images consist of 7, 368 training images
and 6, 728 testing images, and the detected images contain
7, 365 training images and 7, 732 test images.

The evaluation protocols are the mean average precision
(mAP) and the Cumulated Matching Characteristics (CMC) at
Rank-1 (R1), Rank-5 (R5) and Rank-10 (R10) accuracies. The
post-processing methods are not used for inference, such as
re-ranking or multi-query fusion.

B. Implementation Details

In the experiments, we utilize ViT [16] or DeiT [42] as
the backbone, and ViT is initialized on ImageNet-21K and
then fine-tuned on ImageNet-1K, while DeiT is initialized
on ImageNet-1K. Meanwhile, we initialize the class tokens
{clss ∈ R1×D|s = 1, 2, . . . , S} of the stripes by using the
class tokens of ViT or DeiT, and initialize the parameters
of the part-global layer by using ViT or DeiT. Moreover, all
pedestrian images are resized to 256×128 before feeding into
the deep network.

In the training stage, the pedestrian images are augment-
ed by random horizontal flipping, random erasing, random
cropping and padding [54]. The batch size is set to 64 which
includes 16 identities, and each identity contains 4 pedestrian
images. The deep network is optimized by the SGD optimizer
with a momentum of 0.9 and the weight decay of 1e-4 [9],
[47]. The number of epochs is set to 160, and the learning
rate is initialized to 0.01 with the cosine learning rate decay.
Unless otherwise specified, the parameter λ in Eq. 8 is set
to 3.0, K = 16 for each pedestrian image, L = 12, H = 12,
D = 768 and d = 64 in the part transformer layer, the number
of stripes S is set to 2, and the threshold τ in Eq. 16 is set to
0.3.

In the test stage, we concatenate the global token from the
part-global layer and the class tokens from the intra-part layer
as the final representation.

C. Ablation Studies

In this subsection, we conduct ablation studies to investigate
the effectiveness of each component in the proposed method,
and their results are listed in Table I. Baseline [9] learns the
global interaction with the camera embedding, and it utilizes
ViT-B/16 as the backbone. In Table I, IP and PG represent
the intra-part layer and the part-global layer, respectively, PP
denotes that only learning the interaction between the stripe
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TABLE I
THE RESULTS (%) OF ABLATION STUDIES ON MSMT17 AND MARKET. 

HERE, IP AND PG REPRESENT THE INTRA-PART LAYER AND THE
PART-GLOBAL LAYER, RESPECTIVELY, PP DENOTES THAT ONLY LEARNING 

THE INTERACTION BETWEEN THE STRIPE PARTS, THE SYMBOL § 
REPRESENTS THAT THE AFFINITY MATRIX OF THE INTRA-PART LAYER IS 
USED IN THE ART MODULE, AND W/O STRIPES INDICATES THAT IN THE 

TEST STAGE WE ONLY APPLY THE GLOBAL TOKEN FROM THE
PART-GLOBAL LAYER WITHOUT CONCATENATING THE CLASS TOKENS 

FROM THE INTRA-PART LAYER.

Methods MSMT17 Market
mAP R1 mAP R1

Baseline 61.9 81.8 87.7 94.8
IP 64.1 82.3 88.4 95.0
IP+PP 64.8 82.5 88.7 95.2
IP+PG 66.7 83.8 90.3 95.8
Ours (IP+PG+ART) 68.0 84.6 91.9 96.7

Ours (IP+PG+ART§) 66.8 84.0 90.5 96.0

Ours (w/o stripes) 67.2 84.1 91.2 96.1

parts, the symbol § represents that the affinity matrix of the
intra-part layer is used in the ART module, and w/o stripes
indicates that in the test stage we only apply the global token
from the part-global layer without concatenating the class
tokens from the intra-part layer. From the table, we can draw
the following conclusions.

Firstly, only learning the intra-part interaction via the pro-
posed intra-part layer (IP) achieves better performance than
learning the global interaction (Baseline). Hence, building the
interaction within each stripe is beneficial to person ReID.

Secondly, the proposed part-global layer (PG) further en-
hances IP by 2.6% and 1.9% in terms of mAP on MSMT17
and Market, which demonstrates that the part-global layer
could incorporate more information when learning part inter-
action. Meanwhile, we merge the class token of each stripe
after learning the intra-part interaction and build the interaction
between the stripe parts of pedestrian image using the cross-
attention mechanism. It is denoted as PP. Corresponding,
only learning the interaction between the stripe parts (IP+PP)
achieves worse performance than learning the interaction be-
tween part and global tokens (IP+PG), which demonstrates
the effectiveness of the part-global interaction. Furthermore,
IP+PG achieves better results than Baseline, which verifies
the effectiveness of the designed part transformer layer and it
is good at learning the completed part interaction.

