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Interacting bosons on crystalline and quasiperiodic ladders in a magnetic field
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We study a variety of Hofstadter ladders in order to probe the interplay between interactions, an applied
magnetic field, and crystalline or quasiperiodic geometries. Motion will be induced on charged particles when a
magnetic field is present, which can result in exotic distributions of current on a lattice. Typically, the geometry
of a ladder lattice is assumed to be homogeneous. In this paper, however, we will study superlattice and
quasicrystalline ladders that possess nonuniform bond lengths, in order to study the formation of localized
currents. By using density matrix renormalization group (DMRG) to characterize the quantum phases, we
confirm the presence of the usual vortex and Meissner distributions of current, in which particles circulate within
the bulk and around the edge respectively. Furthermore, it is also possible to observe variations to these patterns;
which combine both vortex and Meissner order, and the onset of incompressible domains for specific fillings of
the lattice. If the bond lengths of a ladder fluctuate, we find substantial differences to the structure of currents.
This is a consequence of an inhomogeneous, effective magnetic flux, resulting in preferential localization of
currents throughout the lattice bulk, towards the smaller bond lengths. We then find that incompressible domains
can significantly grow in size extent across the parameter space, with currents no longer possessing an extended
structure across the longitudinal direction of the ladder.
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I. INTRODUCTION

The Hofstadter model is a well-studied problem that de-
scribes the motion of charged particles on a 2D lattice when an
external, homogeneous magnetic field is present. This model
was first studied by Harper and Hofstadter [1,2], and has
a fractal structure to the energy spectrum versus magnetic
flux, in the form of a Hofstadter butterfly. The single-particle
properties have been relatively well studied for a variety of
lattice geometries, including the presence of flat bands [3,4],
spectral evolution [5–8], and the appearance of topological
edge states [9–11]. The extension of the Hofstadter model to
include interactions between particles is an interesting prob-
lem to consider, as it can allow for the formation of quantum
phases with exotic distributions of current, i.e., phases with a
preferential flow of tunneling. For bosons, this was first stud-
ied in the context of Josephson junction arrays [12–16]. More
recently, there has been interest in the use of ultracold gases
to emulate these properties. By trapping bosonic atoms in an
optical lattice, it has been possible to realize highly control-
lable experimental frameworks that simulate Bose-Hubbard
models [17,18]. However, due to atoms being charge neu-
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tral, magnetic fields must be introduced by artificial means.
This has included the use of rotating Bose-Einstein conden-
sates [19–22] and geometrically squeezed extensions [23,24],
laser assisted processes [25–28], driven systems [29–32], and
internal degrees of freedom [33–36]. By employing these
techniques, it has been possible to realize interacting Hof-
stadter models with bosons [37–40], usually for square or
periodic geometries. On the other hand, recent studies have
shown that Fermi-Hubbard models can be simulated with
optical lattices [41–43]. Fermionic systems are also predicted
to host unique properties and phases when a magnetic field
is present [44–47], and this has been the focus of several
experimental works with ultracold fermions [48–51].

The consideration of ladder geometries represents a toy
model to probe the interplay between interactions and an
applied magnetic field. Indeed, the first experimental obser-
vation in ultracold atoms of chiral currents was reported by
Atala et al. in 2014 [52] for a ladder. Further works since then
have studied the numerical and theoretical properties in detail
using DMRG [53–59] and bosonization techniques [60–64],
with particular interest in the underlying distributions of cur-
rent for different quantum phases. In relation to the currents,
topological invariants have also been measured in ladder sys-
tems, notably the many-body Chern number [65–68]. For the
aforementioned studies, the geometry of the ladder itself is as-
sumed to be uniform, with no underlying spatial dependence
of the model parameters. For this paper, we will consider a
range of ladder geometries, which are not uniform, includ-
ing those that are quasiperiodic. By varying the horizontal
bond lengths of a ladder, it is possible to introduce another
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form of preferential localization into the system. In particular,
within a single-particle picture, it is known that nonuniform,
quasiperiodic lattices can host in-gap, topological states that
are localized in the bulk, rather than the edge. [69,70]. It is
natural to expect other exotic properties to arise on nonuni-
form ladders when interactions are present.

Here, we present our results as follows. In Sec. II, we
introduce the different kinds of Hofstadter ladder geometries
for interacting bosons and discuss how ground states can be
found via DMRG. Following on from this, we then outline
several order parameters that can be used to characterize dif-
ferent quantum phases and current distributions in Sec. III. We
then show our first set of results in Sec. IV, which focuses on
the behavior and locality of currents for the ladder systems.
Finally, phase diagrams are presented in Sec. V over a larger
range of parameters, before we end with our conclusions in
Sec. VI.

II. LADDER SYSTEMS

A. Interacting Hofstadter model

For a lattice of size L = Lx × Ly in the presence of a
magnetic field, the system will be described by an interacting
Hofstadter model of the form

Ĥ = −
L∑

〈i, j〉
Ji je

iθi j b̂†
i b̂ j − μ

L∑
i

n̂i + U

2

L∑
i

n̂i(n̂i − 1), (1)

where U is the on-site energy, Ji j are the tunneling coeffi-
cients, μ is the chemical potential, b̂i (b̂†

i ) are the bosonic
atom destruction (creation) operators at site i, 〈i, j〉 denotes
nearest-neighbor summations across lattice bonds, and θi j are
the Peierls phase factors [71]. The Peierls phases depend on
the magnetic vector potential A(r), with r being a spatial
coordinate. Their form can be written as

θi j =
∫ ri

r j

A(r) · dr, (2)

where ri are coordinates of a lattice site i. By working in a
Landau gauge of

A(r) = (0, Bx, 0), (3)

with B denoting the magnetic field strength and x being the x
coordinate, the Peierls phases can be expressed as

θi j = φ

2A
(xi + x j )(y j − yi ), (4)

where (xi, yi ) are the x/y spatial coordinates at site i and we
have introduced the magnetic flux φ = BA, for a reference
area A that corresponds to a square tile of the lattice, see
Fig. 1(a). Throughout this paper, we set h̄ = q = 1 and as-
sume that the magnetic flux is measured in units of the flux
quantum φ0 = 2π .

We will consider ladder geometries with Ly = 2, as de-
picted in Fig. 1, with two distinct horizontal bond lengths a
and b. If a particle tunnels across the edges of a single tile,
it will acquire an encircling phase � = θ1,2 + θ2,3 − θ3,4 −
θ4,1, labeled according to the vertices in Fig. 1(a). Due to
the geometrical dependence of the Peierls phases θi j , differ-
ent horizontal bond lengths will produce distinct encircling
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Θa Θb Θa Θb Θa Θb Θa a

a
Θa a Θa Θa Θa 

a a a
(c)
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34
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FIG. 1. Illustration of the encircling phases for different kinds of
ladder systems, with bond lengths a (red) and b (blue). If a particle
circulates the square tile in (a), it will acquire a unique phase factor
�. We consider (b) uniform and (c) nonuniform distributions of a and
b, which will produce the encircling phases �a and �b on the ladder
due to the geometrical dependence of the Peierls phases in Eq. (4).

phases. Nonuniform ladders have been studied for the case of
sign-staggered distributions of �. The staggered arrangement
of � can be realized with ultracold atom experiments that use
time-dependent fluctuations of an external potential [72]. The
effective magnetic field is then zero, and chiral phases have
been reported [61,72–75], in which the loop currents pos-
sess interesting, staggered structures that break time-reversal
symmetry.

We will consider different distributions of the bond lengths
a and b, in accordance to a binary function X (m) for the
mth bond. This binary sequence allows for a mapping to the
horizontal bond lengths as 0 → a and 1 → b, with an example
lattice in Fig. 1(c). We will consider two distributions of X (m).
The first is that of a superlattice, which has the two bond
lengths oscillating in a periodic manner

Xs(m) = m − 1 − 2

⌊
m − 1

2

⌋

= [0, 1, 0, 1, 0, 1, 0, 1, . . . ], (5)

where �...� is the floor operation. We also consider a
quasiperiodic distribution of bond lengths, defined by the Fi-
bonacci word

Xq(m) = 2 + �mτ� − �(m + 1)τ�
= [0, 1, 0, 0, 1, 0, 1, 0, 0, 1, . . . ], (6)

where τ = 1+√
5

2 is the golden ratio. The quasiperiodic ladder
will break translational invariance, but will retain long-range
order, analogous to 2D quasicrystalline tilings [76–79].

We will also incorporate a qualitative, geometrical scaling
of the tunneling coefficients Ji j as

Ji j = J

|ri − r j | . (7)

This emulates the spatial dependence of tunneling coefficients
in optical lattice experiments, where it is usual for Ji j to scale
with the relative separation between sites [80]. Note, how-
ever, that similar results can be observed without including
a scaling of Ji j . Throughout our paper, we use the convention
that sites connected by a bonds have a tunneling rate of J . In
addition, vertical bonds will also have a tunneling rate of J .
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FIG. 2. Depiction of (a) a MPS and (b) MPO tensor network
for a L = 5 1D lattice. For each case, the many-body wavefunction
|�〉 and operator Ô are expressed in a graphical form, with legs
representing different indices of the tensors c and o. In the tensor
network, c and o are rewritten as a contraction of individual tensors
A or M at a lattice site, where vertical legs ni and n′

i denote the
physical dimensions at a certain site, i.e., the local Hilbert space.
Finally, horizontal legs χi and γi are the bond dimensions, which
capture the entanglement and correlations across the tensor network.

