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Abstract
Transformer-based pre-trained Language Models (PLMs) have emerged as the foun-
dations for the current state-of-the-art algorithms in most natural language process-
ing tasks, in particular when applied to context rich data such as sentences or para-
graphs. However, their impact on the tasks defined in terms of abstract individual 
word properties, not necessary tied to their specific use in a particular sentence, has 
been inadequately explored, which is a notable research gap. Addressing this gap is 
crucial for advancing our understanding of natural language processing. To fill this 
void, we concentrate on classification of semantic relations: given a pair of concepts 
(words or word sequences) the aim is to identify the semantic label to describe their 
relationship. E.g. in the case of the pair green/colour, “is a” is a suitable relation 
while “part of”, “property of”, and “opposite of” are not suitable. This classification 
is independent of a particular sentence in which these concepts might have been 
used. We are first to incorporate a language model into both existing approaches 
to this task, namely path-based and distribution-based methods. Our transformer-
based approaches exhibit significant improvements over the state-of-the-art and 
come remarkably close to achieving human-level performance on rigorous bench-
marks. We are also first to provide evidence that the standard datasets over-state the 
performance due to the effect of “lexical memorisation.” We reduce this effect by 
applying lexical separation. On the new benchmark datasets, the algorithmic perfor-
mance remains significantly below human-level, highlighting that the task of seman-
tic relation classification is still unresolved, particularly for language models of the 
sizes commonly used at the time of our study. We also identify additional challenges 
that PLM-based approaches face and conduct extensive ablation studies and other 
experiments to investigate the sensitivity of our findings to specific modelling and 
implementation choices. Furthermore, we examine the specific relations that pose 
greater challenges and discuss the trade-offs between accuracy and processing time.
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1 Introduction

During the last couple of years, pre-trained Language Models (PLM) such as 
Bert, GPT or T5, have significantly advanced the state-of-art performance on 
most natural language processing (NLP) tasks (Devlin et al., 2018; Lample and 
Conneau, 2019; Raffel et al., 2020). The vast majority of those models have been 
successfully applied to modelling word representations when they are used in 
context (sentence, paragraph, etc.). At the same time, whether similar gains can 
be achieved in the tasks where the words are modelled in their abstract sense 
(outside of particular context) still remains to be seen. This includes classifica-
tion of semantic relations: given a pair of concepts (words or word sequences) 
the aim is to identify the best semantic label to describe their relationship. The 
possible labels are “is a”, “part-of”, “property-of”, “made-of”, etc., depending on 
a particular benchmark set. Not being able to perform this task with the accu-
racy approaching human would signal that we are still far from Artificial General 
Intelligence. The task also has practical importance: manually curated dictionar-
ies with their semantic relations exist only in well resourced languages such as 
English or German. They are often out-of-date and are not covering specialized 
domains, e.g. medical or legal. Despite the great effort invested in their creation 
and maintenance, even the largest ones (e.g., Yago, DBPedia or Wikidata) remain 
incomplete (Schlichtkrull et al., 2018). Therefore, there is still significant interest 
in methods for automated relation discovery, such as knowledge acquisition, tax-
onomy mining, ontology building, etc.

Prior automated approaches to detecting semantic relations between concepts 
(words or phrases) can be divided into two major groups: (1) path-based and (2) 
distributional methods. Path-based approaches, e.g. Shwartz and Dagan (2016), 
essentially look for certain patterns in the joint occurrences of words (phrases, 
concepts, etc.) in a corpus. Thus, every word pair of interest (X,Y) is represented 
by the set of word paths that connect X and Y in a raw text corpus (e.g. Wikipe-
dia). Distributional approaches e.g.,Wang et al. (2019), are based on modelling 
the occurrences of each word, X or Y, separately, not necessary in the proximity 
to each other.