Thirdly, the performance improves on the basics of IP+PG
when the ART module is introduced. It demonstrates that the
part masks generated by the proposed ART module could
help remove some irrelevant patch tokens. Meanwhile, the
interaction learning of the retained patch tokens is benefi-
cial to improve the discrimination of the pedestrian features.
Moreover, using the affinity matrix of the part-global layer as
the affinity matrix of the part transformer layer (IP+PG+ART)
achieves better results than using the affinity matrix of the
intra-part layer (IP+PG+ART§), which verifies the benefits of
using the affinity matrix in the part-global layer. It is because
the output of the intra-part layer is the input of the part-global
layer, and the affinity matrix of the part-global layer contains

TABLE II
COMPARISON RESULTS (%) WITH THE CNNS-BASED METHODS

LEARNING THE PART INFORMATION ON MARKET AND DUKE. TRIPLET
DENOTES THE TRIPLET LOSS.

Backbone Methods Market Duke
mAP R1 mAP R1

CNNs PCB [2] 77.4 92.3 66.1 81.7

PCB + Triplet 80.7 93.5 69.5 83.6

DeiT-B/16
IP 87.6 94.5 80.5 89.9
IP+PG 89.6 95.3 81.9 90.5
Ours (IP+PG+ART) 91.0 96.0 83.2 90.8

more interaction information.
Finally, we can see that if only the global token is used

in the test stage (training unchanged), the performance (Ours
(w/o stripes)) is also impressive, which suggests to only use
the global token as an efficient variation with lower storage
cost and computational cost in the test stage.

Furthermore, in order to prove the effectiveness of learning
part information under the framework of Transformer in the
proposed method, we conduct the experiments with the CNNs-
based methods learning the part information on Market and
Duke. Specifically, we choose the representative CNNs-based
method named PCB [2] which also learns the part information
via splitting the rigid stripes, and use DeiT-B/16 (ImageNet-
1K pre-training) as the backbone for fair comparison. The
comparative results are listed in Table II. From the table, we
can see that the proposed intra-part layer (IP) only learning the
intra-part interaction outperforms PCB by 10.6% and 14.8% in
terms of mAP on Market and Duke, respectively. Meanwhile,
IP achieves better results than PCB combined with the triplet
loss (PCB + Triplet). Hence, the effectiveness of the proposed
based on Transformer method learning part information under
the framework of Transformer is demonstrated for person
ReID.

D. Comparisons with State-of-the-Art Methods

In this subsection, we compare the proposed method with
the state-of-the-art methods on four person ReID datasets
(MSMT17, Market, Duke, CUHK03), and the results are listed
in Table III.

Results on MSMT17. From the table, we can see that using
the transformer model of capturing long-range dependencies
as the backbone (i.e., the blocks 2 and 3 in Table III) achieves
promising results on MSMT17 which is a large-scale dataset.
More importantly, the proposed method (Ours† (ViT-B/16))
achieves a new state-of-the-art performance. For example,
it obtains 68.0% mAP and 84.6% Rank-1 accuracy, which
outperforms NFormer∗ [47] simultaneously employing CNNs
and the transformer model by 5.8% in mAP and 3.8% in
Rank-1 accuracy. For a fair comparison with the CNNs-based
methods, we use DeiT-B/16 (ImageNet-1K pre-training) as the
backbone (Ours† (DeiT-B/16)), and it also achieves promising
results. Hence, the effectiveness of the proposed method for
person ReID is demonstrated.

Results on Market and Duke. The results are shown in
Table III, in which the proposed method achieves comparable
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TABLE III
COMPARISON RESULTS (%) WITH THE STATE-OF-THE-ART METHODS FOR PERSON REID ON MSMT17, MARKET, DUKE AND CUHK03. HERE, THE 

SYMBOL † REPRESENTS THE CAMERA INFORMATION, ∗ INDICATES THAT THEY USE CNNS AS THE BACKBONE AND ALSO EMPLOY THE TRANSFORMER 
MODEL, AND THE BOLD AND UNDERLINE TEXTS DENOTE THE BEST AND RUNNER-UP RESULTS, RESPECTIVELY.

