
1 INTRODUCTION 

In recent years, digitisation has caused disruption 
across industries. The integration of cloud-based data 
platforms, sensors with direct connection to the inter-
net (IoT), autonomous predictive models and robotics 
have paved the way for a so-called fourth industrial 
revolution (McKinsey & Company, 2022). 

While the acceleration of these technologies is 
most apparent in computer science and associated do-
mains, digital innovation is also permeating legacy 
industries such as the (offshore) construction sector. 
The deployment of digital solutions for survey data 
collection, foundation engineering calculations and 
in-place monitoring can lead to increased efficiency 
and improved insights in the geotechnical parameters 
affecting foundation behaviour. 

Figure 1 illustrates the use of digital data in foun-
dation engineering calculations. The basic workflow 
does not differ from a conventional (non-digital) 
workflow. Geotechnical data is gathered in the field 
and is stored in a centralised database after rigorous 
quality control. This data, combined with a thorough 
understanding of soil mechanics and possibly moni-
toring data, is used to determine the appropriate foun-
dation type and dimensions necessary to ensure satis-
factory performance over the operational lifetime. 
Although this approach is standard practice in off-
shore geotechnical engineering, digital data transfer 
and automated decision making can have a significant 
impact oneach stage of the workflow.  

Efforts have been made to facilitate the digitisation 
of offshore ground investigation data with the devel-
opment of the AGS4.0 and DIGGS standards (AGS, 
2017; Bachus, 2017) and cloud-based geotechnical 
data platforms have been developed to securely share 
geotechnical data with various project stakeholders 
(Doherty et al., 2018; Stuyts et al., 2022). These data 
platforms ensure that geotechnical data is immedi-
ately available for engineering calculations and the 
geotechnical engineer does not need to spend time 
and effort to digitise geotechnical test results. 

The foundation engineering calculations which are 
based on the site-specific geotechnical measurements 
are most often calibrated semi-empirical models 
based on (scale) model testing, numerical modelling 
and in-situ monitoring data. Machine learning meth-
ods are increasingly accessible through implementa-
tions in open-source packages (Scikit-learn develop-
ers, 2015) and allow complex mathematical models 
to be fitted to the available data. 
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Figure 1. Flowchart illustrating the use of digital data in foun-

dation engineering calculations. 
 
This paper outlines the different types of machine 

learning models which can be applied to offshore ge-
otechnical problems and aims to provide insight into 
the potential of these data-driven techniques. Im-
portantly, evaluation criteria for machine learning 
model quality are also discussed. Applying these 
techniques without due consideration of their draw-
backs should be avoided. 

The different types of machine learning are illus-
trated in Section 2. The data used in a machine learn-
ing workflow needs to be evaluated carefully as it will 
affect the models which are built from it. Section 3 
describes data requirements and provides basic guid-
ance for evaluating machine learning model quality. 

While some machine learning techniques (e.g. lin-
ear regression) are already familiar to most geotech-
nical engineers, a number of advanced model types 
have been developed in recent years, such as models 
which provide uncertainty estimates, recurrent neural 
networks for time series predictions, physics-in-
formed neural networks, multi-fidelity data fusion 
techniques and large language models. These ad-
vanced models are discussed in Section 4 and they are 
applied to example offshore geotechnical applica-
tions in Sections 5 to 8. 

2 TYPES OF MACHINE LEARNING 

Machine learning is a subset of artificial intelligence 
in which a computer (machine) extracts information 
from a given dataset without the intervention of a hu-
man being. In many cases, the computer will mimic 
the way in which humans learn, gradually improving 

the accuracy of predictions as more data becomes 
available. The accuracy of machine learning models 
depends on the dataset size, the type of mathematical 
model being trained and the quality of the data pre-
sented to the algorithm. 

Machine learning can be subdivided into four cat-
egories which are discussed hereunder. 

2.1 Supervised learning 
In a supervised learning problem, a labelled dataset is 
provided to the machine learning algorithm during the 
training phase. The label refers to the target outcome 
that the predictive model seeks to predict. This out-
come can either be discrete or continuous.The input 
variables on which the predictions are based are 
called features. 

Figure 2 shows an illustration of training a ma-
chine learning model on a dataset with m labelled 
samples. The dataset has n features and a target vari-
able 𝑦 which is known for the labelled samples. The 
objective of the machine learning is to learn the rela-
tionship between the features and the target,  which 
would lead to a good prediction of the target on new, 
unseen features. 

 
Figure 2. Illustration of supervised learning. 

 
The machine learning model is a mathematical 

model which formulates the target as a function 𝑓 of 
the features (Equation 1). This estimate may differ 
from the actual value 𝑦 of the target. This error 𝜀 is 
minimised during the training process by optimising 
the model coefficients. 

𝑦̂ = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑦 + 𝜀                                   (1) 
A loss function is minimised to find the optimal set 

of model coefficients. The optimal fit depends on the 
scatter in the training data and the ability of the model 
to capture the underlying trends in the data. 

The model also has a set of hyperparameters; pa-
rameters which control the behaviour of the model, 
but are fixed before the training phase. The hyperpa-
rameters can be tuned to improve the machine learn-
ing model performance. 

Once trained, the model is able to make predictions 
for any set of feature values. The accuracy of the pre-
dictions can be evaluated against the known values of 
the target variable for the labelled dataset. When ad-
ditional data is collected, the training can be repeated 
to further optimise the model coefficients and to tune 
the hyperparameters. As such, building a machine 
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learning is an iterative process, with models evolving 
over time.  

2.1.1 Supervised learning for continuous target 
variables: Regression 

In a regression problem, the value of a continuous 
variable is predicted based on a number of features. 
This type of modelling is routinely performed for cal-
ibrating semi-empirical methods in geotechnical en-
gineering. Example applications of regression models 
include: 

• Geotechnical parameter correlations: The 
dataset consists of samples where the value 
of the target is measured together with the 
values of the features. The shear wave ve-
locity (target) has been expressed as a func-
tion of CPT measurements and in-situ 
stress conditions (features) (e.g. Rix & 
Stokoe, 1991; Hegazy & Mayne, 2006; 
Robertson, 2009). 

• Prediction of foundation installation behav-
iour: When the installation behaviour of a 
foundation can be measured (e.g. blow 
count during pile driving), a model can be 
trained on the available installation data. 
Stuyts (2020) reported results from a com-
munity prediction exercise aimed at the de-
velopment of a blow count model for driven 
tubular jacket piles for a site in the Southern 
North Sea. The results highlighted the im-
portance of capturing geotechnical 
knowledge in the training process and of 
model interpretability. Figure 3 shows an 
example of blow count predictions with a 
linear regression model. 

 

 
Figure 3. Example of predicted blow count from a trained re-

gression model against blow count measurements (Stuyts, 
2020)  
 

While linear regression is the most intuitive model 
to understand the principles of machine learning, sev-
eral other model types exist. Advanced models such 
as extreme gradient boosting (Chen et al., 2015) or 
artificial neural networks (Jain et al., 1996) do not 
have a straightforward mathematical formulation and 
can lead to black box behaviour. In such cases, verifi-
cation of the model behaviour for variations of the 
features is required to ensure that the model provides 
physically meaningful predictions. 

2.1.2 Supervised learning for discrete target varia-
bles: Classification 

Machine learning models can be trained to predict 
categorical targets. The model predicts the class of 
the output from several possible classes. Example 
problems in geotechnical engineering include: 

• Prediction of soil type class from CPT 
measurements. The classification chart by 
Robertson (2009) based on normalised 
cone tip resistance 𝑄𝑡 and normalised 
sleeve friction 𝐹𝑟 is routinely used to deter-
mine whether a layer consists of clean 
sand, silty sand, clay, … The Robertson 
chart is a graphical representation of a clas-
sification model, based on training data 
where both soil type descriptions and CPT 
measurements were available. Stuyts 
(2020) presented a decision tree model to 
evaluate soil type from CPT. The im-
portance of the tree depth (a hyperparame-
ter of the decision tree model) was high-
lighted. Trees with greater depth led to 
inconsistent predictions. 

• Installation refusal: When the presence of 
a hard layer or insufficient capacity of the 
installation equipment halts the installation 
of an offshore foundation (e.g. driven pile 
or suction caisson), the conditions leading 
to this refusal can be recorded. Accumulat-
ing a dataset of installations with and with-
out refusal allows a binary classification 
model to be fitted. The combination of 
ground conditions, foundation dimensions 
and installation equipment can be used to 
predict whether the installation will be suc-
cessful or not. Offshore wind farm founda-
tion installation, with many structures be-
ing installed in the same geological 
settings, provides possibilities for deriving 
such models. 

Classification models have traditionally not been 
used as much as regression models in offshore ge-
otechnical engineering, but when the target is appro-
priately formulated, these models can add valuable 
insights for decision making in offshore foundation 
design and installation. 

Several classification methods such as design trees 
and boosting methods, assign a probability to each 
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class, which makes them suitable for probabilistic 
predictions. 