B. Density matrix renormalization group

Ground states of interacting models in the presence of
magnetic fields can possess exotic structures and localization
across the lattice. To probe these properties, we will calculate
ground states numerically using the well-known framework
of DMRG, which can overcome the exponential scaling of
the Hilbert space in certain scenarios [81,82]. Specifically, we
will adapt the matrix product state (MPS) based ansatz for
the many-body wavefunction |�〉, which allows for a wave-
function coefficient to be expressed as a series of contracted
tensors [83,84], as per Fig. 2(a). Likewise, Hamiltonians or
generic operators Ô can also be expressed in a similar form,
known as matrix product operators (MPOs) [85,86], shown
in Fig. 2(b). In both cases, the vertical bonds of the local
MPS/MPO tensors represent the local Hilbert space of a site
in the Fock number basis. The horizontal bonds are known as
the bond dimensions, and are used as a variational parameter
to control the degree of correlations/entanglement retained
within the calculation. In practice, the bond dimensions can be
significantly compressed and still represent near-exact ground
states [87,88] or operators [89]. In this paper, we will denote
the maximum bond dimension of the MPS as Dmax.

To solve for the ground state, we are then interested in
minimizing the Schrödinger equation

〈�|Ĥ|�〉 = E〈�|�〉, (8)

which is depicted in Fig. 3(a) as a tensor network, where E
is the eigenenergy. For practical purposes, a single tensor is
usually removed from one of the MPS networks in Fig. 3(b),
allowing for the minimization procedure to be reduced to an
eigenvalue problem for a local site, as per Fig. 3(c). Given an
initial wavefunction, the ground state can then be found by op-
timizing each local MPS tensor for each site until the energy
converges. This is done by performing a series of left-to-right
and right-to-left sweeps across the MPS tensor in Fig. 2(a).
We find that 10−25 sweeps are sufficient to ensure that the en-
ergy has converged to an accuracy of 10−10. Throughout this
paper, we will use a maximum bond dimension Dmax between

=M M M M M
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AA A A A

A† A† A† A†

=M M M M M
AA A A A

A† A† A† A†

AA A A A

A† A† A† A†
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AHeff = ANeffE

A†

AA A A A

A† A† A† A†

(a)

E

(b)
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FIG. 3. Solving for the ground state, given a MPS wavefunction.
We first write Eq. (8) as a tensor network in (a), and remove a single
A† tensor from the system, which is shown in (b) for site 3. By then
contracting tensors (black bonds) and fusing together the purple and
green bonds, the problem can be reduced to a generalized eigenvalue
problem Heff A = ENeff A. In practice, gauge transforms of the MPS
can also transform Neff → I , where I is the identity matrix, which
instead produces a standard eigenvalue problem.

10−300, depending on the range of parameters and resolution
of phase diagrams. We also truncate singular values of the
MPS that are below a threshold of 10−9. Since we work in
the grand canonical ensemble, Dmax must not be exceedingly
large for practical calculations. However, as we will show in
the next section and the results, our observables will be most
sensitive to short-range correlations, which converge faster for
smaller Dmax.

Typically, DMRG algorithms are applied to 1D lattice
models. However, their extension to higher dimensions is also
possible, provided an effective 1D mapping does not generate
long-range terms between highly correlated tensors. We illus-
trate this idea in Fig. 4 for a ladder system. In 1D, the ladder
system then has nearest-neighbor tunneling for processes in
the y direction and next-nearest-neighbor tunneling for pro-
cesses in the x direction.

(a)
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8

7
1 2 3 4 5 6 7 8

(b)

FIG. 4. 1D mapping of lattice sites and bonds for a (a) L = 2 × 4
square lattice. Each site has a unique index between 1 and L, which
are mapped to the effective 1D system in (b). Red and blue connec-
tions between sites denote the horizontal (x direction) and vertical (y
direction) bonds respectively.
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III. OBSERVABLES AND PHASES

Given a MPS ground state, it is possible to probe a range of
observables that can characterize the structure and localization
of quantum phases. First, the correlation function of a state
can be calculated as

ci j = 〈b̂†
i b̂ j〉, (9)

which can reveal the presence of quantum correlations. In
experiments, the correlation function is closely linked to the
Fourier transformed density profile, which has the form

n(k) = 1

L

∑
i j

eik·(ri−r j )〈b̂†
i b̂ j〉, (10)

where k is a wavevector. The density profile n(k) is especially
relevant for experimental protocols with ultracold atoms, as
it can be directly measured from time-of-flight absorption
images [18,90,91]. Note, since we consider a ladder system,
we do not have a continuous set of momenta across the y
direction, hence k does not correspond to the momentum
distribution of the ground state. Instead, k represents the
laser wavevector associated to a time-of-flight image with
periodically repeating and decoupled ladders across y. These
procedures can be used to identify whether or not a given
phase is a Mott insulator (MI) or superfluid (SF) [17,18]. A
SF possesses long-range correlations, resulting in a n(k) with
a sharp peak at |k| = 0. The compressibility

κ = 1

L

∂〈N̂〉
∂μ

(11)

will be finite, with 〈N̂〉 the total particle number. The MI
contains no correlations, and instead has a flat n(k) due to
particle immobility. As a result, κ is zero and the phase will
be incompressible. The interacting Hofstadter model is known
to host different kinds of incompressible phases from the
usual MI. This can include charge density waves [57,92,93],
incompressible Meissner or vortex domains [53,60], and topo-
logically nontrivial Chern insulators or quantum Hall states
[61,93–96]. While these phases are incompressible, they will
typically contain finite currents and noninteger on-site den-
sities. Due to this support of inherent transport, we will
generally refer to these phases as incompressible, rather than
insulating, i.e., the transport/currents are robust against parti-
cle number fluctuations.

A. Current distributions

Charged particles in a magnetic field will flow in a cyclical
manner, meaning that there is a preferential flow of tunneling,
or current present in the system. This can be quantified from
Heisenberg equation of motion for the on-site densities

dn̂i

dt
= i[Ĥ, n̂i] ≡

∑
j

ĵi j, (12)

where the sites (i, j) are connected by bonds and the current
operator ĵi j between sites is defined as

ĵi j = iJi je
iθi j b̂†

i b̂ j − H.c. (13)

The expectation values of ĵi j denote local bond currents in the
system, and will be the key order parameters in classifying
different patterns of current that appear within MI or SF
phases. From these, we can first define an average absolute
current across vertical bonds as

| jV | = 1

Lx

∑
xi−x j=0

| ji j |, (14)

where ji j = 〈 ĵi j 〉
Ji j

and the summation only accounts for lattice
sites connected across the y direction, i.e., if the xi = x j .
In a similar manner, average row currents (denoted by the
subscript r or R) across the x direction can be defined as

jm
r = 1

Lx − 1

∑
xi=(m−1)Ly, yi−y j=0

ji j (15)

and ∣∣ jm
R

∣∣ = 1

Lx − 1

∑
xi=(m−1)Ly, yi−y j=0

| ji j |, (16)

where jm
r is the average current across row m that takes into

account the sign of each ji j , and jm
R is the average absolute

current across row m that takes the absolute value of each ji j .
The summations for jm

r and jm
R only account for sites with

the same y coordinate, for fixed xi = (m − 1)Ly, i.e., a row of
the ladder. From this, the average absolute current across all
horizontal bonds can then be written as

| jH | = 1

Ly

Ly∑
m

∣∣ jm
R

∣∣. (17)

Furthermore, we can also characterize a Meissner, or chiral
current in the system as

jM = 1

2Ly

(
j1
r − j2

r

)
, (18)

which determines the current encircling the two horizontal
rows of the ladder. Note that the extra prefactor of 2 in the
denominator is introduced to ensure that | jM | � | jH |, which
will be important for the discussion of current distributions
later in this section.

To better characterize the localization of bond currents
across the ladder, we will also look at current locality func-
tions. The first measure we use determines the proportion of
localized currents within the ladder jL, i.e.,

jL = 1

L

L∑
i=1

Si. (19)

Here, Si is a discrete function for each site. If all of the bond
currents ji j connected to a site i are nonzero, Si is assigned
a value of 0. Otherwise, we assign a value of 1 to Si when
there is one ji j = 0 from site i. From this function, jL = 0
corresponds to all bonds of the ladder possessing finite cur-
rents ji j . Similarly, jL = 1 means that all sites have at least
one bond with ji j = 0. If 0 < jL < 1, we then have a measure
that determines the fraction of blocked current channels across
the ladder, i.e., the localization of currents.