Backbone Methods MSMT17 Market Duke CUHK03-L CUHK03-D
mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

CNNs

PCB+RPP [2] 40.4 68.2 81.6 93.8 69.2 83.3 - - 57.5 63.7
OSNet [55] 52.9 78.7 84.9 94.8 73.5 88.6 - - 67.8 72.3

Pyramid [56] - - 88.2 95.7 79.0 89.0 76.9 78.9 74.8 78.9

CBN† [57] 42.9 72.8 77.3 91.3 67.3 82.5 - - - -
RGA-SC [58] 57.5 80.3 88.4 96.1 - - 77.4 81.1 74.5 79.6

ISP [59] - - 88.6 95.3 80.0 89.6 74.1 76.5 71.4 75.2
CDNet [60] 54.7 78.9 86.0 95.1 76.8 88.6 - - - -
CAL [61] 56.2 79.5 87.0 94.5 76.4 87.2 - - - -
PAT∗ [43] - - 88.0 95.4 78.2 88.8 - - - -
HAT∗ [20] 61.2 82.3 89.5 95.6 81.4 90.4 80.0 82.6 75.5 79.1

DRL-Net∗ [45] 55.3 78.4 86.9 94.7 76.6 88.1 - - - -
NFormer∗ [47] 62.2 80.8 93.0 95.7 85.7 90.6 79.1 79.0 76.4 79.0

DeiT-B/16

TransReID† [9] 63.9 82.7 88.0 94.7 81.2 90.1 - - - -
DCAL [62] 62.3 83.1 87.2 94.5 80.2 89.6 - - - -

Ours 66.4 84.1 91.0 96.0 83.2 90.8 81.0 83.4 77.1 80.4

Ours† 67.1 83.5 91.5 96.1 83.8 90.6 81.5 83.1 77.9 81.1

ViT-B/16

TransReID† [9] 64.9 83.3 88.2 95.0 80.6 89.6 - - - -
DCAL [62] 64.0 83.1 87.5 94.7 80.1 89.0 - - - -

PFD† [46] 65.1 82.7 89.6 95.5 82.2 90.6 - - - -

Ours 66.6 84.1 91.2 95.8 83.0 90.3 81.7 84.1 78.1 80.5

Ours† 68.0 84.6 91.9 96.7 83.1 90.8 82.4 84.6 79.1 81.1

results. It is observed that, the proposed method (Ours (ViT-
B/16)) without the camera information outperforms PAT∗ [43]
which learns robust human part discovery by combining CNNs
backbone and a transformer encoder-decoder architecture by
3.2% and 4.8% in terms of mAP on Market and Duke,
respectively. Furthermore, the proposed method (Ours† (ViT-
B/16)) outperforms PFD† [46] which disentangles body part
features via a transformer encoder-decoder architecture on the
basic of pose information using CNNs. Hence, it is proved that
learning the completed part interaction could lead to obtain
better pedestrian representations.

Results on CUHK03. We perform the experiments on
both the manually labeled setting and the detected setting of
CUHK03. From Table III, we can see that the performance
of the proposed method (Ours† (ViT-B/16)) achieves better
results on the two kinds of settings compared to other methods.
Hence, the effectiveness and generalization of the proposed
method is verified for person ReID once again.

E. Parameters Analysis

In this subsection, we analyze the influence of several
important parameters for the proposed method, i.e., the number
of stripes S, the parameter d, the inserted location of the
part masks in the intra-part layer, and the threshold τ in
Eq. 15. Note that we show the results on MSMT17, and the
experimental results can be generalized to other person ReID
datasets.

m
A

P
(%

)

S

Fig. 4. Evaluation of mAP with different number of stripes S on MSMT17.

R
1 

(%
)

S

Fig. 5. Evaluation of Rank-1 (R1) accuracy with different number of stripes
S on MSMT17.

Number of Stripes S. As shown in Fig. 4 and Fig. 5, we
make evaluation of different number of stripes S. From the
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9

TABLE IV
EVALUATION OF PERFORMANCE WITH THE PARAMETER d.

d
MSMT17

mAP R1 R5

32 67.1 84.0 91.2
64 68.0 84.6 92.1
128 66.6 83.3 91.0
256 66.2 83.0 90.8
512 64.1 82.2 90.1

TABLE V
EVALUATION OF PERFORMANCE WITH THE PART MASKS IN DIFFERENT

INTRA-PART LAYER. THE RESULTS OF WITHOUT USING THE
ACCUMULATION OPERATION IN EQ. 14 ARE LISTED IN THE BRACKETS.