2.2 Semi-supervised learning 
In semi-supervised learning, the model is trained on a 
dataset that contains both labelled and unlabelled 
data. The labelled data is used to train an initial ver-
sion of the model which is then used to make predic-
tions on the unlabelled data. Unlabelled samples 
where the probability of the prediction is high are then 
added to the labelled data and the training is repeated. 
This type of modelling can be useful when the data 
volume is large and the labelling requires significant 
effort. 

 The principle of semi-supervised learning can be 
illustrated on downhole CPT data. When starting a 
new CPT stroke from the bottom of the borehole, a 
certain amount of displacement is required before 
reaching the ultimate resistance of the soil. This gives 
rise to a near-horizontal line at the start of each push 
which needs to be filtered out to allow meaningful pa-
rameter selection. The displacement needed to reach 
the ultimate resistance depends on the soil type, the 
stress level at the depth considered and the cone re-
sistance in the layer. 

A binary classification problem can thus be formu-
lated which determines whether the CPT measure-
ment at a certain depth corresponds to the initial part 
of the push or not. 

A dataset consisting of 80 downhole CPTs was as-
sembled and the initial part of the push was identified 
on 15 out of the 80 CPTs. Figure 4 shows an example 
downhole CPT from the labelled dataset with the ini-
tial part of the push marked in red. 

 
Figure 4. Cone tip resistance for a downhole CPT in the labelled 
dataset with initial part of the push marked in red. 

 
The model features were selected as follows: 

• Distance from top of push: For each push, 
the CPT penetration relative to the bottom 
of the hole was recorded; 

• Soil behaviour type index 𝐼𝑐: Robertson 
(2009) shows that 𝐼𝑐 can be used to differ-
entiate between cohesionless and cohesive 
behaviour. Figure 5, in which the initial 
part of the push is color-coded in blue, 
shows that the ultimate resistance takes 
more displacement to mobilise as 𝐼𝑐 be-
comes smaller (more cohesionless soil); 

• Cone tip resistance 𝑞𝑐: In soils with high 
cone resistance, more displacement will be 
required to reach the ultimate resistance. 
The cone tip resistance allows differentia-
tion between sands of different relative 
density.  

 
Figure 5. CPT measurements belonging to the initial part of the 
push color-coded in blue as a function of soil behaviour type in-
dex and distance from the top of the push 

 
A decision tree classifier with a maximum tree 

depth of 3 was chosen for the semi-supervised learn-
ing. The decision tree model was first trained on the 
15 CPTs. Subsequently, the trained model was ap-
plied to the unlabelled CPT and the prediction for 
which the class was predicted with greater than 75% 
probability were added to the training dataset. The de-
cision tree was then retrained with this additional 
data. 

The model was evaluated by calculating the pre-
dictions for 𝐼𝑐=2 and 𝑞𝑐=10MPa (more cohesionless 
behaviour) and 𝐼𝑐=3 and 𝑞𝑐=0.5MPa (more cohesive 
behaviour) for the supervised learning on the 15 la-
belled CPTs and the semi-supervised learning on the 
entire dataset. Figure 6 shows the probability of be-
longing to the initial part of the CPT push as a func-
tion of the distance from the top of the push. Points 
located less than 0.2m from to the top of the push have 
a high probability of belonging to the part that needs 
to be filtered out. The results show that adding the 
non-labelled points (see dashed lines) leads to 
changes in the depths where the transition to the ulti-
mate resistance is expected. For clay, a sharper tran-
sition is noticed, whereas for sand the probability of 
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belonging to the initial part of the push increases for 
points less than 15cm away from the top of the push. 
Without explicitly having to label the remaining 65 
CPTs, the estimates of the transition depths are re-
fined.  

 
Figure 6. Comparison of performance of supervised and semi-
supervised learning models for predicting the initial part of the 
CPT push. 

 
The trained semi-supervised model can be applied 

to an unseen location as shown in Figure 7. The model 
is capable of distinguishing between various soil 
types and can also differentiate between lower and 
higher values of cone resistance. The black line shows 
the cone resistance trace with the initial part of each 
push filtered out. This trace appears to be representa-
tive for the ultimate resistance of the soil. 

 

 
Figure 7. Application of the trained semi-supervised model to an 
unseen CPT. The initial part of the push identified by the model 
is marked in red. 

2.3 Unsupervised learning 
In unsupervised learning, the data is not labelled and 
the aim of the machine learning is to differentiate 
clusters with significantly different behaviour. 

For geotechnical engineers, this is best illustrated 
with the clustering of offshore wind turbine locations 
across a project site. Locations with similar geotech-
nical conditions are grouped together based on sev-
eral features (e.g. depth to a load bearing stratum, 
presence of soft soil). Depending on the geological 
setting at the site, the number of clusters required to 
capture the differences between the individual loca-
tion groups will vary. At geologically homogeneous 
sites, a limited number of clusters may suffice 
whereas strong site heterogeneity may lead to more 
clusters being required. 

In an unsupervised clustering analysis, the param-
eter space of the features is subdivided into a number 
of clusters based on similarity between the features of 
the individual data points. The most intuitive cluster-
ing algorithm is the K-means clustering algorithm. 
This algorithm calculates a generalised distance be-
tween the cluster centres and each datapoints (Equa-
tion 2). The optimal cluster centres are found when 
the distance between the points inside the cluster is 
small and the distance between cluster centres is 
large. Equation 2 shows the equation for the within-
cluster sum-of-squares. For the 𝑛 datapoints in the 
cluster 𝐶, the distance between the cluster centre 𝜇𝑗 
and the individual datapoints is minimised. For da-
tasets with significant scatter, identifying meaningful 
clusters can be challenging. 

∑ min
𝜇𝑗∈𝐶

(‖𝑥𝑖 − 𝜇𝑗‖
2

)𝑛
𝑖=0                                    (2) 

An example of K-mean clustering for determining 
soil layers from CPT data is shown in Figure 8. The 
depth below mudline 𝑧, cone tip resistance 𝑞𝑐 and soil 
behaviour type index 𝐼𝑐 are used as the features for 
the unsupervised learning. The profiles of 𝑞𝑐 and 𝐼𝑐 
were smoothed (see red dashed lines) to ensure ho-
mogeneous layers. If smoothing is not applied, the as-
signed cluster varies rapidly with depth and the layer 
homogeneity is not respected. The figure shows that 
the clustering algorithm is able to identify the individ-
ual layers. However, the layer boundaries, especially 
for the orange layer in the top 10m are debatable and 
might be assigned differently by an engineer. 
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Figure 8. Determination of soil layers based on K-means clus-
tering. 

 

2.4 Reinforcement learning 
Reinforcement learning is a type of machine learning 
that differs from both supervised and unsupervised 
learning approaches. In reinforcement learning, algo-
rithms interact with an environment, which may be a 
real-world setting or a computer program. The actions 
taken by the algorithm impact the environment, and 
based on these actions, a reward may be given. 

The training process does not rely on a predefined 
dataset. Instead, the model learns through repeated in-
teractions with the environment, where it receives 
feedback in the form of rewards or penalties. This en-
courages the model to learn the optimal behaviour. 

  
Figure 9. Schematic representation of reinforcement learning. 
An algorithm (agent) interacts with the environment and based 
on the interpreted outcome, a reward can be given (Image 
source: Wikimedia Commons) 

 
Reinforcement learning is applied in areas where 

there is an opportunity to repeatedly interact with the 
environment. In situations where there is a clear re-
ward such as games, algorithms have been very suc-
cessful in learning optimal behaviour. 

In the development of the control algorithms for 
autonomous vehicles, learning interactions with the 
environment in a controlled setting is necessary as the 
agent may select actions which lead to harmful inter-
actions with the environment.  

At the time of writing, there are no known appli-
cations of reinforcement learning in offshore geotech-
nical design. However, it is striking that many of the 
actions taken by operators of offshore equipment are 
inspired by the same principles as reinforcement 
learning. Experienced operators have learned what 
leads to a successful outcome by being exposed to 
many different situations (e.g. equipment settings, 
ground conditions, metocean climate) and have 
adapted their actions to these settings. It is plausible 
that control algorithms for offshore equipment (e.g. 
pile driving hammers, trenching assets) will eventu-
ally make use of reinforcement learning to make the 
equipment more autonomous and to reduce operator-
dependence. 

3 DATA REQUIREMENTS FOR MACHINE 
LEARNING METHODS 

3.1 Data quality 
Supervised and unsupervised learning methods heav-
ily rely on the data that is presented to them during 
the training phase. Therefore, uncertainties in this 
data arising from measurement errors or statistical 
variations can have a significant impact on the result-
ing models. One example from offshore site investi-
gations is the measurement of undrained shear 
strength 𝑆𝑢 using relatively crude, manually operated 
tools (e.g. torvane, pocket penetrometer), intermedi-
ate quality tests such as the laboratory vane or the UU 
triaxial test and more accurate DSS and CU triaxial 
tests (Figure 10). Although these tests target the same 
geotechnical parameter, the test method has a signifi-
cant impact on the accuracy of the 𝑆𝑢 estimate. 
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Figure 10. Undrained shear strength determined from various 
techniques. 