Next, we also calculate the locality of finite currents across
the vertical rungs of the ladder. This measure, denoted as jE is
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(e)
0
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FIG. 5. Examples of currents patterns on a [(a)–(d)] L = 2 × 6
periodic ladder and (e) L = 2 × 14 quasiperiodic ladder, where pur-
ple circles indicate lattice sites. Currents are normalized between
0 and the maximum value, with arrows denoting paths of positive
current between bonds. We show a (a) Meissner pattern when J/U =
0.4, μ/U = 0.5, φ/φ0 = 1/4, (b) vortex pattern when J/U = 0.44,
μ/U = 0.2, φ/φ0 = 1/2, (c) strong vortex-Meissner pattern when
J/U = 0.4, μ/U = 0.8, φ/φ0 = 1/4, (d) weak vortex-Meissner pat-
tern when J/U = 0.4, μ/U = 0.6, φ/φ0 = 1/3, and (e) localized
pattern when J/U = 0.29, μ/U = 0.86, φ/φ0 = 1/2.

calculated by taking the average position of vertical currents,
where the coordinates are normalized between 0 (centre of
ladder) and 1 (edges of ladder). If a phase has finite currents
across all bonds, jL = 0 and

jE = 2

Lx�Lx/2�
�Lx/2�∑

n=0

n ≈ 0.5. (20)

On the other hand, if currents are absent across certain bonds,
both jE and jL can take unique values. For currents with
edge localization across the x direction, both jE and jL will
converge to 1. For other kinds of localized currents, jE �= 1
and jL > 0. To better illustrate these ideas, we will now turn
our attention to the current distributions that may arise in the
interacting Hofstadter model.

Interacting lattice models in the presence of magnetic fields
will give rise to exotic distributions of current, in conjunction
with the usual MI and SF phases of Bose-Hubbard models.
The two primary current distributions are that of the bosonic
Meissner and vortex arrangements [16], which are based on
the Meissner effect [97,98] and Abrikosov vortices [99–101]
for type-I and type-II superconductors. In a Meissner domain,
currents are localized towards the edges of a ladder, as shown
in Fig. 5(a). Currents across vertical bonds will effectively be
zero, apart from the left/right edges, i.e., | jV | ≈ 0 and both jE
and jL are ≈1. Furthermore, currents across horizontal bonds
lie in equal but opposite directions for each row of the ladder,
which produces a finite Meissner current | jM |.

The vortex pattern will have a similar structure to the one
in Fig. 5(b). Here, all horizontal currents will be antialigned,
leading to a zero Meissner current. Vertical currents are also
finite, leading to a finite value of | jV |. For certain parameter
regimes of μ/U and φ/φ0, we also find several variations
of the vortex pattern that incorporates a degree of Meissner
ordering, with examples in Figs. 5(c) and 5(d). These are

TABLE I. Different distributions of current that can arise in the
interacting Hofstadter model. For the trivial pattern, jE is undefined
(und.) due to the absence of currents.

Type | jM | | jV | | jH | jE jL

Vortex (V) = 0 >0 >0 = 0.5 = 0
Meissner (M) >0 = 0 = | jM | = 1 = 1
Strong vortex-Meissner (sVM) >0 >0 = | jM | = 0.5 = 0
Weak vortex-Meissner (wVM) >0 >0 < | jM | = 0.5 = 0
Trivial (T) = 0 = 0 = 0 und. = 1

referred to as vortex-Meissner patterns with strong or weak
order, depending on the relative scaling of | jM | to | jH |. Note
that weak or strong vortex-Meissner domains are not dis-
tinct phases, but instead measure crossover domains within a
vortex-Meissner pattern. For | jM | = | jH |, all horizontal rows
of current are aligned in opposite directions, and the Meissner
order is strong. Otherwise, if | jM | � | jH |, there will be an
antialignment of certain horizontal currents, i.e., a weaker
Meissner order. In the limiting case of | jM | = 0, we simply
have a vortex pattern. Finally, if no finite currents are present
in the system, we simply have a standard SF or MI phase,
which is trivial from the point of view of the current. In
Table I, we summarize the different distributions of current
that have been outlined. For finite current patterns, it is also
important to note that a sign-flipped distribution of bond
currents corresponds to a degenerate ground state. While the
ground state is degenerate, the order parameters that have been
outlined so far are not sensitive to this sign-flipping, and the
DMRG algorithm will converge towards either one of these
states.

Note, nonuniform bond lengths may also allow for the
formation of localized currents, with an example in Fig. 5(e).
The current distributions of localized domains may be that
of either vortex or vortex-Meissner patterns, with jL > 0 and
jE �= 1. Furthermore, if κ is finite, then the phase will resem-
ble that of a Bose-Glass (BG). The BG is a special kind of
insulating phase that can appear in Bose-Hubbard models with
some kind of disorder [102,103]. In a BG, there will typically
be isolated SF domains, separated by extended MI regions.
The lack of percolation between the SF domains leads to an
absence of macroscopic phase coherence, i.e., the phase is
insulating. When the SF domains percolate, the system then
enters the SF phase with macroscopic phase coherence, since
atoms can flow from one end of a lattice to another. There are
several ways to define this coherence, such as the percolation
of SF order parameters in mean-field theory [104] or winding
numbers in quantum Monte Carlo for the calculation of the SF
density [105]. Alternatively, DMRG can also study phase co-
herence by looking at the decay of correlation functions [106],
or calculating the SF density based on the proportionality with
the Drude weight [107,108].

IV. BEHAVIOUR OF CURRENTS

We begin our results by considering examples of ground-
state phases on ladders and their scaling over a smaller range
of parameters, for hard-core bosons. We will fix Lx ≈ 40 sites,
where fluctuations around this number will be introduced to
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FIG. 6. Plots of [(a),(b)] current order parameters, [(c),(d)] local-
ity measures, and [(e),(f)] the average density over a range of μ/U ,
with fixed [(a),(c),(e)] J/U = 0.44 and φ/φ0 = 0.5, and [(b),(d),(f)]
J/U = 0.4 and φ/φ0 = 0.25. Current distributions are colored ac-
cording to the definitions in Table I, where μ/U variations can
change the underlying pattern of current. Incompressible domains
are also denoted by shaded areas in (e) and (f), i.e., the plateaus of ρ̄.

keep the system commensurate with the magnetic unit cell for
superlattice and homogeneous distributions of X (m). While
fixed systems are considered in our main results, we note that
equivalent properties have been observed for different Lx and
Dmax, which we detail further in Appendix.

A. Homogeneous ladder (a/b = 1)

We will briefly cover some results for the well-studied
case of homogeneous X (m), where a/b = 1. In Fig. 6, the
current order parameters are plotted for two distinct fluxes
φ/φ0 = 0.5 and φ/φ0 = 0.25, with current patterns annotated
according to Table I. For Fig. 6(a), we have J/U = 0.44 and
φ/φ0 = 0.5, leading to the stabilization of vortex currents
for a range of μ/U , which have zero | jM |. All currents will
be extended across the lattice, as shown with Fig. 6(c) for
jL = 0 and jE ≈ 0.5. By increasing μ/U beyond 0.35, the
currents will decay and oscillate around zero, which marks
the onset of a trivial pattern. In Fig. 6(e), we also plot the
average density ρ̄, which varies continuously across a large
range of μ/U , showing that the underlying phase is that of
a SF. Near μ/U = 0 and μ/U = 1, ρ̄ will begin to plateau,
implying that κ → 0, i.e., the onset of incompressible phases.
To better understand the differences between the phases and
current patterns, we also plot n(k) in Fig. 7 at different μ/U .
For Fig. 7(a) at μ/U = 0.98, the n(k) profile is relatively flat
and centered at k = (0, 0), indicating a MI phase. When μ/U

(d)(c)
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k
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k

-2π
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FIG. 7. n(k) profiles, see Eq. (10), for different phases when
φ/φ0 = 0.5 and J/U = 0.44, including the (a) MI phase at μ/U =
0.98 with trivial currents, (b) SF phase at μ/U = 0.6 with trivial
currents, (c) SF phase at μ/U = 0.15 with vortex currents, and
(d) incompressible phase at μ/U = 0 with vortex currents. If the
phase is incompressible, n(k) will be relatively flat and delocalized.
On the other hand, for compressible, or SF-like phases, the peak in
n(k) will become very thin and localized. When finite currents are
present, the peak in n(k) is shifted away k = (0, 0) due to chiral
motion.

is decreased to 0.6, the system enters a SF region in Fig. 7(b),
and n(k) becomes localized to k = (0, 0), denoting the onset
of long-range correlations. By further tuning μ/U = 0.15 into
the vortex region, n(k) in Fig. 7(c) will be shifted to k ≈
(π/2, 0) due to the presence of chiral currents. As we enter
the other incompressible domain in Fig. 7(d) at μ/U = 0, we
observe similar properties, but with a shifted peak in n(k) to
k ≈ (−5π/8, 0) due to a sign-flipping of currents. Finally,
this n(k) is also more extended when compared against SF
phases, analogous to the MI from Fig. 7(a).