One main goal here is to improve, compare and combine those two classes of 
approaches. While recently several works appeared that approached the problem 
in unsupervised (few-shot or zero-shot) settings, e.g. Petroni et al. (2019) , here 
we focused on the supervised approaches aiming to deliver state-of-the-art per-
formance as in Shwartz and Dagan (2016), Wang et al. (2019). Thus we follow 
their empirical methods and involve the same datasets for training and testing to 
allow rigorous comparison. Our contributions are as follows: 

1. We are the first to successfully incorporate a pre-trained language models (PLMs) 
into the task of semantic classification. Consequently, we have improved both 
approaches to the task, namely path-based and distribution-based methods. 
Through rigorous evaluation using standard benchmarks we demonstrate that 
our PLM-based approach significantly surpasses the state-of-the art methods. 
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We specifically investigate the use of two popular PLMs: BERT (Devlin et al., 
2018) and T5 (Raffel et al., 2020). Despite its smaller size in terms of trainable 
parameters and pre-training corpus, BERT outperforms T5 on most tasks.

2. While the PLM-based approach is closely approaching human level performance 
on the currently standard datasets, we are first to point out that it still has certain 
limitations which may not be evident when relying solely on existing benchmarks. 
Following the procedure of lexical separation (Levy et al., 2015), we have created 
more challenging datasets that significantly widen the gap between algorithmic 
and human performance, highlighting that this task is far from being solved.

3. We have performed extensive ablation experiments to test the importance of the 
specific components and decisions within our models (such as the depth of the 
layer at which the pre-trained transformer is used), and the size of the training 
data needed. All of this is important for the practical applications when deciding 
on the trade-off between the accuracy and speed.

4. For the situations when involving a PLM is impossible or undesirable (e.g. when 
using limited computational resources or dealing with rare languages) We intro-
duce our novel path-based model that combines useful properties of convolutional 
and recurrent networks. Our approach resolves several shortcomings of the prior 
models within that type. As a result, it outperforms the state-of-the-art path-based 
approaches.

We make our code and data publicly available.1 The next section overviews the prior 
related work. It is followed by the description of the models, followed by our empiri-
cal results.2 Finally, we present our conclusions and future directions.

2  Related studies

2.1  Without using PLMs

The approaches to automatically classifying semantic relations between words prior 
to the introduction of pre-trained language models (PLMs) can be divided into two 
major groups: (1) path-based and (2) distributional. Path-based approaches essen-
tially look for certain patterns in the joint occurrences of words (phrases, concepts, 
etc.) in some validation text corpus. Thus, every word pair of interest (X,Y) is rep-
resented by the set of word paths that connect X and Y in a raw text corpus (e.g. 
Wikipedia).

While earlier path-based approaches used small sets of manually crafted tem-
plates to detect patterns (Hearst, 1992; Snow et al., 2004), later works successfully 
involved trainable templates (Roussinov and Turetken, 2007; Nakashole et al., 2012; 
Riedel et al., 2013).

1 https:// github. com/ dminu s1/ seman tic.
2 We presented much less detailed and weaker preliminary results at LREC 2020 and ECIR 2020 confer-
ences.

https://github.com/dminus1/semantic
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Successful models using trainable distributional representation of words (their 
embedding vectors) (Mikolov et al., 2013; Pennington et al., 2014) were developed 
and for some time surpassed the path-based methods in performance (Santus et al., 
2016; Necsulescu et al., 2015).

Shwartz et  al. (2016) successfully combined both distributional and path-based 
approaches into a single model that uses a Recurrent Neural Network (RNN) and 
exceeded the best results at the time for the hypernymy detection (“is-a" relation). 
Their model was later extended to multiple relations in Shwartz and Dagan (2016), 
including “part of”, “property of”, “opposite of”, “made of’, “event”, etc.

We include a mathematical description of their approach here since (1) We are 
using it as one of our baselines and (2) in the immediately following section, we 
elaborate how we overcome its shortcomings. Their approach (HypeNet, later called 
Lexnet) proceeds as following. The data consists of the targeted pairs of words along 
with their relationship label and all the word paths connecting the target pairs in the 
corpus.