 
Moreover, datasets can exhibit high levels of im-

balance and bias if they contain more data for certain 
regions in the parameter space than others. For exam-
ple, site investigation for offshore wind farms in the 
Dutch and German North Sea shows that cohesionless 
soils dominate in areas. Any attempt to train models 
which also need to predict the behaviour for cohesive 
soils will be affected by a lack of data. 

In general, obtaining highly accurate data (e.g., 
from detailed computer simulations or costly site in-
vestigation tests) may not always be possible due to 
cost and time constraints. In such cases, lower-fidelity 
data are often used as an alternative (e.g., simplified 
physics-based model calculations instead of detailed 
computer simulations). Information from different 
sources of data with varying accuracy and acquisition 
costs can be combined using multi-fidelity data fusion 
techniques to provide more accurate predictions than 
using a single source of data. This approach offers 
several benefits, including cost savings by performing 
detailed computer simulations or carrying out costly 
site investigation tests only in critical areas where 
there is the greatest design uncertainty. 

A series of standards for machine learning is cur-
rently under development by ISO/IEC with the 
ISO/IEC DIS 5259-1 standard covering data quality. 

3.2 Data quantity 
Machine learning models in areas such as image anal-
ysis, natural language processing or product recom-
mendation are often trained on millions or even bil-
lions of samples. The cost of obtaining such data is 
relatively low and data can be readily found in the 
public domain. Computation challenges arising from 

the data volume are often more challenging than data 
acquisition. 

Offshore geotechnical data is generally more 
costly to acquire as specialised vessels and equipment 
are required. Moreover, data is often confidential, es-
pecially when the behaviour of high-value foundation 
assets is being monitored. Knowledge on the site con-
ditions and foundation behaviour offers a competitive 
advantage to the operator. 

A typical offshore wind farm consists of 40 to 100 
geotechnical borehole locations leading to a limited 
data volume for a single project. This limited amount 
of data imposes limitations on the modelling accuracy 
which can be achieved with machine learning meth-
ods. From probability theory, it is known than when 
a limited number of samples is available, the uncer-
tainty on the estimated statistical parameters from the 
data will be high. This is further complicated by the 
geological origins of the site. Building models for ge-
ologically heterogeneous sites is more challenging as 
the number of samples in each geological unit will be 
smaller than for a geologically homogeneous site. 

In supervised learning, the predicted target varia-
ble often depends on several features. This leads to 
the so-called curse of dimensionality; as the number 
of features considered in the model grows, the data 
becomes sparse and investigating the impact of each 
feature on the predicted target becomes more chal-
lenging. 

Combining data across projects offers possibilities 
to expand datasets for machine learning models. Stor-
ing data in centralised databases which keep the data 
from legacy projects alive after project commission-
ing can allow insights to be developed on a much 
larger dataset. The recent initiatives by RVO, Crown 
Estate and BSH to bring offshore site investigation 
data into the public domain, allow an extensive pub-
licly available dataset to be developed which can sup-
plement any project-specific data in similar ground 
conditions. The available data is restricted to selected 
projects in the North Sea and Baltic Sea but this 
model could be adopted globally to develop a basic 
understanding of regional ground conditions. 

ISSMGE TC209 is currently investigating the im-
pact of data quality and quantity on foundation design 
models through a dedicated task group. 

3.3 Model quality 
A model will only be fit-for-purpose if it provides ac-
curate predictions which also respect the overall trend 
in the data. If the model does not capture the trends 
identified in the data, it is said to underpredict the 
data. If the model perfectly predicts the training data 
but performs poorly on unseen data, it is said to over-
predict. Figure 11 shows an example of three models 
which predict the same dataset. The linear model 
clearly does not capture the underlying trend while a 
decision tree model with a high tree depth provides 
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perfect predictions on the training data, leading to 
high-frequency oscillations which are not physically 
meaningful. The quadratic model strikes a balance 
between under and overfitting and is therefore the 
preferred model. 

 
Figure 11. Under- and overprediction in machine learning mod-
els (Stuyts, 2020). 

3.3.1 Accuracy 
Calculating the model accuracy is the first component 
of a model quality assessment. Several metrics exist 
which quantify the error between the predicted value 
of the target and its measured value in supervised 
learning. The root mean squared error (RMSE) from 
Equation 3 is a much-used metric in regression mod-
elling and it is often used as the loss function.  

𝑅𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                    (3) 

For classification, the cross entropy loss is com-
monly used as the loss function. Alternatively, the ac-
curacy of the model can be assessed by checking the 
ratio of the number of correct label predictions to the 
total number of training samples. The number of cor-
rect predictions for each class can be captured graph-
ically through a confusion matrix. An example is 
shown in Figure 12. The predicted labels are shown 
on the X-axis and the true labels on the Y-axis. If the 
model is accurate (predicted label corresponding to 
the true label), the cells of the matrix diagonal will 
have the highest colour intensity.  

 
Figure 12. Confusion matrix for soil type class prediction 
(Stuyts, 2020). 

3.3.2 Generalisation 
Accurate predictions on the training data is only one 
of the components of assessing model quality. The 
model should also perform well on unseen data. For 
this purpose, the available dataset is partitioned in a 
training dataset and a test dataset. The test dataset is 
not used during the model training and after complet-
ing the training phase, the prediction accuracy is eval-
uated on this test set. 

If the model generalises well, it will provide com-
parable accuracy on the test data as what was 
achieved for the training data. If the accuracy on the 
training data is significantly higher than the accuracy 
on the test data, the model is likely to overfit the train-
ing data. The decision tree model from Figure 11 has 
a very high accuracy on the training data but is not 
likely to be able to achieve the same accuracy on data 
it has not seen before. 

3.4 Model interpretability 
The advent of mathematically complex model such as 
deep neural networks or Extreme Gradient Boosting 
(XGBoost) algorithms has allowed engineers to train 
more accurate models. However, as the mathematical 
formulations of these models are too complex to in-
spect, it is not straightforward to understand the inter-
nal workings of a trained model. 

Models with a low complexity and a closed-form 
mathematical expression allow the influence of the 
features on the target to be inspected quickly. When 
the mathematical equations capture physically mean-
ingful trends, such models can be used for extrapola-
tion beyond the training data. 

For more complex models, extrapolations beyond 
the range of the features in the training dataset carries 
much more risk. Predictions can diverge or lead to 
physically inconsistent behaviour. Insight in the be-
haviour of the model needs to be gathered using alter-
native techniques. One possibility is to vary one of the 
input features and checking if the model output is 
physically meaningful. Figure 13 shows the predicted 
shear wave velocity for a model with a simple stress-
dependence as given in Equation 3 and an XGBoost 
regression model. Both models are trained on a da-
taset of 2000 S-PCPT measurements from the Belgian 
and Dutch North Sea and show comparable accuracy. 
The model coefficients 𝛼 and 𝛽 in Equation 4 are ex-
pressed as linear functions of the soil behaviour type 
index 𝐼𝑐 and the model coefficients are optimised us-
ing the available training data.  

𝑉𝑠 = 𝛼 ∙ (𝜎𝑣𝑜
′ 𝜎𝑟𝑒𝑓

′⁄ )
𝛽

                                   (4) 

A profile of shear wave velocity is generated for 
two combinations of total cone tip resistance 𝑞𝑡 and 
soil behaviour type index 𝐼𝑐 (Figure 13). As expected, 
the higher cone resistance and lower 𝐼𝑐 (lower fines 
content) leads to higher values of shear wave velocity. 
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However, the difference for the XGBoost model is 
not consistent with depth and the increase of shear 
wave velocity with depth does not follow the ex-
pected exponential law. In the shallow region above 
5m depth, the shear wave velocity also shows signif-
icant oscillations. The training data did not have much 
data in this shallow region. 

This shows that even when models can have com-
parable accuracy, the model which better captures the 
underlying physics will always lead to more con-
sistent results. Any trained model should therefore be 
subjected to a thorough review to ensure that predic-
tions are physically meaningful. 

  

 
Figure 13. Variation of shear wave velocity predictions with 

depth for two combinations of cone tip resistance and soil 
behaviour type index for a machine learning with a simple 

stress dependence and an XGBoost model. 

3.5 Machine learning model development tracking 
The development of a machine learning model is an 
iterative task in which several model types, feature 
combinations, combinations of hyperparameters, 
train/test splits etc. are used. Keeping track of the dif-
ferent combinations can be challenging especially if 
model development is performed as a team effort. 

In Machine learning operations (MLOps) 
(Kreuzberger et al., 2023), each version of the model 
is stored on a central server and each new iteration in 
model development is tracked. This keeps a history of 
the model development and improves the efficiency 
of the development process.      

4 ADVANCED MACHINE LEARNING 
MODELS 

While classification and regression models are being 
increasingly used in (offshore) geotechnical practice 
due to their readily available implementations in 
packages such as scikit-learn (Scikit-learn develop-
ers, 2015), a number of advanced model types are cur-
rently being researched. 

The following sections describe selected model 
types and their possible applications in offshore ge-
otechnical engineering. 