By tuning the magnetic flux, it is possible to change the dis-
tributions of current within the system, as shown in Fig. 6(b)
for φ/φ0 = 0.25 and J/U = 0.4. Note, this value of J/U is
chosen such that when μ/U ≈ 1, the currents will become
zero, i.e., a trivial pattern. We also plot n(k) profiles again
in Fig. 8 for this case. The Meissner current | jM | is now
finite for the considered flux, with an incompressible phase for
μ/U < 0.1. By inspecting the locality measures in Fig. 6(d),
we observe that jL � 0 and jE → 1, implying the absence of
bulk currents and formation of Meissner order. Due to this, the
n(k) profile in Fig. 8(a) possesses two distinct and symmetric
peaks [109], which are extended along kx at ky ≈ ±3π/16.
For 0.1 � μ/U � 0.4, the vertical currents | jV | in the bulk
will increase, marking the onset of a strong vortex-Meissner
pattern, since horizontal currents are aligned on each row,
i.e., | jM | = | jH |. The corresponding n(k) in Fig. 8(b) is then
more localized as a result of this. When 0.4 � μ/U � 0.65,
the locality measures will again fluctuate near 1, revealing
the formation of Meissner currents, with sharp peaks in n(k),
as per Fig. 8(c). Finally, for μ/U > 0.65, we enter an inter-
esting domain in which many distinct incompressible phases
appear. By inspecting Fig. 8(f), each incompressible phase
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FIG. 8. n(k) profiles, see Eq. (10), for different phases when
φ/φ0 = 0.25 and J/U = 0.4, including the (a) incompressible phase
at μ/U = 0 with Meissner currents, (b) SF phase at μ/U = 0.2 with
strong vortex-Meissner currents, (c) SF phase at μ/U = 0.5 with
Meissner currents and several incompressible phases at (d) μ/U =
0.77, (e) μ/U = 0.84, and (f) μ/U = 0.9, which contain strong
vortex-Meissner currents. SF phases with Meissner order contain
two degenerate n(k) peaks, which extend across multiple Brillouin
zones. At larger μ/U , a range of incompressible phases can also
form, which possess finite currents.

corresponds to the different plateaus in ρ̄, which all have a
strong vortex-Meissner current pattern. This is also reflected
in the n(k) profiles from Figs. 8(d)–8(f), which combine char-
acteristics from both vortex and Meissner domains. For each
flux, we have observed that the currents ji j and density ρ̄ vary
continuously as a function of μ/U across different current
patterns, with plateaus also forming at the incompressible
domains. It should be noted, however, that the small width
incompressible domains for μ/U > 0.65 are almost absent
for larger system sizes, which we show in Appendix A 2,
Figs. 19 and 20.

B. Inhomogeneous ladders (a/b = 2)

Here, we will now study the influence of inhomogeneous
X (m) throughout the lattice, with the distributions of bond
length defined from the two cases outlined in Sec. II, i.e.,
the superlattice and quasiperiodic ladders. We plot the be-
havior of currents for these lattices in Fig. 9 over a range of
μ/U and J/U , for a/b = 2 and fixed φ/φ0. The superlattice
distribution is first considered in Figs. 9(a) and 9(b), which
shows that extended vortex-Meissner domains appear with far
greater frequency. As a consequence, the Meissner distribu-
tion for the superlattice is no longer stable in these regions,
being replaced by either strong or weak vortex-Meissner cur-
rents. By considering a quasiperiodic lattice in Figs. 9(c)
and 9(d), similar properties are observed, with the strong
vortex-Meissner pattern dominating at φ/φ0 = 0.25. For
φ/φ0 = 0.5, however, Meissner currents are suppressed on
the quasiperiodic ladder, leading to the more frequent appear-
ance of vortex distributions. Similar to before, bond currents
ji j will vary continuously between different patterns of
current.

To better understand the differences between homogeneous
and inhomogeneous ladders, we also consider the locality

10

wVM
sVM

0

0.2
(c) (d)

V

V

wVM

sVM

10

0

0.3
(a) (b)

FIG. 9. Plots of current order parameters over a range of μ/U
for [(a),(b)] superlattice and [(c),(d)] quasiperiodic ladders when
a/b = 2. We consider fixed [(a),(c)] J/U = 0.29, φ/φ0 = 0.5 and
[(b),(d)] J/U = 0.28, φ/φ0 = 0.25, with current domains colored
according to the definitions in Table I. Due to the nonuniform X (m),
significant differences can be observed with the currents, with the
vortex-Meissner patterns now dominant.

measures in Fig. 10. For the superlattice in Figs. 10(a) and
10(b), we find that most currents are extended across the
lattice, with jE ≈ 0.5 and jL ≈ 0. Fluctuations will occur near
μ/U → 1, which then marks the onset of more localized
current distributions. On the other hand, the quasiperiodic
ladder in Figs. 10(c) and 10(d) contains a higher degree of
localized currents across all μ/U . This is a consequence of

sVM

V wVM sVM

10
0

1
(c) (d)

wVMV

10

0

1
(a) (b)

FIG. 10. Current locality measures jL and jE for [(a),(b)] super-
lattice and [(c),(d)] quasiperiodic ladders, using the same parameters
and boundaries as Fig. 9. Current domains are colored according to
the definitions in Table I. The superlattice ladder has the majority
of phases extended across the system, indicated by jE ≈ 0.5 and
jL ≈ 0. On the other hand, for the quasiperiodic ladder, fluctuations
in jL are more significant, marking the onset of localized phases.
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FIG. 11. Average density ρ̄ for [(a),(b)] superlattice and [(c),(d)]
quasiperiodic ladders, using the same parameters and boundaries as
Fig. 9. The shaded areas highlight the incompressible phases, i.e.,
the plateaus in ρ̄. In both cases, inhomogeneous ladders can stabi-
lize extended incompressible domains. These properties are further
exaggerated for the quasiperiodic ladder.

the inhomogeneous X (m) distribution, which induces a form
of preferential localization into the system. While the superlat-
tice lacks this kind of localization, the inhomogeneous Peierls
phases and tunneling rates can still allow for changes to the
current patterns and support of vortex-Meissner domains.

Finally, we will consider the extent of incompressible
phases, which can be found by plotting ρ̄ in Fig. 11. We
observe that the superlattice in Figs. 11(a) and 11(b) can
contain extended, incompressible domains at far greater fre-
quency when compared against the homogeneous system in
Fig. 6. This includes an incompressible phase at half-filling
for μ/U < 0.3 and smaller domains for μ/U > 0.6. For a
quasiperiodic lattice, the incompressible phases are found to
be far more dominant, as shown in in Figs. 11(c) and 11(d).
For certain φ/φ0, it is also possible for the incompressible
phases to appear more commonly than that of the SF. Fur-
thermore, our finite-size scaling analysis in Appendix A 2,
Figs. 21 and 22, reveals that the incompressible domains
with widths greater than roughly 0.01μ/U do not become
smaller when Lx is increased. This strongly contrasts the
results of the homogeneous ladder, in which incompressible
phases on approach to the thermodynamic limit are only stable
near μ/U = 0.

To better visualize the incompressible phases for the in-
homogeneous systems, we also plot several n(k) profiles in
Fig. 12. For the superlattice phases in Figs. 12(a)–12(c), two
symmetric peaks will again appear around kx = 0, which vary
in structure and extent for different μ/U and φ/φ0. When
ky → ±2π , we also observe the formation of separate stripe
features due to the presence of inhomogeneous X (m). The
quasiperiodic states in Figs. 12(d)–12(f) share similar proper-
ties, although the degenerate peak across kx tends to collapse
towards kx = 0. Note that while we have considered time-
of-flight profiles of incompressible phases, the compressible
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0.8
1.8

0.6

1.4

0.4-4π

4π 1.8

0.3

k

(d) (e) (f)

2π-2π2π-2π

-4π

4π 1.5

0.5

k
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2π-2π

FIG. 12. n(k) profiles, see Eq. (10), of incompressible phases for
[(a)–(c)] superlattice and [(d)–(f)] quasiperiodic ladders. The mag-
netic flux and tunneling are fixed to (a), (b), (d), and (e) φ/φ0 = 0.5
and J/U = 0.29, and (c) and (f) φ/φ0 = 0.25 and J/U = 0.28, with
chemical potentials of (a) μ/U = 0.68, (b) μ/U = 0.92, (c) μ/U =
0.92, (d) μ/U = 0.32, (e) μ/U = 0.75, and (f) μ/U = 0.52. Fluc-
tuating bond lengths a and b produces n(k) with mixed vortex and
Meissner characteristics.

domains are very similar in structure, but with further local-
ization of n(k) peaks.

For crystalline ladders, there will be no specific regions for
particles to preferentially localize towards one another, gener-
ally leading to extended structures of currents. Alternatively,
for a quasiperiodic ladder, fluctuations in X (m) allows for lo-
calization throughout the lattice, with particular arrangements
of current that are not be repeated.

