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The original paper contains an error in the interpretation of the calculated statistical phase for both the Sierpinski carpet
and square lattice with 64 sites. This error was the result of an inconsistent calculation of the Aharonov-Bohm phase, which
we describe in detail below. Here, we consider larger finite patches of the Sierpinski carpet and square lattice in an attempt to
overcome this error, but the system sizes that we can reach with our exact diagonalization approach are not large enough to obtain
conclusive results. For the Sierpinski carpet, however, the computations on the larger lattices show that the particles in the ground
state preferentially localize to domains that are locally similar to a two-dimensional square lattice. This seems incompatible with
the uniform density of the bulk of fractional quantum Hall states and suggests that the local model we consider on the Sierpinski
carpet may not be topological. Our computations provide guidance for future searches for topology in small lattices. This topic
is of great, current relevance given the recent experimental progress in the area [1].

64-site lattices. When calculating the statistical phase in the original paper we perform two main steps. First, we place two
pinning potentials in the central portion of the lattice and calculate the phase gained by the state when the potentials are swapped
adiabatically. Second, we find the Aharonov-Bohm phase by placing one of the potentials outside the loop while performing the
loop of the swap with the other. The statistical phase, obtained as the difference between these two phases, is expected to be 1/2
in units of π if the potentials trap one quasihole each with charge 1/2 and the quasiholes are sufficiently separated throughout
the trajectory.

In the computations performed in the original paper, we chose to place the static potential considered in the Aharonov-Bohm
calculation to the corner of the lattice, in order to increase the distance between the static and moving potentials. It has come
to the attention of the authors, however, that placing a pinning potential in the corner of the 64-site square or Sierpinski carpet
only leads to a small amount of charge being trapped there. This is due to the ground state of the Hamiltonian without potentials
and M particles having no significant particle density in the corner site. This means that even though a large pinning potential is
used, there will be almost no density there to be impacted by the potential. The distribution of the charge with the corner pinning
potential is shown in Fig. 1. Due to this, the calculation in the original paper does not provide the Aharonov-Bohm phase for an
anyon with charge 1/2, and the computed phases are hence not the statistical phases. From the results obtained in the original
paper, it is hence not clear whether the considered models are topological or not.

Square lattice. We first discuss the model on the square lattice further. Due to the low particle density at the corners and along
the edges of the lattice, one needs to put the potentials closer to the center of the lattice to trap sufficiently large charges, but
this does not provide sufficient space for separated anyons on the 8 × 8 lattice. We have therefore further developed our exact
diagonalization code to be able to consider larger lattices for the same number of particles. The larger lattice also provides further
flexibility to make variations to test the robustness of the results.

Specifically, we consider a 12 × 12 lattice. While this is approximately doubling the number of sites, for the M = 4
Hamiltonian this increases the Hilbert space dimension from 6.4 × 105 to 1.7 × 107. The low particle density at the corners
and edges of the lattice is seen in Fig. 2(a). We here choose a path for the exchange of the potentials that encloses no area [see
Fig. 2(b)], as this eliminates the need to compute the Aharonov-Bohm phase. This was not possible in the 64-site lattice due to
limited space in the bulk. We consider two variations: (i) The potentials move from one site l to the next l ′ following Eq. (8) in
the original paper and we refer to this as narrow potentials. (ii) We do the same as (i), except that we put additional potentials of
strength V (1 − γ )/Kl on Kl sites surrounding site l and additional potentials of strength V γ /Kl ′ on Kl ′ sites surrounding site l ′
and we refer to this as broad potentials. We take the Kl (or Kl ′ ) sites to be the two neighbors along the path. If site l (or l ′) is one
of the four sites at which the (green) path segments end [see Fig. 2(b)], the Kl (or Kl ′ ) sites are instead the four nearest neighbors
on the lattice. If an additional potential is applied to a site on which a potential is already applied, the potentials add.