4.1 Machine learning with uncertainty prediction 
Most machine learning models provide determin-

istic predictions, which can be inadequate as they do 
not provide any information about the model's confi-
dence in its predictions. However, there are machine 
learning models that can provide probabilistic predic-
tions and uncertainty quantification for classification 
and regression problems. There are several key ad-
vantages of such models, namely (i) better decision 
making, (ii) improved trust, and (iii) improved robust-
ness.  

Uncertainty quantification can aid users in making 
more informed decisions. For instance, if a model 
predicts significant uncertainty around a certain out-
put, users can give less weight to that prediction when 
making the final decision. Uncertainty quantification 
also increases user trust in the machine learning 
model by allowing them to understand when the 
model is unsure, thereby instilling more confidence in 
knowing when to trust or not trust a model's predic-
tion. Additionally, probabilistic machine learning 
models are typically more robust to noisy data since 
the noise in the training data is explicitly modelled in 
the analysis. This makes model predictions more re-
silient to outliers and noisy training data.  

There are two main types of uncertainty that con-
tribute to overall uncertainty in a model's predictions: 
aleatoric uncertainty and epistemic uncertainty. Ale-
atoric uncertainty, also called ‘data uncertainty’ or 
‘irreducible uncertainty’, refers to the inherent ran-
domness or variability in the data, such as measure-
ment errors or natural randomness in the underlying 
processes being studied. This type of uncertainty can-
not be reduced, even with a perfect model. On the 
other hand, epistemic uncertainty, also known as 
‘model uncertainty’ or ‘reducible uncertainty’, arises 
from incomplete knowledge of the system being mod-
elled or the use of an imperfect model. This type of 
uncertainty can be reduced by improving the model 
or collecting more data. 

Epistemic uncertainties can be modelled in neural 
networks using simple techniques such as ensemble 
or Dropout methods. The ensemble method (Laksh-
minarayanan et al., 2017) involves training multiple 
neural networks with different architectures. The 
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variance among the predictions of the ensemble can 
then be used as a measure of epistemic uncertainty. 
Dropout (Gal and Ghahramani, 2016) is another tech-
nique used to model epistemic uncertainty. It is a reg-
ularisation technique where randomly selected neu-
rons are ‘dropped out’ during training. It has been 
shown that dropout can be interpreted as a Bayesian 
approximation in deep Gaussian Processes, allowing 
for the quantification of epistemic uncertainty. 

To explicit model both aleatoric and epistemic un-
certainty in neural networks, Bayesian Neural Net-
work (BNN) can be used (Lampinen and Vehtari, 
2001). BNN applies probabilistic modelling of the 
network's weights and biases, resulting in a posterior 
distribution over the model parameters. This allows 
for the quantification of epistemic uncertainty. Alea-
toric uncertainty can be considered by the network by 
explicitly modelling noise in the training data. Mar-
kov Chain Monte Carlo (MCMC) is commonly used 
to estimate the posterior distribution of network’s pa-
rameters and make probabilistic predictions. MCMC 
is a computational method used in Bayesian inference 
to approximate complex probability distributions by 
iteratively sampling from them. It works by creating 
a Markov chain that converges to the posterior distri-
bution of the parameters after a large number of iter-
ative sampling steps.  

There are different types of MCMC algorithms, 
which are used to explore the parameter space effi-
ciently (Andrieu et al., 2003). Three common sam-
pling algorithms are Metropolis-Hastings, Gibbs, and 
Hamiltonian Monte Carlo (HMC). The Metropolis-
Hastings algorithm proposes a new step in the chain 
based on a proposal distribution, and the proposal is 
accepted with a probability that depends on the ratio 
of the posterior probabilities of the current state and 
the proposed state. Gibbs sampling updates one pa-
rameter at a time while keeping all other parameters 
fixed. The algorithm iteratively samples from the 
conditional probability distributions of each parame-
ter given the other parameters. HMC is an advanced 
MCMC algorithm that makes use of gradient infor-
mation to propose new steps in the chain. 

However, MCMC can be computationally inten-
sive and require careful tuning to ensure convergence 
to the correct distribution. Thus, alternative methods 
have been proposed to approximate the posterior dis-
tribution. One such method is variational inference, 
which approximates the posterior distribution using a 
simpler distribution that can be optimised using gra-
dient-based methods (Graves, 2011). Nevertheless, 
MCMC can be readily applied to simpler models with 
few parameters (e.g. simple linear regression models) 
without much computational complexity, which can 
provide valuable insights into the posterior distribu-
tions of the model parameters (Stuyts et al., 2012). 

Another popular probabilistic machine learning 
model for regression problems is Gaussian Process 
(GP) regression (Williams and Rasmussen, 2006). 

Unlike deterministic machine learning models that try 
to identify the best estimate of a single function that 
models the relationship between input and output, a 
GP regression model provides a probability distribu-
tion over the possible functions that can fit the data. 
Therefore, GP regression provides not only a point 
estimate of the output (through the mean of the pre-
dictions), but also a measure of epistemic uncertainty 
(through the confidence interval of the predictions). 
Besides their ability to quantify the uncertainty of the 
predictions, GP regression models have other ad-
vantages. For instance, they can model a wide range 
of complex and non-linear relationships between in-
puts and outputs. GP regression models do not make 
any assumptions about the functional form of the re-
lationship and can capture patterns that are difficult to 
model with traditional regression techniques. 

4.2 Physics-informed machine learning 
In scientific applications, machine learning poses a 
significant challenge as it may not always follow the 
physical principles of the systems it is applied to, re-
sulting in physically inconsistent predictions, partic-
ularly when extrapolating from the training dataset. 
To enable machine learning models to learn the phys-
ical principles from data, a considerable amount of 
training data is required, which can be costly to ac-
quire. Physics-informed machine learning (PIML) 
(Karniadakis et al., 2021) seeks to overcome these 
limitations by integrating prior knowledge and phys-
ical principles into machine learning models. 

PIML offers two significant advantages: physi-
cally consistent and scientifically sound predictions 
for unseen scenarios, and effective training with less 
data than a purely data-driven machine learning 
model. There are three main approaches to integrate 
physical principles and prior knowledge into the ma-
chine learning models: (i) hard constraints; (ii) soft 
constraints, and (iii) data augmentation.  

Hard constraints are conditions that must be satis-
fied exactly by the model, while soft constraints are 
conditions that the model attempts to satisfy to the 
best of its ability. Soft constraints are implemented by 
including the conditions as additional regularisation 
terms in the loss function used for training the ma-
chine learning model, as shown in Figure 14. This 
will penalise models that violate the conditions and 
encourage the model to satisfy the conditions during 
training. Common types of soft constraints include in-
itial conditions, boundary conditions. symmetry prin-
ciples and partial differential equations that should be 
satisfied within the input domain. This method is 
made popular by the Physics-Informed Neural Net-
works (PINN) proposed by Raissi et al. (2019), which 
allows for easy computation of the partial derivatives 
of the output using automatic differentiation, and has 
been demonstrated to provide more robust 
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predictions, even in the presence of noisy data. A 
schematic diagram of the PINN is shown in Figure 
14.  

 
Figure 14. Schematic diagram of the PINN, where x and y are 

the input and output, respectively. Ldata, Lphysics, LBC and LIC 
refer to the losses due to data-predictions mismatch, physi-
cal conditions, boundary conditions and initial conditions, 

respectively. 
 
Implementing hard constraints can be more chal-

lenging, and proposed methods for implementation 
include the augmented Lagrangian method (Lu et al. 
2021) or designing specific components of the ma-
chine learning model to meet the conditions exactly 
(Zhu et al. 2021). Data augmentation is simple to im-
plement, as it involves the generation of synthetic 
data based on physical principles to augment the 
training dataset. This approach is particularly useful 
when available data is limited or noisy, such as in 
medical image analysis (Omigbodun et al. 2019; 
Dahiya et al. 2021). 

The most commonly used approach among these 
three is the soft constraints method, primarily due to 
its ease of implementation. Nevertheless, this method 
still presents some challenges, such as the possibility 
of unsatisfied conditions, resulting in physically in-
consistent predictions. 

4.3 Time series predictions with LSTM 
The machine learning models that have been dis-
cussed so far are designed to predict a target variable 
based on input features, where each new prediction is 
independent of previous ones. However, there are 
some problems in which the value of the target de-
pends on the feature values of the previous samples. 
Time series prediction is an example where the value 
of the target at a certain point in time is influenced by 
the feature values of a number of previous samples. 
Figure 15 shows the time series of pore pressure 
around an offshore monopile. The low-frequency 
tidal variations can clearly be seen in the data and 
high-frequency oscillations due to wave actions are 
observed in the signal for the shallowest depth. A pre-
dictive model for pore pressures at time 𝑡 requires 
knowledge of the measured pore pressure at preced-
ing times.   

 
Figure 15. Pore pressures around an operational offshore mono-
pile measured at two levels (1.3m and 3.3m) below mudline 
(Stuyts et al., 2023). 