By looking at the time-of-flight profiles, several distinc-
tions can also be made between different current patterns.
Any phase with finite currents will be shifted away from
k = (0, 0). For vortex currents, these shifts will only be along
the kx direction. The reason for this can be inferred from
the current pattern, e.g., Fig. 5(b). Vortex patterns will usu-
ally have 2| jH | = | jV | in correspondence to Kirchhoff’s law,
i.e., atoms are slower across horizontal bonds, leading to a
shift in the n(k) distribution. Meissner currents, however,
will contain two degenerate momenta peaks across ky, with
the shift along kx varying. By inspecting Fig. 5(a), Meiss-
ner patterns have two vertical currents localized around the
edges. This means that atoms will possess two distinct ve-
locities across y, leading to the two well-defined peaks in
n(k). The vortex-Meissner n(k) can contain distinct prop-
erties from both vortex and Meissner distributions of n(k).
First, the strong vortex-Meissner pattern has pronounced n(k)
peaks, like that of the Meissner distribution, but with an
envelope function that corresponds to vortex currents. The
weak vortex-Meissner pattern then contains less pronounced
n(k) peaks, which also have a smaller relative separation.
Both the superlattice and quasiperiodic ladder can form simi-
lar kinds of phases, with separate features forming along ky

due to the nonuniform bond lengths. For the quasiperiodic
ladders, the separation between n(k) peaks usually vanishes,
with larger fluctuations in the stripe-like structure. In the fu-
ture, it would be interesting to compare these features with
the recent observation of crystallization in Landau gauge
condensates [23,24].
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FIG. 13. Phase diagram of the homogeneous ladder for a/b = 1 and J/U = 0.44, showing the (a) current patterns, (b) locality jL ,
(c) compressibility κ and, (d) energy variance Evar. The currents in (a) are colored for each distinct pattern in Table I. We observe a
clear transition of vortex to Meissner currents, with the vortex-Meissner distributions separating their domains. For larger μ/U , sets of
incompressible phases can frequently appear.

V. MAGNETIC PHASE DIAGRAMS

We will now plot full phase diagrams for the different
ladders as a function of μ/U and φ/φ0, labeling currents
according to the definitions of Table I, as before. The com-
pressibility κ will be plotted, which can be used to visualize
whether or not the system is in a SF-like or incompressible
phase. This will be particularly important for the superlattice
and quasiperiodic ladders, in which incompressible domains
were prominent. Furthermore, inhomogeneous ladders can
localize the current distributions, i.e., jL � 0. If κ is finite
when jL � 0, we therefore have a BG-like phase, since the
SF domains are separated and no longer percolate across
the longitudinal direction. Finally, we will also introduce the
energy variance Evar, which is defined by

Evar = 〈�|(Ĥ − E )2|�〉. (21)

In DMRG simulations, Evar is a measure of how well an MPS
state |�〉 approximates a true eigenstate of Ĥ. For an exact
ground state, Evar = 0. Otherwise, when Dmax is finite, Evar

can be a small, nonzero value value, which gives a quantitative
measure of how well an MPS state has converged to the true
ground state.

A. Homogeneous ladder

For the first set of results, we will consider the homoge-
neous a/b = 1 ladder in Fig. 13, for fixed J/U = 0.44. This
particular choice of J/U is chosen such that when μ/U → 1,
the phase converges towards the MI phase with zero (trivial)
currents. In other words, the range of μ/U we consider will
characterize all finite current patterns. Phase regions over
−1 � μ/U � 0 will also be mirrored due to the presence
of particle-hole symmetry in the hard-core, Bose-Hubbard
model. In Fig. 13(a), we color different regions according
to the current distributions in Table I. For φ/φ0 ≈ 0.7, there
is a clear transition from the vortex to Meissner patterns of
current, as has been observed in prior studies [53,55]. The
current regions are also symmetric about φ/φ0 = 0.5, in a
similar manner to the single-particle Hofstadter butterfly [2].
If φ/φ0 approaches an integer, the trivial pattern of current
can be stabilized. This also occurs for a range of φ/φ0 ≈ 0.5,
near μ/U → 1. Vortex-Meissner domains will also appear
throughout the considered regions for smaller ranges of φ/φ0,
and will usually separate vortex and Meissner domains. The
current locality jL is also plotted in Fig. 13(b), which fur-
ther illustrates the clear transition between vortex (extended)

and Meissner (localized) currents. In other words, a jL ≈ 1
denotes an absence of bulk currents across vertical bonds,
i.e., Meissner order. For jL ≈ 0, currents are fully extended,
indicating variations of the vortex pattern. Fluctuations will of
course arise due to the different patterns of vortex currents and
changes in the magnetic unit cell. However, all phases found
for the homogeneous ladder will retain an extended structure
of currents throughout the lattice. Next, in Fig. 13(c), we also
plot the compressibility κ , which can be used to characterize
the transition between incompressible and SF phases. Here,
we can see that the SF phase is usually dominant. How-
ever, we note the presence of several incompressible domains
around μ/U = 0, which contain vortex or Meissner current
patterns. Furthermore, when 0.7 � μ/U � 1.0, we observe
the formation of a large set of incompressible phases with
vortex-Meissner patterns of current. As discussed in the previ-
ous section and Appendix A 2, the small width incompressible
domains for a homogeneous ladder become vanishingly small
when Lx is further increased. For all considered μ/U and
φ/φ0, we have observed continuous behavior of the bond
currents ji j across different current patterns. These currents
will of course be more sensitive when φ/φ0 is changed, due
to changes in the magnetic unit cell.

Finally, in Fig. 13(d), we plot the energy variance Evar.
Generally speaking, the Meissner domains contain smaller
Evar than that of the vortex or vortex-Meissner patterns, as
indicated by the sharp change in Evar across φ/φ0 ≈ 0.7. This
is to be expected, given the absence of bulk currents in the
Meissner domains, i.e., less correlations. As we approach
μ/U = 1, Evar will also decrease, in correspondence to the
onset of a trivial MI phase.

B. Superlattice ladder

Here, we now consider phase diagrams for the superlat-
tice ladders in Fig. 14, for different values of a/b and J/U .
If we first consider a small variation to a/b = 1.25, as per
Figs. 14(a)–14(d), there are several similarities to the homo-
geneous ladder in terms of the general location of current
distributions and incompressible domains. However, several
key differences are also observed due to the inhomogeneous
X (m) distribution. This includes the two larger incompressible
phases around φ/φ0 = 0.3 at μ/U = 0.1 and μ/U = 0.67,
and a restriction of the Meissner current patterns to a smaller
range of φ/φ0 below 0.2. Furthermore, the weak and strong
vortex-Meissner crossover domains will then occupy larger
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FIG. 14. Phase diagrams of the superlattice ladders for [(a)–(d)] a/b = 1.25 and J/U = 0.41, and [(e)–(h)] a/b = 2 and J/U = 0.29,
showing [(a),(e)] current patterns, [(b),(f)] locality jL , [(c),(g)] compressibility κ and, [(d),(h)] energy variance Evar. The currents in (a) and
(e) are colored for each distinct pattern in Table I. The vortex-Meissner distributions are seen to dominate many of the phase regions when
compared against the homogeneous ladder, with certain incompressible regions also growing in extent.

regions of the phase diagram, which is a consequence of inho-
mogeneous tunneling across the different rectangular tiles. If
we inspect the current locality jL in Figs. 14(b), it can be seen
that jL ≈ 0 in most domains, which indicates the presence
of extended currents across the lattice. When a/b is further
deviated to 2 in Figs. 14(e)–14(h), these differences will be
exaggerated further, with incompressible domains growing in
size and overall extent. Unlike the homogeneous ladder, the
incompressible domains with widths larger than ≈0.01μ/U
are stable upon further increments to Lx, as shown in Ap-
pendix 2. The Meissner distribution is also restricted to a very
small range of φ/φ0 ≈ 0 in Fig. 14(e), being replaced pri-
marily by strong vortex-Meissner domains. We also observe
small values of jL within Figs. 14(f), which again reveals the
extended nature of superlattice currents.

In both cases, the variance Evar in Figs. 14(d) and 14(h) has
similar properties to the homogeneous ladder, with smaller
Evar towards μ/U = 1 and Meissner domains. Interestingly,
for a/b = 2, μ/U ≈ 0.7, and φ/φ0 ≈ 0.36, Evar within part
of the incompressible domain is very small. By inspecting
Fig. 14(f) for the same parameters, this can be linked to a
higher locality of currents, or lack of correlations within the
system.