To judge whether the potentials produce local density variations of 1/2, we plot ρ(zi ) [see Eq. (5) in the original paper] for
several points along the path for the case of broad potentials and V = 5 in Figs. 2(b)–2(d). A video of ρ(zi ) for the full exchange
is given in the Supplemental Material [2]. Although density variations are mainly seen close to the potentials, there are also
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FIG. 1. We plot ρ(zi ) = 〈ni〉H+HV ,M−1 − 〈ni〉H,M [see Eq. (5) of the original paper] for (a) the carpet and (b) the square lattice. Here, M = 4
and potentials with strength 100 are placed on the two sites marked by green crosses. For the carpet, almost all the charge accumulates in
the vicinity of one potential. For the square lattice, the charge is more spread out, but again there is more charge close to one potential than
to the other. (c) To quantify this further, we plot the total charge −∑

j∈σk
ρ(z j ) within a circular region with radius r and center at one of

the sites on which a potential is applied. Specifically, σk is the set of all j for which |z j − wk | � r, and wk is the position of the site labeled
k ∈ {1, 2, 3, 4} in either (a) or (b). The vertical dotted lines show half the distance between the two sites on which the potentials are applied
for the square lattice (dsq) and the carpet (dc). If the potentials had trapped two well-separated anyons of charge 1/2, the curves in (c) would
have had plateaus at 0.5 for r large compared to the size of the anyons and short compared to the distance between the potentials. One should,
however, be cautious in interpreting (c) for small lattices, as the trapped charges could have shapes far from circular. Nevertheless, considering
(a) and (c) together shows that the potentials do not trap two well-separated anyons on the 64-site carpet with three particles, and (b) and
(c) suggest that separated anyons are also not trapped on the 64-site square lattice with three particles. As a result, the phase computed in the
paper cannot be interpreted as the Aharonov-Bohm phase obtained by moving one anyon of charge 1/2 around the considered path.

FIG. 2. (a) Particle density 〈ni〉 of the ground state of the Hamiltonian in Eq. (1) of the original paper without potentials, U/J → ∞, and
four particles on a 12 × 12 square lattice. (b) We exchange potentials along the green paths. To begin with, potentials are placed on the sites
(3,10) and (10,3). Potential 1 first moves along path 1 and then path 2, while potential 2 is fixed. Potential 2 then moves along path 3 and
4, while potential 1 is fixed. Finally, potential 1 moves along path 5 and 6, while potential 2 is fixed. The paths are shown slightly displaced
to make clear that the exchange happens counterclockwise. Altogether, the path involves moving a potential from one site to the neighboring
site 42 times, and for each such move we use 100 steps. We hence define the position on the exchange path as a parameter within [0,42] with
two decimals. (b)–(d) show ρ(zi ) = 〈ni〉H+HV ,M−1 − 〈ni〉H,M [see Eq. (5) of the original paper] for different positions on the exchange path for
the case of broad potentials and V = 5. Sites on which potentials are applied are marked with an additional green or orange ring. The local
regions defined in the text are marked by crosses (region 1) and pluses (region 2). (e) shows the charge within the local regions 1 (orange) and
2 (green), i.e., the sum of minus ρ(zi ) over the sites in the region, for broad potentials and V = 5. (f) shows the same but for narrow potentials
and V = 10.
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TABLE I. The ground-state wave function acquires the phase exp(iπθs ), when the potentials are adiabatically exchanged as in Fig. 2(b).
The table gives θs for different strengths V and different shapes (narrow or broad, see the main text) of the potentials. The number of steps
used when discretizing the path is large enough to ensure convergence of θs.