 
Recurrent Neural Networks (RNN) achieve this by 

storing information from preceding time steps in a 
hidden state. Figure 16 shows a schematic represen-
tation of an RNN. The hidden state 𝑎<𝑡−1>, which is 
the result of the time preceding time 𝑡, is combined 
with the feature values 𝑥<𝑡> to predict the target value 
𝑦<𝑡>. It is clear that the hidden state incorporates the 
information from the time steps preceding the time 
step under consideration. 

 
Figure 16. Schematic representation of a recurrent neural net-
work (Amidi & Amidi, 2022). 

 
The weights 𝑊𝑎  in the neural network (shown as 

the blue block in Figure 16) are shared between all 
time steps, leading to computational efficiency. When 
training the model, the weights in the neural network 
are optimised. This requires the calculation of the de-
rivative of the loss function with respect to the model 
weights for each time step. However, low-frequency 
can be difficult to capture with conventional RNNs as 
the gradients can combine to lead to exponential in-
creases or decreases of the model weights. This is 
known as the vanishing/exploding gradient problem. 

To mitigate this problem, additional functionality 
was added to the blue cells from Figure 16. Long 
Short-Term Memory (LSTM) units (Hochreiter and 
Schmidhuber, 1997) add a cell state 𝑐<𝑡> to the RNN 
cells and use four gates to update the hidden and cell 
states based on the feature values in the timestep: 
• Forget gate Γ𝑓: Determines whether the infor-

mation from previous time steps should be forgot-
ten. When sudden changes in response are ob-
served, the forget gate can erase the effects of 
preceding time steps; 

• Update gate Γ𝑢: Determines how much the feature 
values 𝑥<𝑡> affect the updating of the hidden and 
cell states; 
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• Relevance gate Γ𝑟: Decides which information 
from the preceding time steps is relevant; 

• Output gate Γ𝑜: Updates the hidden state based on 
the previous and current cell states. 

 
At each gate, activation functions are used. These 

functions transform the output of the gate to a well-
defined range and thus stabilise the model. The sig-
moid function transforms the output to a value be-
tween 0 and 1, while a tanh activation function trans-
forms the output to a value between -1 and 1. 

 

 
Figure 17. Schematic representation of an LSTM cell (Amidi & 
Amidi, 2022). 

 
With an LSTM model, both low- and high-fre-

quency oscillations can be learned by the model, as 
long as sufficient data is provided during the training 
phase. While time series prediction may be relevant 
for certain time-dependent geotechnical problems 
such as in-place monitoring of foundations, the 
LSTM techniques can also be determined to depth 
profiles of geotechnical parameters. By taking replac-
ing the time axis by the depth axis, trends of parame-
ter variation with depth can be learned by the model. 

4.4 Multi-fidelity data fusion  
Multi-fidelity data fusion (MFDF), also known as 
multi-fidelity modelling or information fusion, is a 
technique for combining information from multiple 
data sources with varying levels of accuracy and spar-
sity to produce more accurate and reliable predic-
tions. This approach is valuable when high-fidelity 
data are difficult or expensive to obtain, while lower-
fidelity data sources are more readily available. 

MFDF allows the use of simplified models to 
make low-cost but potentially inaccurate predictions 
(known as "low-fidelity predictions") of some ge-
otechnical design performance. These predictions can 
then be ‘corrected’ by fusing a small set of accurate 
but high-cost predictions (known as "high-fidelity 
predictions") obtained from experiments or more de-
tailed computational simulations such as three-di-
mensional (3D) finite element |(FE) modelling. This 
is achieved by using machine learning to learn and 
exploit the cross-correlations between the low- and 

high-fidelity predictions. Figure 18 illustrates the 
training and operational phases of the MFDF ap-
proach. MFDF has been shown to provide greater pre-
dictive accuracy than machine learning models 
trained on high-fidelity predictions alone, and re-
quires much less training data (Meng and Karniada-
kis, 2020). MFDF is particularly advantageous in sit-
uations where acquiring high-fidelity predictions is 
expensive, such as in the design of large-scale foun-
dation projects like offshore wind farms. It can pro-
vide comparable accuracy to 3D FE modelling for the 
entire wind farm site, while only requiring 3D FE cal-
culations for a small fraction of the total number of 
foundations. 

 
Figure 18. Schematic diagram of the training and operational 

phases of the MFDF model 
 
MFDF has been successfully applied in aerospace 

engineering, such as in the design of space vehicles 
(Minisci et al., 2011). It is only recently that there is 
a nascent interest in MFDF for geotechnical applica-
tions (Dey et al., 2021; Zhang et al., 2022). Various 
MFDF methods have been developed (Peherstorfer et 
al., 2018), with those based on Gaussian Process (GP) 
being the most popular because they can quantify the 
uncertainty of fused predictions. The most widely 
used GP-based MFDF method is that proposed by 
Kennedy and O'Hagan (2001), which proposes the 
following relationship between the low- and high-fi-
delity predictions: 

𝑦𝐻𝐹(𝑥) = 𝜌 𝑦𝐿𝐹(𝑥) + 𝛿(𝑥)                                   (5) 
where 𝑦𝐿𝐹(𝑥) and 𝑦𝐻𝐹(𝑥) are GP regression models 
trained on the low- and high- fidelity predictions. 𝜌 is 
a constant multiplicative correction factor and 𝛿(𝑥) is 
a GP regression model that represents an additive cor-
rection factor. Figure 19 provides an illustrative ex-
ample of MFDF, where Equation 5 is used to combine 
information from the seemingly uninformative low-
fidelity data points with the sparse high-fidelity data 
points to predict the true function that generated the 
high-fidelity data points. The prediction obtained 
through MFDF is in excellent agreement with the true 
function and compares favourably to the inaccurate 
prediction obtained from a standard GP regression 
model trained only on the high-fidelity data. 
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Figure 19. Illustrative example of a MFDF prediction, where 

the low- and high-fidelity data points are used to predict the 
true function that generates the high-fidelity data. The pre-
diction by a GP regression model trained on only the high-

fidelity data is also shown for comparison. 
 

Equation 5 can only capture linear correlations be-
tween the low- and high-fidelity predictions, but more 
advanced GP-based MFDF methods have been devel-
oped to model non-linear correlations. For instance, 
Perdikaris et al. (2017) proposed the NARGP model, 
while Cutajar et al. (2019) introduced the Deep GP 
model. However, a key limitation of GP-based MFDF 
methods is that they may not perform well for high-
dimensional problems. To address this, MFDF meth-
ods based on deep neural networks have been pro-
posed as alternatives (Meng et al., 2020; Pawar et al., 
2022). With the growing amount of data from multi-
ple sources, there is a need to combine the infor-
mation from these sources effectively to make more 
accurate and reliable predictions. Therefore, MFDF is 
expected to play an increasingly important role in var-
ious scientific and engineering applications. 

4.5 Large language models 
Since its release at the end of 2022, ChatGPT has 
sparked a remarkable increase in the use of Large 
Language Models (LLMs) in practice. LLMs belong 
to a class of machine learning models called genera-
tive AI and differentiate themselves from other ma-
chine learning models by being able to generate large 
sections of text (response) when being presented with 
an input question (prompt). 

LLMs are trained on very large amounts of text 
which was collected from the internet. GPT-3 (Brown 
et al., 2020) was trained on 45TB of text data and the 
model has 175 billion parameters. The computational 
costs associated with training the model is estimated 
to be around 4 million USD. 

The initial Generative AI models are based on 
Generative Adversarial Networks (GANs). As shown 
schematically in Figure 20, these models have a gen-
erator component 𝐺 which generates a response based 
on a prompt 𝑍. The generated response as then com-
pared to the real response using the discriminator 𝐷. 
The model parameters are optimised until the gener-
ated responses are sufficiently accurate. Most LLMs 
are based on a more advanced type of neural network 
called a transformer. 

 
Figure 20. Representation of a Generative Adversarial Network 

(GAN) (Wikimedia Commons CC BY-SA 4.0) 
 

LLMs tokenize and encode text as part of the nat-
ural language processing. Tokenisation breaks down 
a piece of text into smaller chunks called tokens, 
which can be words or subwords. Encoding is the pro-
cess of representing these tokens numerically, typi-
cally using vectors or matrices, that can be processed 
by the neural network. Text is generated by predicting 
the most likely sequence of tokens. 

When making use of LLMs, it is important to un-
derstand that they were trained on data which is pub-
licly available on the internet. Any wrong information 
included in the public domain may persist in the re-
sponses generated by the model (Si et al., 2022). 
Moreover, hallucinations can occur in which the 
model presents false responses as truth. Hallucina-
tions can occur for a variety of reasons, such as when 
the model is given ambiguous input, or when the 
model is overfitting to specific biases in the training 
data. Hallucinations is a significant challenge in de-
veloping LLMs, especially when the goal is to pro-
duce trustworthy text that is relevant to the input.  