C. Quasiperiodic ladder

In this final section, we will consider the phase diagrams of
the quasiperiodic ladders in Fig. 15, for different values of a/b
and J/U . As before, we initially consider a small variation of
a/b = 1.25 in Figs. 15(a)–15(d), which has similar features to
what was observed with the superlattice ladder in Figs. 14(a)–
14(d), including the growth of incompressible phases and
destabilization of the Meissner domains. However, the cur-
rent locality in Fig. 14(b) tends to fluctuate around nonzero
values across larger domains, showing that localized currents
are forming on the quasiperiodic ladder. The differences be-
tween both homogeneous and superlattice ladders becomes
significant when a larger deviation of a/b = 2 is used in
Figs. 15(e)–15(h). For these cases, incompressible phases and
strong/weak vortex-Meissner domains become far more dom-

inant across most μ/U and φ/φ0, as expected from Fig. 14,
with the Meissner distribution being absent. Incompressible
domains are also stable against finite-size fluctuations, similar
to the superlattice. Furthermore, jL in Fig. 15(f) contains a
greater degree of locality away from a value of 0, which
indicates the formation of intriguing, bulk localized currents.
There are also several regions in which both jL and κ are
finite, which implies the formation of BG-like phases on the
ladder. This is to be expected due to the absence of short-range
order for the quasiperiodic ladder, i.e., different structures of
current can not be repeated, and are hence localized within
the bulk. We also note more prominent fluctuations in jL
across the large width incompressible domains as we vary
φ/φ0. For these parameter regimes, the density profile does
not vary. However, the underlying currents may differ in order
to minimize the global energy, due to changes in the magnetic
unit cell. Finally, the energy variance Evar in Figs. 15(d) and
15(h) shows analogous properties to that of the superlattice.
In particular, for a/b = 2, the higher degree of current locality
reduces Evar across larger regions of the phase diagram.

If there are multiple, distinct encircling phases � on a
ladder, we have observed the stabilization of extended incom-
pressible domains and localization in the system. Based on
these properties, one may also infer the behavior of systems
with tunneling beyond that of nearest neighbor. Such models
will introduce more encircling phases � into the problem that
now overlap one another, which will likely further stabilize
incompressible domains and localization within superlattice
and quasiperiodic ladders.

VI. CONCLUSIONS

In summary, we have shown that different kinds of ladder
systems can possess exotic incompressible phases and local-
ization properties. If the ladders are homogeneous or arranged
as a superlattice, we observe extended and periodic structures
of current across the system, with vortex and Meissner pat-
terns dominant. On the other hand, by considering ladders
with greater deviations in the bond lengths a/b, it is possible
to induce dramatic shifts in the overall phase regions. For the
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FIG. 15. Phase diagrams of the quasiperiodic ladders for [(a)–(d)] a/b = 1.25 and J/U = 0.41, and [(e)–(h)] a/b = 2 and J/U = 0.29,
showing [(a),(e)] current patterns and [(b),(f)] locality jL , [(c),(g)] compressibility κ , and [(d),(h)] energy variance Evar. The currents in (a) and
(e) are colored for each distinct pattern in Table I. Here, the incompressible phases and vortex-Meissner domains again grow in size and extent.
The locality jL is also larger when compared to the superlattice and homogeneous ladders, which indicates the presence of localized currents.

quasiperiodic and superlattice ladders, we have seen that the
weak or strong vortex-Meissner domains can become much
more prominent. Furthermore, incompressible phases can oc-
cupy larger regions of the parameter space, and are robust
against changes to the system size. These properties are a
direct consequence of the fluctuating bond lengths and cor-
responding encircling phases �, which allows for preferential
localization within the bulk, towards the smaller bond lengths.
This has been made particularly clear for the case of quasiperi-
odic ladders, in which there is a high degree of current locality
for both compressible and incompressible phases.

For future studies, we envisage that the generation of
inhomogeneous fluxes could be achieved in optical lattice
experiments, using similar schemes that form staggered or
homogeneous fluxes [37–39,72]. As an example, it is known
that time-dependent fluctuations to external potentials can
artificially emulate the Peierls phases [72]. In this paper, the
Peierls phases depend on the tunneling coefficients J0 of a
square optical lattice. If one instead replaces the square op-
tical lattice with a rectangular one, the tunneling coefficients
between different sites will vary, similar to Eq. (7). The reason
for this is due to the dependence of J0 on overlap integrals
between Wannier functions, i.e., the radial extent of Wannier
functions will fluctuate between sites.
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APPENDIX: CONVERGENCE OF OBSERVABLES

1. Bond dimension Dmax

In this section, we will briefly cover some details regarding
the convergence of our observables over a range of bond
dimensions Dmax. We will fix Lx = 39 for different φ/φ0,
J/U , μ/U and ladder geometries. An important measure to
characterize convergence of the DMRG simulations is the
ground-state energy difference E between different bond

dimensions, i.e., E = (EDj − EDj+1 )/L, where EDj is the
ground-state energy when Dmax = Dj , for a set of j bond
dimensions. For an accurate representation of the ground
state, E should then be vanishingly small. To illustrate this
behavior, we first consider the case of a homogeneous ladder
in Fig. 16. We plot the behavior of E and current order
parameters at different μ/U , in order to look at the transition
between different patterns of current. In particular, we have
the vortex to trivial transition in Figs. 16(c) and 16(d) when
φ/φ0 = 0.5 and J/U = 0.44, and the strong vortex-Meissner
to Meissner transition within Figs. 16(a) and 16(b) when
φ/φ0 = 0.25 and J/U = 0.4. Here, we can see that the rel-
ative change in energy between different bond dimensions in
Figs. 16(a) and 16(c) becomes smaller as Dmax is increased,
as expected. By inspecting the current order parameters | jM |,

(a) (b)

(c) (d)
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-16
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-15

0.3
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0 300 0 300

FIG. 16. Convergence of observables for the homogeneous lad-
der, when [(a),(b)] φ/φ0 = 0.25 and J/U = 0.4 and [(c),(d)] φ/φ0 =
0.5 and J/U = 0.44. Lighter shades of the curves correspond to an
increasing μ/U . Small variations to the observables can be seen, but
the underlying current pattern does not change.
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FIG. 17. Convergence of observables for the superlattice lad-
der with a/b = 2, when [(a),(b)] φ/φ0 = 0.5 and J/U = 0.29 and
[(c),(d)] φ/φ0 = 0.25 and J/U = 0.28. Lighter shades of the curves
correspond to an increasing μ/U . In all cases, we observe little
variation of the order parameters between different Dmax.

| jH |, and | jV | in Figs. 16(b) and 16(d), we can see that there
are only small variations between different Dmax. Importantly,
however, these variations do not change the underlying current
patterns.

Next, we turn our attention to the inhomogeneous lad-
ders. Similar to before, we consider the behavior of E and
the current observables for a superlattice ladder in Fig. 17,
when a/b = 2. We choose a range of μ/U that encompasses
different patterns of current and incompressible domains. In
Figs. 17(a) and 17(b), we have φ/φ0 = 0.5 and J/U = 0.29,
and consider different μ/U within vortex and weak vortex-
Meissner domains. Compared to the homogeneous ladder,
we now observe a much faster convergence of E and the
current order parameters. This is likely due to the presence
of nonuniform/disordered tiles within the ladder, which will
reduce correlations. We also observe this faster convergence
in Figs. 17(c) and 17(d) for the strong vortex-Meissner region,
when φ/φ0 = 0.25 and J/U = 0.28.

Finally, we plot the behavior for a quasiperiodic ladder
in Fig. 18 when a/b = 2, for a similar range of parameters.
The overall properties follow closely those that were observed
within the superlattice ladder. Furthermore, for Figs. 18(c)
and 18(d), we can see that the currents for μ/U = 0.6
and μ/U = 0.8 are equivalent, which corresponds to one
of the large, incompressible domains in Fig. 11(d). In other
words, the incompressible domain is stable across a range
of Dmax.

2. System size Lx

We will now consider the influence of different Lx on
the stability and extent of different current patterns and in-
compressible domains. As shown in the prior section, the
observables and current patterns have converged over a range
of bond dimensions Dmax. For the purposes of this sec-
tion, we therefore choose a smaller Dmax = 30, and plot the
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FIG. 18. Convergence of observables for the quasiperiodic lad-
der with a/b = 2, when [(a),(b)] φ/φ0 = 0.5 and J/U = 0.29 and
[(c),(d)] φ/φ0 = 0.25 and J/U = 0.28. Lighter shades of the curves
correspond to an increasing μ/U . In all cases, we observe little
variation of the order parameters between different Dmax.

current/incompressible regions for different Lx. We start our
results with the homogeneous ladder in Fig. 19, across a
range of μ/U . For Figs. 19(a) and 19(c), we have strong
vortex-Meissner to Meissner transitions when φ/φ0 = 0.25
and J/U = 0.4. We see little variation to the current regions in

1
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0.3

0
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(c)

Lx = 19

Lx = 39

Lx = 79
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Lx = 19
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Lx = 19
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Lx = 79

Lx = 129
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0 1 0 1

FIG. 19. Convergence of [(a),(b)] current order parameters and
[(c),(d)] ρ̄ for the homogeneous ladder with different Lx . We consider
[(a),(c)] φ/φ0 = 0.25 and J/U = 0.4 and [(b),(d)] φ/φ0 = 0.5 and
J/U = 0.44. Current patterns in (a) and (b) are colored in a similar
manner to Figs. 6(b) and 6(a), with incompressible regions in (c) and
(d) denoted by shaded areas. In all cases, current regions do not have
strong fluctuations for increasing Lx . Incompressible windows for
φ/φ0 = 0.25 become more narrow for increasing Lx .
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0.82

FIG. 20. Plot of the average density ρ̄ when Lx = 79 for a
smaller range of μ/U , but with a larger number of sampled μ/U
points. Here, we can again observe the formation of incompressible
domains, but they will have a much narrower extent across μ/U
compared to smaller Lx .