V Potentials θs

5 Narrow −0.08
10 Narrow 0.03
12 Narrow 0.05
5 Broad 0.32
8 Broad 0.54
10 Broad 0.63

smaller variations quite far from the potentials. To quantify the charge, we show the sum of minus ρ(zi ) over local regions
around the potentials in Fig. 2(e). The local regions are selected as all sites that are at most 7/(2

√
2) lattice spacings away from

one of the sites at which a potential is applied for the case of narrow potentials. This ensures that the two local regions [marked
by crosses and pluses, respectively, in Figs. 2(b)–2(d)] do not overlap. The charges are seen to often deviate by more than 10%
of the ideal value. The most problematic parts are those for which one of the potentials cross the central part of the lattice. This
is due to the lower density at the center of the lattice seen in Fig. 2(a). Again, however, one should be cautious about interpreting
the charges in Fig. 2(e), as the shapes of the trapped charges may not fit the chosen local regions. It is more reliable to judge
the presence or absence of topology based on the value and robustness of the phase acquired by the wave function for different
variations of the exchange. We have computed the phase for different choices of the potentials in Table I. Some of the results are
close to zero, while others are close to one half in units of π . Comparing the charges obtained for the broad potential and V = 5
in Fig. 2(e) to the charge obtained for the narrow potential and V = 10 in Fig. 2(f), it is also not clear which one is closest to
the ideal case for the topological system, although the former might look slightly better as the average of the charges over the
path is closer to one half. For the system sizes that we can reach with our exact diagonalization code, hence we cannot conclude
whether the system is topological or not.

FIG. 3. Particle density 〈ni〉 for the ground state of the Hamiltonian in Eq. (1) of the original paper without potentials, U/J → ∞, and four
particles for different patches of a high generation Sierpinski carpet with (a) 64 sites, (b) 128 sites, and (c) 130 sites. The highest densities are
found in regions that locally look like the two-dimensional square lattice. This conclusion also holds for M = 2 and M = 3.
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Sierpinski carpet. The issues with the low density in the central portion of the square lattice will of course not occur for the
Sierpinski carpet, as it has no central bulk. This poses another issue—how can one generate a braiding path and consistently
negate the Aharonov-Bohm phase of that path? We find that this cannot be done for any size for which we can realistically
calculate the states across the braiding path. This is due to the particle density of the ground state of the M = 4 local Hamiltonian,
which we show for various patches of the Sierpinski carpet of varying size in Fig. 3. We find that contrary to the 64-site lattice of
the original paper, on larger patches the ground state has high density along quasi-two-dimensional domains that form between
patches of the original 64-site lattice. To calculate the statistical phase, paths need to be constructed by moving between multiple
quasi-two-dimensional regions (with the local coordination number being four) of sufficient size to support two quasiparticles
with no overlap, which requires lattices beyond the size capable with the methods implemented here. We note, however, that
the very nonuniform density on the patches of the carpet seems inconsistent with the uniform densities observed for the bulk of
fractional quantum Hall states on two-dimensional lattices. This gives a hint that the model on the Sierpinski carpet may not be
topological.

Conclusions. We have shown that the phases given in Table I of the original paper cannot be interpreted as statistical phases,
and as a consequence the results of the original paper do not show whether the systems are topological or not. We have here
tried to remedy this by considering larger lattices. Considering exchanges on a 12 × 12 square lattice, different variations led to
phases that differed by more than one half in units of π . To judge whether the model is topological or not on a square lattice,
even larger system sizes are needed, which are beyond the exact diagonalization methods utilized, or alternatively one could
try to optimize the chosen potentials [3]. For larger patches of the Sierpinski carpet, we find that the particle density tends to
accumulate at regions of the lattice that locally look similar to a two-dimensional square lattice. As fractional quantum Hall
states tend to have uniform densities in the bulk, this might suggest that the states on the carpet are not topological.

We have shown that for future explorations of the construction of other local Hamiltonians that could support topological
quasiparticles, it is critical that one should aim for ground states with high particle densities across a large connected region of
the lattice. This will make the construction of consistent paths to calculate the statistical phase simpler. Future research on which
local properties of a Hamiltonian can most impact the extent of quasiparticles and allow for their generation across large regions
of two-dimensional lattices, perhaps in combination with the optimization of the trapping potentials, would be fruitful.

The authors thank Blazej Jaworowski for bringing the error in the original paper to their attention.
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