LLMs can be improved with specific subject mat-
ter expertise. For example, OpenAI provides the pos-
sibility to update the GPT-3 (OpenAI, 2022) with new 
subject material knowledge. Verified combinations of 
prompts and responses can be presented to the model 
to improve its accuracy in specific knowledge do-
mains. Such a curated set of prompts and responses 
could be gathered under the auspices of a professional 
organisation such as ISSMGE. 
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5 MACHINE LEARNING WITH 
UNCERTAINTY QUANTIFICATION: 
SMALL-STRAIN STIFFNESS 
PREDICTIONS 

Small-strain stiffness (𝐺𝑚𝑎𝑥) is an increasingly im-
portant parameter in offshore foundation design, es-
pecially if the stiffness of the soil is driving the de-
sign. For monopile foundations, the parameter is 
included in the recent PISA guidance (Burd et al., 
2020). 

The small-strain stiffness can be measured in-situ 
with the seismic CPT test (S-PCPT) or in the labora-
tory with the bender element or resonant column test. 
However, due to a limited site investigation budget, 
site-specific 𝐺𝑚𝑎𝑥  measurements are not available at 
every foundation location. CPT-based correlations 
were developed to allow location-specific stiffness 
profiles to be estimated. These correlations are cali-
brated semi-empirical models (e.g. Rix & Stokoe, 
1991) which are trained on locations where both 𝐺𝑚𝑎𝑥  
and conventional CPT measurements are available.  

Given the uncertainty on the measurement and the 
imperfect knowledge of the underlying physical prin-
ciples, the data inevitably shows scatter around the 
predicted trend. 

Rix & Stokoe (1991) proposed the formula in 
Equation 6 which allows estimate of the average 
small-strain shear modulus 𝐺𝑚𝑎𝑥 , cone tip resistance 
𝑞𝑐 and vertical effective stress level 𝜎𝑣𝑜

′ . The two cal-
ibration parameters 𝛼 and 𝛽 were derived from cali-
bration chamber testing on washed mortar sand with 
a median grain size of 0.35mm and less than 1% fines. 
Values of 𝛼 = 1634 and 𝛽 = −0.75 are proposed.  

The correlation was developed for near-surface 
soils with a depth less than 13m. The authors propose 
an uncertainty band on the predicted average of 
±50%. 

(
𝐺𝑚𝑎𝑥

𝑞𝑐
)

𝑎𝑣𝑔
= 𝛼 ∙ (

𝑞𝑐

√𝜎𝑣𝑜
′

)

𝛽

                                   (6) 

The predictions from the correlation were checked 
against a dataset of 1749 𝐺𝑚𝑎𝑥  measurements on 
clean silica sand obtained with the S-PCPT in the Bel-
gian and Dutch North Sea (Peuchen et al., 2019; 
Stuyts et al., 2022). Figure 21 shows the available 
data relative to the trend proposed by Rix & Stokoe 
(1991). The prediction clearly underestimates the ac-
tual small-strain shear modulus and a significant pro-
portion of the data plots above the upper bound of the 
uncertainty band of the correlation (upper black 
dashed line). 

Bayesian modelling can be used to describe the un-
certainty on the model parameters 𝛼 and 𝛽. Instead of 
predicting a single value for the calibration parame-
ters, their uncertainty is characterised through a prob-
ability distribution. Based on the available data, the 

correlation can be recalibrated probabilistically. Pos-
terior distributions can be generated using the MCMC 
algorithm (Salvatier et al., 2016).  

 
Figure 21. Overview of the available data small-strain shear 

modulus data on clean silica sands from the Belgian and 
Dutch North Sea plotted together with the proposed trend 

by Rix & Stokoe (1991). 
 
If the correlation from Equation 6 is assumed to 

apply, the Bayesian modelling can be described in rel-
atively simple terms. By taking the logarithm of each 
side of the equation, a linear equation is obtained 
(Equation 7). log10(𝛼) is the intercept which can be 
written as 𝛼′ and 𝛽 is the slope. The dependent vari-
able log10(𝐺𝑚𝑎𝑥 𝑞𝑐⁄ ) can be written as 𝑦 and the in-
dependent variable log10(𝑞𝑐 √𝜎𝑣𝑜

′⁄ ) as 𝑥 

log10 (
𝐺𝑚𝑎𝑥

𝑞𝑐
) = log10(𝛼) + 𝛽 ∙ log10 (

𝑞𝑐

√𝜎𝑣𝑜
′

)                               

 (7) 
This linear regression model can be written in 

probabilistic terms as shown in Equation 8. This 
equation describes that the dependent variable is nor-
mally distributed around a mean value described by 
the deterministic Equation 7. The mismatch between 
the predicted average and the measurements is char-
acterised with an error term 𝜀. 

𝑦 = 𝒩(𝜇 = 𝛼′ + 𝛽 ∙ 𝑥, 𝜀)                              (8) 
Bayes’ theorem was applied to infer the posterior 

distributions of calibration coefficients 𝛼 and 𝛽 given 
the available 𝐺𝑚𝑎𝑥  data from the Belgian and Dutch 
North Sea. Figure 22 shows the posterior distributions 
with the proposed average coefficients by Rix & 
Stokoe (1991) as grey vertical lines. The mean value 
of the distribution of 𝛼 (𝛼𝑚𝑒𝑎𝑛=2242) has shifted to 
higher values compared to the initially proposed cor-
relation. The value of 𝛽 is only slightly modified by 
the Bayesian updating. 
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Figure 22. Posterior distribution of calibration coefficients 𝛼 

and 𝛽 obtained using MCMC. The proposed averages by 
Rix and Stokoe (1991) are shows as grey vertical lines. 

 
The predictions with the updated model are shown 

in Figure 23. The prediction of the mean is improved 
by the Bayesian updating and the uncertainty on the 
mean can be assessed (shown as the grey shaded 
area). This uncertainty increases with lower values of 
𝑞𝑐 √𝜎𝑣𝑜

′⁄ . The model uncertainty can also be quanti-
fied by computing the difference between the model 
predictions and the data. The standard deviation of the 
model uncertainty is shown with black dashed lines 
in Figure 23  

 
Figure 23. Recalibrated correlation for clean silica sand. The 

uncertainty on the mean is shown as the grey band and the 
standard deviation of the correlation is shown with dashed 

black lines. 
 
By using Bayesian updating the model predictions 

are improved and information on the distribution of 
the calibration parameters is obtained. This makes the 
model suitable for further probabilistic studies. 

6 PHYSICS-INFORMED MACHINE 
LEARNING EXAMPLE 

To demonstrate the benefits of PIML over purely 
data-driven machine learning models, a PINN will be 
compared with a purely data-driven neural network 
(PDNN) for the prediction of the rotation and bending 
moment profiles of a monopile. This approach may 

be useful for situations where there are limited incli-
nometer readings available for interpreting the rota-
tion profile. However, in this example, a synthetic da-
taset was used instead of real-world data, as it 
provides the ground truth data that can be used to as-
sess the accuracy of the PINN and PDNN. The syn-
thetic dataset for the rotation and bending moment 
profiles is obtained using a Winkler modelling frame-
work for a monopile of diameter 1m, embedded 
length of 6m and wall thickness of 0.01m. 

The monopile is assumed to be embedded in a 
Dunkirk sand profile (Zdravković et al. 2020) and the 
monopile structure is modelled using Timoshenko 
beam elements, while the soil response is modelled 
using the PISA soil reactions for sand (Burd et al. 
2020). The monopile is subjected to a horizontal load 
of 80kN and a moment load of 640kNm at ground 
level, resulting in the rotational and bending moment 
profiles labelled as ‘Ground Truth’ in Figure 24. The 
training dataset for both PINN and PDNN consists of 
the monopile cross-section rotation and bending mo-
ment values at four depths, as shown in Figure 24. 
This may seem insufficient for effective learning of 
neural networks. This example will demonstrate how 
incorporating physical principles into the neural net-
work can improve the training data efficiency.  

The PDNN consists of three hidden layers, each 
with 32 neurons and a hyperbolic tangent activation 
function. The input for PDNN is the depth below 
ground level (𝑧), and the output is either the rotation 
of the monopile cross-section (𝜃) or the bending mo-
ment of the monopile (𝑀) at a particular depth. The 
training process Involves optimising the weights and 
biases of PDNN using the ADAM optimizer to mini-
mise the loss function of PDNN, as shown below: 

𝐿total =
1

𝑁
∑ (𝑦𝑖

pred
− 𝑦𝑖

true)
2

𝑁
𝑖=1                                    (9) 

where 𝑦 represents the output (either 𝜃 or 𝑀). 30,000 
epochs were completed during the training process. 
Figure 24 shows the rotation and bending moment 
profiles of the monopile that were predicted by the 
trained PDNN. Although the bending moment profile 
predictions of PDNN are reasonably accurate, the ro-
tation profile predictions are inaccurate when com-
pared to the ground truth. In order to enhance the ac-
curacy of the predictions, the neural network will be 
improved by incorporating physical principles and 
prior knowledge about the bending moment, resulting 
in the formation of a PINN. 
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(a) 

 
(b) 

Figure 24. Comparison of PDNN predictions of the (a) mono-
pile cross-section rotation profile and (b) bending moment 
profile, with the ground truth profiles. The training data are 

also shown in the figure. 
 