Layer MSMT17
mAP R1 R5

2 55.5 (55.5) 79.2 (79.2) 87.8 (87.8)

3 55.3 (54.8) 78.9 (78.6) 87.5 (87.3)

4 57.1 (58.5) 80.1 (80.7) 88.6 (89.1)

5 59.9 (59.3) 80.8 (80.5) 89.4 (88.9)

6 60.8 (59.6) 81.3 (80.6) 89.9 (89.1)

7 62.6 (61.2) 82.2 (81.5) 90.5 (89.6)

8 64.5 (62.8) 82.6 (81.9) 90.8 (90.1)

9 66.1 (64.3) 83.1 (82.4) 91.2 (90.6)

10 66.7 (65.2) 83.4 (82.8) 91.5 (90.9)

11 67.3 (66.6) 84.2 (83.2) 91.8 (91.4)

12 68.0 (67.1) 84.6 (83.7) 92.1 (91.6)

figure, we can see that the results are best when S = 2. Here,
as S gets bigger, the results are gradually worse. It is because
when we divide more stripes, less patch tokens are obtained
to learn the interaction, which leads to insufficient learning
for completed part interaction. Hence, we set S = 2 as our
default setting.

Parameter d. As shown in Table IV, we analyze the
parameter d to explore its effect for the performance of person
ReID. Here, we vary d from 32 to 512. From the table, we
can see that the best performance for person ReID is achieved
at 64 for the parameter d. Hence, we set d = 64 as our default
setting.

Inserted Location of the Part Masks. We analyze the
inserted location of the part masks generated by the ART
module in the intra-part layer, and the experimental results
are listed in Table V. From the table, we can see that it is
performed best in the last intra-part layer. It is because the
part masks are obtained by summing the affinity matrices of
all previous part-global layers, and therefore the part masks
inserted in the last part-global layer contain more interaction
information. Furthermore, we also conduct the experiments
without using the accumulation operation in Eq. 14, and the
evaluation results are listed in the brackets. From the table,
we can see that the performance gets worse when the part
masks are not obtained by summing the affinity matrices of
all previous part-global layers.

Threshold τ . We perform the evaluation experiments with
different values of threshold τ in Eq. 15, and the results are

m
A

P
(%

)

τ

Fig. 6. Evaluation of mAP with different values of the threshold τ on
MSMT17.

R
1 

(%
)

τ

Fig. 7. Evaluation of Rank-1 (R1) accuracy with different values of the
threshold τ on MSMT17.

(a) (b) (a) (a) (a) (a)(b) (b) (b) (b)

Fig. 8. (a) Input pedestrian images, (b) visualization results of the part masks
generated by the proposed ART module, where the red blocks indicate the
discarded patch tokens.

shown in Fig. 6 and Fig. 7. Here, τ controls how many patch
tokens in each stripe are retained to conduct the interaction.
From the figure, we can see that the performance degrades
when τ < 0.3, because too many patch tokens may introduce
irrelevant information. Meanwhile, the performance drops
when τ > 0.3, because a small number of patch tokens is
not enough to learn sufficient interaction between the patch
tokens. Hence, we set τ = 0.3.

F. Visualization

We show the visualization results of the part masks gen-
erated by the proposed ART module in Fig. 8, where we
randomly select ten pedestrian images with different identities
from MSMT17. Here, the red blocks indicate the discarded
patch tokens. From the figure, we can see that the part masks
could retain the patch tokens with more information in each
stripe and then we learn the interaction between them, which is
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beneficial t o c apture fi ne-grained in formation of  hu man body 
parts, so that improving the discrimination of the pedestrian 
representations.

V. CONCLUSION

In this paper, we have proposed CPT to learn the completed 
part interaction via the well-designed part transformer layer 
for person ReID, where the part transformer layer could learn 
long-range dependencies from the aspects of the intra-part 
interaction and the part-global interaction. Furthermore, we 
propose the ART module to retain the informative patch tokens 
in each pedestrian image, where we utilize the part masks 
to establish the dependencies of the patch tokens with more 
information in each stripe of pedestrian image so as to improve 
the discrimination of the pedestrian features. The experimental 
results on four person ReID datasets have demonstrated the 
effectiveness of the proposed method.
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