Fig. 19(a) between different Lx. However, the incompressible
domains seen in Fig. 19(c) appear to become absent when Lx

is increased. It is important to note that these plots are sampled
over a finite number of μ/U points, i.e., the grid of μ/U may
not sample very small incompressible domains.

In Fig. 20, we plot the average density ρ̄ when Lx =
79 again, but over a smaller range of μ/U , with a larger
number of sampled points. Here, we see the formation of
incompressible domains with very small widths, implying
that the incompressible regions of the homogeneous ladder
are very sensitive to particle number fluctuations. Finally, in
Figs. 19(b) and 19(d), we have the vortex to trivial transi-
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FIG. 21. Convergence of [(a),(b)] current order parameters and
[(c),(d)] ρ̄ for the superlattice ladder with a/b = 2 for different
Lx . We consider [(a),(c)] φ/φ0 = 0.5 and J/U = 0.29 and [(b),(d)]
φ/φ0 = 0.25 and J/U = 0.28. Current patterns in (a) and (b) are col-
ored in a similar manner to Figs. 9(b) and 9(a), with incompressible
regions in (c) and (d) denoted by shaded areas. In all cases, current
regions do not have strong fluctuations for increasing Lx . Two of the
larger incompressible windows do not narrow with fluctuations to Lx .
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FIG. 22. Convergence of [(a),(b)] current order parameters and
[(c),(d)] ρ̄ for the quasiperiodic ladder with a/b = 2 for different
Lx . We consider [(a),(c)] φ/φ0 = 0.5 and J/U = 0.29 and [(b),(d)]
φ/φ0 = 0.25 and J/U = 0.28. Current patterns in (a) and (b) are col-
ored in a similar manner to Figs. 9(d) and 9(c), with incompressible
regions in (c) and (d) denoted by shaded areas. In all cases, current
regions do not have strong fluctuations for increasing Lx . A larger
number of incompressible domains are also retained compared to the
superlattice.

tion when φ/φ0 = 0.5 and J/U = 0.44, which again shows
convergence of the current patterns for increasing Lx. Next,
we look will at the case of superlattice ladders in Fig. 21
when a/b = 2. For both values of φ/φ0, the current order
parameters and regions in Figs. 21(a) and 21(b) are stable
across a range of system sizes. When considering the average
density ρ̄ in Figs. 21(c) and 21(d), we can again observe the
narrowing of some incompressible domains as Lx is increased,
in a similar manner to Fig. 19(c). However, compared to
the homogeneous ladder, two of the larger incompressible
regions around μ/U = 0.2 and μ/U = 0.7 do not fluctuate
with changes to the system size. In Fig. 22, we perform an
equivalent analysis for the case of a quasiperiodic ladder with
a/b = 2. As expected from the discussion in our main results,
the overall properties follow closely that of the superlattice
ladder, with convergence of the current regions in Figs. 22(a)
and 22(b) over different Lx. The average density ρ̄ within
Figs. 22(c) and 22(d) is also similar, but with the retention of
a larger number of smaller, incompressible windows across
μ/U . Summarizing, we have seen that our order parame-
ters have converged over a range of system sizes Lx and
bond dimensions Dmax, with little variation to the underly-
ing patterns of current. For the incompressible domains, we
have also observed that some of the smaller width regions
in our results are sensitive to particle number fluctuations,
based on the narrowing of these windows with increasing
Lx. However, for the superlattice and quasiperiodic ladder we
do not observe any narrowing of the largest incompressible
domains.
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[51] M. Łącki, H. Pichler, A. Sterdyniak, A. Lyras, V. E.
Lembessis, O. Al-Dossary, J. C. Budich, and P. Zoller, Quan-
tum Hall physics with cold atoms in cylindrical optical lattices,
Phys. Rev. A 93, 013604 (2016).

[52] M. Atala, M. Aidelsburger, M. Lohse, J. Barreiro, B. Paredes,
and I. Bloch, Observation of chiral currents with ultracold
atoms in bosonic ladders, Nat. Phys. 10, 588 (2014).

[53] M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, S.
Greschner, T. Vekua, and U. Schollwöck, Vortex and Meissner
phases of strongly interacting bosons on a two-leg ladder,
Phys. Rev. B 91, 140406(R) (2015).

[54] M. Di Dio, S. De Palo, E. Orignac, R. Citro, and M.-L.
Chiofalo, Persisting meissner state and incommensurate

phases of hard-core boson ladders in a flux, Phys. Rev. B 92,
060506(R) (2015).

[55] E. Orignac, R. Citro, M. D. Dio, S. D. Palo, and M.-L.
Chiofalo, Incommensurate phases of a bosonic two-leg ladder
under a flux, New J. Phys. 18, 055017 (2016).

[56] E. Orignac, R. Citro, M. Di Dio, and S. De Palo, Vortex lattice
melting in a boson ladder in an artificial gauge field, Phys. Rev.
B 96, 014518 (2017).

[57] S. Greschner, M. Piraud, F. Heidrich-Meisner, I. P.
McCulloch, U. Schollwöck, and T. Vekua, Symmetry-broken
states in a system of interacting bosons on a two-leg ladder
with a uniform Abelian gauge field, Phys. Rev. A 94, 063628
(2016).

[58] S. Greschner, M. Piraud, F. Heidrich-Meisner, I. P.
McCulloch, U. Schollwöck, and T. Vekua, Spontaneous In-
crease of Magnetic Flux and Chiral-Current Reversal in
Bosonic Ladders: Swimming Against the Tide, Phys. Rev.
Lett. 115, 190402 (2015).

[59] A. Haller, A. S. Matsoukas-Roubeas, Y. Pan, M. Rizzi, and
M. Burrello, Exploring helical phases of matter in bosonic
ladders, Phys. Rev. Res. 2, 043433 (2020).

[60] A. Petrescu and K. Le Hur, Bosonic Mott Insulator with
Meissner Currents, Phys. Rev. Lett. 111, 150601 (2013).

[61] A. Petrescu and K. Le Hur, Chiral Mott insulators, Meissner
effect, and Laughlin states in quantum ladders, Phys. Rev. B
91, 054520 (2015).

[62] A. Tokuno and A. Georges, Ground states of a Bose–Hubbard
ladder in an artificial magnetic field: Field-theoretical ap-
proach, New J. Phys. 16, 073005 (2014).

[63] R. Wei and E. J. Mueller, Theory of bosons in two-leg lad-
ders with large magnetic fields, Phys. Rev. A 89, 063617
(2014).

[64] S. Uchino, Analytical approach to a bosonic ladder subject to
a magnetic field, Phys. Rev. A 93, 053629 (2016).

[65] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. Cooper, I. Bloch, and N.
Goldman, Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms, Nat. Phys. 11, 162 (2015).

[66] D. Genkina, L. M. Aycock, H.-I. Lu, M. Lu, A. M. Pineiro, and
I. Spielman, Imaging topology of Hofstadter ribbons, New J.
Phys. 21, 053021 (2019).

[67] T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dalibard,
R. Lopes, and S. Nascimbene, Probing chiral edge dynamics
and bulk topology of a synthetic Hall system, Nat. Phys. 16,
1017 (2020).

[68] S. Mugel, A. Dauphin, P. Massignan, L. Tarruell, M.
Lewenstein, C. Lobo, and A. Celi, Measuring Chern numbers
in Hofstadter strips, SciPost Phys. 3, 012 (2017).

[69] D. Johnstone, M. J. Colbrook, A. E. B. Nielsen, P. Öhberg,
and C. W. Duncan, Bulk localized transport states in infinite
and finite quasicrystals via magnetic aperiodicity, Phys. Rev.
B 106, 045149 (2022).

[70] C. W. Duncan, S. Manna, and A. E. B. Nielsen, Topological
models in rotationally symmetric quasicrystals, Phys. Rev. B
101, 115413 (2020).

[71] R. Peierls, Zur theorie des diamagnetismus von leitungselek-
tronen, Z. Phys. 80, 763 (1933).

[72] L.-K. Lim, A. Hemmerich, and C. M. Smith, Artificial stag-
gered magnetic field for ultracold atoms in optical lattices,
Phys. Rev. A 81, 023404 (2010).