The PINN has the same architecture and training 
dataset as the PDNN. The only difference is the loss 
function, which now incorporates the physical princi-
ple that connects 𝜃 and 𝑀, as follows: 

𝑀 = −𝐸𝐼
𝜕𝜃

𝜕𝑧
                                   (10) 

Furthermore, the loss function also incorporates prior 
information about the boundary condition of the 
bending moment at ground level, which should be 
equivalent to the applied moment: 

𝑀𝑧=0 = 640 kNm                                   (11) 
Therefore, the complete loss function of PINN that is 
minimised using the ADAM optimiser is as follows: 

𝐿total = 𝐿data + 𝐿physics + 𝐿BC                                   (12) 

where 

𝐿data =
1

𝑁
∑ (𝜃𝑖

pred
− 𝜃𝑖

true)
2

𝑁
𝑖=1                                    (13) 

𝐿physics =
1

𝑁
∑ (𝑀𝑖

true + 𝐸𝐼
𝜕𝜃𝑖

pred

𝜕𝑧
)

2

𝑁
𝑖=1                          (14) 

𝐿BC = (𝐸𝐼
𝜕𝜃pred

𝜕𝑧
|

𝑧=0
+ 640)

2

                                     (15) 
 
During the training process, 30,000 epochs were com-
pleted. The output of PINN is the rotation profile of 
the monopile, which is then used to calculate the 
bending moment profile using Equation 10. Figure 25 
shows the rotation and bending moment profiles of 
the monopile that were predicted by the trained PINN. 
The predictions are in excellent agreement with the 
ground truth, despite the availability of only four 
training data points. This highlights the much greater 
training data efficiency provided by PIML. 

 
(a) 

 
(b) 

Figure 25. Comparison of PINN predictions of the (a) mono-
pile cross-section rotation profile and (b) bending moment 

profile, with the ground truth profiles. The training data and 
boundary condition (B.C.) are also shown in the figure. 
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7 PILE DRIVING PREDICTIONS WITH 
LSTM 

7.1 Available data 
LSTM models can be used to capture time-dependent 
processes in which the response at future timesteps 
depends on the response in a number of preceding 
timesteps. This paradigm is also applicable for depth-
dependent geotechnical problems in which predic-
tions of the response at deeper depths can be made on 
the basis of observations at shallower depths. 

In a pile driving problem, the soil resistance to 
driving (SRD) depends on the skin friction and end 
bearing on a pile. As the shaft area in contact with the 
soil increases with depth, the shaft resistance compo-
nent of the SRD will also increase. At a given depth, 
the shaft resistance will be influenced by the unit skin 
friction in the layers above. SRD cannot be measured 
directly but the energy requirement for an increment 
of penetration can be used instead. 

A dataset with the pile driving data for 114 tubular 
piles in North Sea was previously used in a commu-
nity prediction exercise (Stuyts, 2020). This dataset 
included location-specific pile dimensions, CPT data 
and driving records. The data is available on a regular 
grid with 0.5m penetration increments. This dataset is 
used here to demonstrate the LSTM model capabili-
ties. LSTM requires the features and target to be for-
mulated as time-series. To achieve this, the location-
specific data was concatenated as shown in Figure 26. 
The features used in the modelling are the depth be-
low mudline 𝑧, the cone tip resistance 𝑞𝑐, sleeve fric-
tion 𝑓𝑠 , pore pressure at the cone shoulder 𝑢2 and the 
normalised energy 𝐸 𝐸0⁄ . As blowcount is an opera-
tor-dependent variable, the normalised energy re-
quired for a penetration increment (𝐸 𝐸0⁄ ) ∆𝑧⁄  was 
used as the target. 

The models are trained on 70 locations and their 
performance is evaluated on the remaining 44 unseen 
locations. 

 

 
Figure 26. Series of pile driving data used in LSTM modelling. 

 

7.2 LSTM model types 
LSTM models can be used for various types of pre-

dictions. Depending on the model specification, the 
algorithm will be trained to predict the target for 𝑚 
future steps depending on the feature and target val-
ues at 𝑛 previous steps. Figure 27 shows three mod-
elling strategies applied to the pile driving dataset, 
with inputs in blue and predictions in orange: 
• Single step model: The target is predicted for step 

𝑡 based on the values of the features and target in 
the previous step 𝑡 − 1; 

• Multi-step model: The target is predicted for the 
next step (𝑡) based on the values of the features 
and target in 7 preceding steps (𝑡 − 7 to 𝑡 − 1) 
(1.5xOD above the current pile penetration); 

• Forward prediction model: The target is predicted 
for the next four steps (𝑡 to 𝑡 + 3) based on the 
value of the features and target in 7 preceding 
steps (𝑡 − 7 to 𝑡 − 1). 

This type of modelling is different from a conven-
tional prediction in which the energy required per 
penetration increment would be predicted for the en-
tire profile. Instead, this modelling results in models 
which can be used during pile driving operations to 
anticipate the pile driving behaviour at deeper depths 
depending on the driving performance already ob-
served. The LSTM models learn the trends from the 
training data and apply these in the prediction step to 
make forward-looking predictions. 
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Figure 27. Model training strategy for three types of LSTM 

model. The predicted targets are shown in orange and the 
features and target used as input are shown in blue. 

 
The three LSTM models were developed with 

Keras (Chollet et al., 2015) as a sequential model with 
a hidden layer with 50 LSTM units and an output 
layer with a number of nodes equal to the number of 
predicted steps. All models show convergence to-
wards a minimum RMSE which was comparable for 
both the training and test set. This indicates that the 
models did not overfit the data. 

7.3 Model results 

7.3.1 Single step vs multi-step model 
The predictions for the single step and multi-step 

LSTM models were evaluated for an unseen location 
in the test set. The predictions of each model are 
shown in Figure 28 together with the measured target 
(blue dashed line). The results for the single step and 
multi-step model are shown as red squares and green 
circles respectively. It should be noted that each pre-
diction is based on one or more observations at shal-
lower depths, so only the target value at the depth 
considered are unknown to the model.  

The result show that both models are able to follow 
the trend observed in the measurements. As the mod-
els are only looking forward at the next 0.5m penetra-
tion increment, this is not surprising. It is also clear 
from the figure that the multi-step model provides 
slightly better predictions. Considering information 
from multiple preceding penetration increments leads 
to an improved ability of the model to replicate the 
behaviour observed during driving. By considering 
information in the 1.5xOD above the current penetra-
tion, the multi-step model is able to better learn the 
expected behaviour. This was also observed in the ac-
curacy on the entire test set where the multi-step 
model has a lower RMSE than the single step model. 

 

 
Figure 28. Predictions for the single step LSTM model (red 

squares) and multi-step LSTM model (green circles) at an 
unseen location. The observations at this unseen location 

are shown as a blue dashed line. 

7.4 Forward predictions for multiple steps 
When predicting the expected behaviour for multiple 
forward steps, the LSTM model needs to extrapolate 
from the known behaviour based on the trends it has 
learned from the training data. 

Predictions with the forward LSTM model were 
made at four different penetrations. At each penetra-
tion, the target was predicted for the next four 0.5m 
increments. The predictions are shown in Figure 29. 
When compared to the observed target, it is observed 
that the prediction for the first 0.5m increment is still 
relatively close to the observations. However, the pre-
dictions for deeper increments show greater devia-
tions from the expected target. This is especially true 
when the observed normalised energy per penetration 
increment shows sudden changes (e.g. between 7 and 
8m depth). The model is not able to replicate those 
based on the trends it has learned from the training 
data. It is able to predict an evolution of the target 
which corresponds to the general trend but is unable 
to make detailed predictions. This is commonly ob-
served in LSTM models; the errors accumulate the 
further the model is extrapolating from the known 
data.  
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Figure 29. Predictions for the forward LSTM model at an un-

seen location. The predictions at 4 different penetrations are 
shown as yellow diamonds. The observations at this unseen 

location are shown as a blue dashed line. 
 
Although LSTM models can be useful to track pile 

driving operations in real-time at project sites with 
relatively uniform ground conditions, predicting the 
behaviour for highly heterogeneous conditions will 
be challenging for any machine learning model. Use 
cases where contractors deploy these models in real 
time to justify encountering unforeseen ground con-
ditions are more likely than an adoption during the 
installation planning phase where the pile driving be-
haviour needs to be predicted along the entire pene-
trated pile length. 

8 MULTI-FIDELITY DATA FUSION FOR 
SUCTION CAISSON STIFFNESS 

When designing offshore wind foundations, a combi-
nation of simplified design models and detailed 3D 
FE modelling is commonly used. Simplified models 
are employed for computationally intensive tasks 
such as wind farm-scale foundation design optimisa-
tion, while 3D FE modelling is used for design veri-
fication or more precise, site-specific design calcula-
tions for locations with more complex ground 
conditions. To demonstrate the benefits of MFDF, the 
following example will demonstrate how the accu-
racy of simplified design model calculations can be 
improved by combining them with a small set of 3D 
FE calculations. This will be illustrated using the ex-
ample of estimating the vertical stiffness of a suction 
caisson foundation. 

 In this example, the vertical static stiffness for a 
suction caisson of length-to-diameter ratio 𝐿/𝐷 = 1 
in various three-layered soil configurations (see 

Figure 30) is investigated, where the shear modulus 
in each layer may vary according to: 

𝐺𝑖 = 𝐺𝑖
ref (

2𝑧

𝐷
)

𝛼

                                    (10) 

where 𝑖 =  1, 2 or 3, 0 ≤ 𝛼 ≤ 1 and 𝐺𝑖
ref is the refer-

ence shear modulus in each layer. In total, 108 differ-
ent soil profiles are analysed, comprising of various 
combinations of 𝛼 = {0, 0.5,1}, soil Poisson’s ratio 
𝜈 = {0,0.1,0.2,0.3,0.4,0.49}, and 𝐺𝑖

ref/𝐺𝑅 = {1,2,4} 
where 𝐺𝑅 = 1000𝑝atm. Figure 31 shows an example 
of one of the soil profiles analysed. 

The low-fidelity predictions for the vertical stiff-
ness of the caisson in each soil profile were deter-
mined using OxCaisson (Suryasentana et al. 2022). 
OxCaisson is a Winkler model for suction caissons 
that models the soil response using local Winkler-
type 'soil reactions', which mechanically function like 
independent springs acting on the caisson. There are 
two types of soil reactions: distributed soil reactions 
that act along the caisson skirt length, and concen-
trated soil reactions that act at the caisson base. This 
study employed OxCaisson as it can be used directly 
for any shear modulus profile, since the soil reactions 
are defined using local soil properties. However, it 
should be noted that these local soil reactions are de-
pendent on the global shear modulus profile (Sury-
asentana et al. 2022). Therefore, the static stiffness 
estimations by OxCaisson is not likely to be accurate 
for the layered soil profiles examined in this study, as 
these profiles are not found in the calibration dataset. 

The corresponding high-fidelity predictions of the 
vertical stiffness were obtained by 3D FE modelling 
with Abaqus v6.13 software (Dassault Systèmes 
2014). The 3D FE model used in this study is the same 
as the one described in Suryasentana et al. (2022). 
Figure 32 shows a comparison between the high- and 
low-fidelity predictions for all the layered soil pro-
files analysed in this study. The results indicate an ap-
proximately linear correlation between the low- and 
high-fidelity predictions. Thus, the GP-based MFDF 
method (i.e., Equation 5) proposed by Kennedy and 
O'Hagan (2001) is used for data fusion. 

To demonstrate the high-fidelity training data effi-
ciency of the MFDF approach, only 13% of the high-
fidelity predictions and their corresponding low-fi-
delity predictions are used as training data for the 
MFDF model. During the training process, the MFDF 
model learns the correlations between the low- and 
high-fidelity predictions. Once trained, the MFDF 
models can use the learnt correlations to ‘correct’ the 
inaccuracy of the low-fidelity predictions. The inputs 
into the MFDF model are 𝐺1

ref, 𝐺2
ref, 𝐺3

ref, 𝜈, 𝛼, while 
the output is the vertical stiffness of the caisson.  

Figure 33 presents a comparison between the ‘cor-
rected’ low-fidelity predictions and the correspond-
ing high-fidelity predictions for all of the layered soil 
profiles examined in this study. The predictions made 
by a standard GP regression model, which was trained 
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only on the high-fidelity data and referred to as ‘GP-
HF,’ are also shown in Figure 33 to demonstrate the 
advantages of fusing low- and high-fidelity data. The 
‘corrected’ low-fidelity predictions made by the 
trained MFDF model are in good agreement with the 
high-fidelity predictions and are much better than the 
GP-HF predictions. Therefore, the MFDF approach 
allows for accurate predictions to be made at a frac-
tion of the computational cost by combining low- and 
high-fidelity predictions. 

 
Figure 30. Schematic diagram of three-layered soil configura-

tions investigated in this example. LRP is the loading refer-
ence point, 𝐿 is the embedded length and 𝐷 is the diameter. 

 

 
Figure 31. An example of a three-layered soil profile, where 

𝐺1

𝐺𝑅
= 2 (

2𝑧

𝐷
)

0.5

,
𝐺2

𝐺𝑅
= 4 (

2𝑧

𝐷
)

0.5

,
𝐺3

𝐺𝑅
= (

2𝑧

𝐷
)

0.5

 
 

 
Figure 32. Comparison of low- and high-fidelity predictions of 

the caisson vertical stiffness. 

 
Figure 33. Comparison of ‘corrected’ low-fidelity predictions 

of the caisson stiffness made by the MFDF model, with the 
actual high-fidelity predictions and the predictions made by 

a GP regression model trained on the high-fidelity data 
alone (referred to as ‘GP-HF’ in the figure). 

9 CONCLUSIONS AND FUTURE 
PERSPECTIVES 

While the use of machine learning methods is gaining 
traction in research and offshore practice, there are 
still a number of challenges to overcome before they 
can be routinely applied. This paper presents the ba-
sics of unsupervised (clustering) and (semi-)super-
vised (classification and regression) machine learning 
methods. Various offshore geotechnical engineering 
problems can be formulated as machine learning 
problem. An appropriate choice of model type de-
pends on the available input data and the nature of the 
question that needs to be answered. A good 
knowledge of the available model types and their 
background is required. 

Machine learning models learn behaviour from the 
trends revealed by the data fed to them during the 
training phase. The quality and quantity of the data 
determines the quality of the machine learning mod-
els trained on those data. The offshore wind industry 
offers possibilities for assembling large datasets of 
geotechnical conditions and foundation behaviour but 
without the use of proper database technology, there 
is a potential for loss of valuable data.  

When conducting measurement campaigns off-
shore, there are a lot of factors (e.g. environmental, 
operator dependence, choice of equipment) which can 
affect the data quality. If the data shows significant 
scatter, the machine learning algorithms may not have 
sufficient accuracy. Care should also be taken to not 
overfit the training data as this may lead to physically 
non-meaningful behaviour. Techniques exist to eval-
uate how well a model captures the expected physical 
behaviour and in engineering problems, these tech-
niques should always be applied before using a model 
in production. 
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Conventional regression and classification tech-
niques have a strong similarity to the techniques that 
were already used in geotechnical research before the 
advent of modern data science libraries. However, ad-
vances in machine learning research has led to a num-
ber of more complex model types which can also be 
applied to geotechnical engineering problems. Quan-
tifying the uncertainty on parameter estimates made 
with a machine learning model, is possible with the 
use of MCMC techniques or by using probabilistic 
machine learning models such as Bayesian Neural 
Networks and GP regression models. An application 
to correlations of small-strain shear modulus data 
with conventional CPT data, shows that the coeffi-
cients of these correlations can be updated probabil-
istically when site-specific 𝐺𝑚𝑎𝑥  data is available to 
provide an updated estimate of confidence intervals 
of geotechnical parameters. 

Machine learning models in geotechnical engi-
neering can be improved substantially if knowledge 
of the underlying physics is considered during the 
model development. This can be performed explicitly 
using physics-informed neural networks. An example 
is provided for a monopile subject to lateral load in 
which the equations of pile bending can be explicitly 
accounted for in the loss function. The inclusion of 
physical considerations and prior knowledge into the 
loss functions can result in more robust models that 
provides physically consistent predictions with much 
less training data requirements. 

The formulation of a machine learning problem 
depends on the intended use of the model. In time-
dependent problems, the user will want to make for-
ward-looking predictions based on a number of past 
observations. Recurrent Neural Networks, and more 
specifically models built with LSTM blocks, allow 
the models to learn trends from past measured behav-
iour. LSTM models are developed for pile driving 
predictions. While the driving behaviour can be accu-
rately predicted for a small window ahead of the cur-
rent pile penetration, getting accurate predictions for 
larger windows remains challenging. Further research 
and data gathering are required before such models 
can replace a thorough understanding of the mechan-
ics of pile driving. 

One of the most promising applications of ma-
chine lies in the combination of predictions of ge-
otechnical behaviour from various data sources. It is 
common for geotechnical engineers to have both 
highly advanced numerical models and relatively fast 
but more simplified models at their disposal. The 
principle of multi-fidelity data fusion allows predic-
tions from both model types to be combined to 
achieve higher quality estimates of the actual founda-
tion behaviour. This is demonstrated for an applica-
tion in which the stiffness of a suction caisson foun-
dation is modelled with two different model types. 
The predictions of the simpler model are corrected 
based on the advanced numerical analyses and the 

results show that high-quality estimates of foundation 
stiffness can be obtained at a fraction of the computa-
tional cost.  

To develop advanced machine learning models 
and apply them in practical field applications, it is 
crucial to have a deep understanding of their underly-
ing principles. It is also important to subject these 
models to a rigorous checking process to ensure that 
they produce reliable and interpretable results. More-
over, it is essential to caution users against extrapo-
lating results beyond the range of the training data. 
Failure to do so may result in the misuse of black-box 
models, which may substitute geotechnical expertise 
and experience, leading to unreliable predictions and 
decisions. 
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