023195-15

https://doi.org/10.1103/PhysRevLett.107.255301
https://doi.org/10.1103/PhysRevLett.108.225303
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.99.220601
https://doi.org/10.1038/nature07244
https://doi.org/10.1126/science.1165449
https://doi.org/10.1103/PhysRevB.98.165102
https://doi.org/10.1103/PhysRevB.51.1922
https://doi.org/10.1103/PhysRevB.90.205111
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevLett.104.145301
https://doi.org/10.1103/PhysRevLett.100.070402
https://doi.org/10.1103/PhysRevLett.108.255303
https://doi.org/10.1103/PhysRevA.93.013604
https://doi.org/10.1038/nphys2998
https://doi.org/10.1103/PhysRevB.91.140406
https://doi.org/10.1103/PhysRevB.92.060506
https://doi.org/10.1088/1367-2630/18/5/055017
https://doi.org/10.1103/PhysRevB.96.014518
https://doi.org/10.1103/PhysRevA.94.063628
https://doi.org/10.1103/PhysRevLett.115.190402
https://doi.org/10.1103/PhysRevResearch.2.043433
https://doi.org/10.1103/PhysRevLett.111.150601
https://doi.org/10.1103/PhysRevB.91.054520
https://doi.org/10.1088/1367-2630/16/7/073005
https://doi.org/10.1103/PhysRevA.89.063617
https://doi.org/10.1103/PhysRevA.93.053629
https://doi.org/10.1038/nphys3171
https://doi.org/10.1088/1367-2630/ab165b
https://doi.org/10.1038/s41567-020-0942-5
https://doi.org/10.21468/SciPostPhys.3.2.012
https://doi.org/10.1103/PhysRevB.106.045149
https://doi.org/10.1103/PhysRevB.101.115413
https://doi.org/10.1007/BF01342591
https://doi.org/10.1103/PhysRevA.81.023404


JOHNSTONE, ÖHBERG, AND DUNCAN PHYSICAL REVIEW RESEARCH 5, 023195 (2023)

[73] A. Dhar, M. Maji, T. Mishra, R. V. Pai, S. Mukerjee, and
A. Paramekanti, Bose-Hubbard model in a strong effective
magnetic field: Emergence of a chiral Mott insulator ground
state, Phys. Rev. A 85, 041602(R) (2012).

[74] A. Dhar, T. Mishra, M. Maji, R. V. Pai, S. Mukerjee, and
A. Paramekanti, Chiral Mott insulator with staggered loop
currents in the fully frustrated Bose-Hubbard model, Phys.
Rev. B 87, 174501 (2013).

[75] G. Möller and N. R. Cooper, Condensed ground states of
frustrated Bose-Hubbard models, Phys. Rev. A 82, 063625
(2010).

[76] N. de Bruijn, Algebraic theory of Penrose’s non-periodic
tilings of the plane. I, Indag. Math. 84, 39 (1981).

[77] N. de Bruijn, Algebraic theory of Penrose’s non-periodic
tilings of the plane. II, Indag. Math. 84, 53 (1981).

[78] R. Penrose, The role of aesthetics in pure and applied mathe-
matical research, Bull. Inst. Math. Appl. 10, 266 (1974).

[79] R. M. Robinson, Undecidability and nonperiodicity for tilings
of the plane, Invent. Math. 12, 177 (1971).

[80] G. H. Wannier, The Structure of Electronic Excitation Levels
in Insulating Crystals, Phys. Rev. 52, 191 (1937).

[81] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[82] S. R. White, Density-matrix algorithms for quantum renormal-
ization groups, Phys. Rev. B 48, 10345 (1993).

[83] S. Östlund and S. Rommer, Thermodynamic Limit of Den-
sity Matrix Renormalization, Phys. Rev. Lett. 75, 3537
(1995).

[84] J. Dukelsky, M. A. Martín-Delgado, T. Nishino, and G. Sierra,
Equivalence of the variational matrix product method and the
density matrix renormalization group applied to spin chains,
Europhys. Lett. 43, 457 (1998).

[85] M. Zwolak and G. Vidal, Mixed-State Dynamics in One-
Dimensional Quantum Lattice Systems: A Time-Dependent
Superoperator Renormalization Algorithm, Phys. Rev. Lett.
93, 207205 (2004).

[86] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix Prod-
uct Density Operators: Simulation of Finite-Temperature and
Dissipative Systems, Phys. Rev. Lett. 93, 207204 (2004).

[87] F. Verstraete, V. Murg, and J. Cirac, Matrix product states, pro-
jected entangled pair states, and variational renormalization
group methods for quantum spin systems, Adv. Phys. 57, 143
(2008).

[88] U. Schollwöck, The density-matrix renormalization group,
Rev. Mod. Phys. 77, 259 (2005).

[89] C. Hubig, I. P. McCulloch, and U. Schollwöck, Generic con-
struction of efficient matrix product operators, Phys. Rev. B
95, 035129 (2017).

[90] I. B. Spielman, W. D. Phillips, and J. V. Porto, Condensate
Fraction in a 2D Bose Gas Measured Across the Mott-
Insulator Transition, Phys. Rev. Lett. 100, 120402 (2008).

[91] S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and
I. Bloch, Spatial quantum noise interferometry in expanding
ultracold atom clouds, Nature (London) 434, 481 (2005).

[92] S. Greschner and T. Vekua, Vortex-Hole Duality: A Uni-
fied Picture of Weak- and Strong-Coupling Regimes of
Bosonic Ladders with Flux, Phys. Rev. Lett. 119, 073401
(2017).

[93] F. Grusdt and M. Höning, Realization of fractional Chern
insulators in the thin-torus limit with ultracold bosons, Phys.
Rev. A 90, 053623 (2014).

[94] M. Calvanese Strinati, E. Cornfeld, D. Rossini, S. Barbarino,
M. Dalmonte, R. Fazio, E. Sela, and L. Mazza, Laughlin-like
States in Bosonic and Fermionic Atomic Synthetic Ladders,
Phys. Rev. X 7, 021033 (2017).

[95] A. Petrescu, M. Piraud, G. Roux, I. P. McCulloch, and K. Le
Hur, Precursor of the Laughlin state of hard-core bosons on a
two-leg ladder, Phys. Rev. B 96, 014524 (2017).

[96] A. S. Sørensen, E. Demler, and M. D. Lukin, Fractional Quan-
tum Hall States of Atoms in Optical Lattices, Phys. Rev. Lett.
94, 086803 (2005).

[97] W. Meissner and R. Ochsenfeld, Ein neuer effekt bei eintritt
der supraleitfähigkeit, Sci. Nat. 21, 787 (1933).

[98] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of
superconductivity, Phys. Rev. 108, 1175 (1957).

[99] J. Rjabinin and L. Shubnikow, Magnetic properties and critical
currents of supra-conducting alloys, Nature (London) 135, 581
(1935).

[100] V. L. Ginzburg and L. D. Landau, On the theory of supercon-
ductivity, in On Superconductivity and Superfluidity (Springer,
New York, 2009), pp. 113–137.

[101] A. A. Abrikosov, Nobel lecture: Type-II superconductors and
the vortex lattice, Rev. Mod. Phys. 76, 975 (2004).

[102] J. Kisker and H. Rieger, Bose-glass and Mott-insulator phase
in the disordered boson Hubbard model, Phys. Rev. B 55,
R11981 (1997).

[103] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Boson localization and the superfluid-insulator transi-
tion, Phys. Rev. B 40, 546 (1989).

[104] A. Niederle and H. Rieger, Superfluid clusters, percolation and
phase transitions in the disordered, two-dimensional Bose–
Hubbard model, New J. Phys. 15, 075029 (2013).

[105] E. L. Pollock and D. M. Ceperley, Path-integral com-
putation of superfluid densities, Phys. Rev. B 36, 8343
(1987).

[106] B. Deissler, E. Lucioni, M. Modugno, G. Roati, L. Tanzi, M.
Zaccanti, M. Inguscio, and G. Modugno, Correlation function
of weakly interacting bosons in a disordered lattice, New J.
Phys. 13, 023020 (2011).

[107] T. G. Kiely and E. J. Mueller, Superfluidity in the one-
dimensional Bose-Hubbard model, Phys. Rev. B 105, 134502
(2022).

[108] T. D. Kühner, S. R. White, and H. Monien, One-dimensional
Bose-Hubbard model with nearest-neighbor interaction, Phys.
Rev. B 61, 12474 (2000).

[109] M.-C. Cha and J.-G. Shin, Two peaks in the momentum distri-
bution of bosons in a weakly frustrated two-leg optical ladder,
Phys. Rev. A 83, 055602 (2011).

023195-16

https://doi.org/10.1103/PhysRevA.85.041602
https://doi.org/10.1103/PhysRevB.87.174501
https://doi.org/10.1103/PhysRevA.82.063625
https://doi.org/10.1016/1385-7258(81)90016-0
https://doi.org/10.1016/1385-7258(81)90017-2
https://doi.org/10.1007/BF01418780
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1209/epl/i1998-00381-x
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevB.95.035129
https://doi.org/10.1103/PhysRevLett.100.120402
https://doi.org/10.1038/nature03500
https://doi.org/10.1103/PhysRevLett.119.073401
https://doi.org/10.1103/PhysRevA.90.053623
https://doi.org/10.1103/PhysRevX.7.021033
https://doi.org/10.1103/PhysRevB.96.014524
https://doi.org/10.1103/PhysRevLett.94.086803
https://doi.org/10.1007/BF01504252
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1038/135581a0
https://doi.org/10.1103/RevModPhys.76.975
https://doi.org/10.1103/PhysRevB.55.R11981
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1088/1367-2630/15/7/075029
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.1088/1367-2630/13/2/023020
https://doi.org/10.1103/PhysRevB.105.134502
https://doi.org/10.1103/PhysRevB.61.12474
https://doi.org/10.1103/PhysRevA.83.055602