Thus, depending on the size of the set of target pairs, the total number of paths 
included in the data is at the order of magnitude of millions. The paths include the 
sentence dependency information obtained by applying SpaCy parser.3

The Lexnet authors applied specially-crafted heuristic rules to remove certain 
words to simplify the paths. For example, a path parrot is a bird, is represented as 
parrot/NOUN/subject be/verb/root bird/noun/attribute. Each path consists of edges 
(words). Each edge is represented by an embedding vector obtained by concatenat-
ing the embedding vectors of the words and the associated dependence symbols. 
Thus, each word path p is represented as a sequence of vectors

where lp is the path length. This sequence is mapped by an RNN into a context vec-
tor ��⃗vp(x, y) defined for each path:

The context vector for the word pair (x,y) is defined as the average context vector for 
its paths:

where #Paths(x, y) is the number of word paths connecting the pair (x,y). This vec-
tor, in turn, is used to make a classification decision, with an optional hidden layer.

There have been several related studies following (Shwartz and Dagan, 2016). 
Specifically, Shwartz et  al. (2017) performed extensive comparison of supervised 
vs. unsupervised approaches to detecting “is-a” relation. Washio and Kato (2018) 
looked at how additional word paths can be predicted even if they are not in the 

(1){����⃗ve1, ����⃗ve2, ����⃗ve3, ...} = {���⃗vet(x, y)} for t = 1, ..., lp

(2)��⃗vp(x, y) = RNN( �����⃗{vet(x, y)})

(3)�⃗vxy =

∑
p ��⃗vp(x, y)

#Paths(x, y)

3 https://spacy.io/
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corpus. Their approach applies to nouns only. Roller et  al. (2018) also looked at 
“is-a” relation and confirmed the importance of modeling word paths in addition 
to purely distributional methods. Still, the models from Shwartz and Dagan (2016) 
remain unsurpassed within the class of word-path models. We are using them as one 
of our baselines, along with the same datasets and same corpus data for a direct 
comparison of our models.

Among distributional approaches, Wang et  al. (2019) suggested using hyper-
spherical relation embeddings and improved over the results of Shwartz and Dagan 
(2016) on 3 out of 4 datasets. We use the model from Wang et al. (2019) as another 
baseline (SphereRE).

2.2  Using PLMs

Since pre-trained language models (PLMs) have recently achieved new state-of-the-
art performance in many NLP applications (Devlin et al., 2018; Lample and Con-
neau, 2019; Raffel et  al., 2020), it is not surprising that researchers have started 
to assess how much PLMs can help in various tasks involving the application of 
semantic knowledge: One of the key features of PLMs is the ability to compute a 
contextual representation for each word in a sentence. This is a major advancement 
from context-invariant embeddings where all instances of a polysemic word would 
correspond to the same vector. While we are not aware of any studies focusing on 
using PLMs for semantic relation classification, there have been studies on the 
related tasks, some of them carried out at the same time as our experiments reported 
here. The majority of those studies introduced their own datasets (called probing 
classifiers), manually or semi-automatically crafted to assess PLM’s semantic and 
other types of knowledge, and sometimes without comparing PLM approaches 
against the state-of-art supervised non-PLM models (as we do in this study). In the 
remaining of this subsection, we briefly overview the related prior works utilising 
PLMs.

Tenney et  al. (2019) showed that BERT embeddings encode information about 
parts of speech, syntactic chunks and roles. They also discovered that BERT excels 
in syntactic analysis, but provides only small improvements for tasks that require 
semantic knowledge.

Using their suggested probing classifiers called LAnguage Model Analysis 
(LAMA), Petroni et al. (2019), successfully demonstrated that PLMs can recall fac-
tual knowledge that is part of their training corpus. Their set of classifiers consists 
of knowledge base triples that are placed into templates with missing objects, e.g. 
“Obama was born in”. The authors report that for some relations (particularly N-to-
M relations, which are among those studied here) the performance is still far below 
human. Roberts et al. (2020) performed similar explorations using T5 model (Raffel 
et al., 2020).

McCoy et  al. (2019) discovered that, in the case of natural language inference, a 
BERT-based model heavily relies on fallible syntactic heuristics rather than attain-
ing a profound comprehension of the natural language input. Kassner et  al. (2020) 
made modifications to the LAMA dataset by incorporating negation and distractors, 
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illustrating that the direct application of PLMs can produce spurious outcomes (e.g., 
BERT showing equal propensity to generate ’Birds can fly’ and ’Birds can’t fly’). They 
conclude that “PLMs still have a long way to go to adequately learn human-like fac-
tual knowledge." According to their findings, pre-trained BERT does not effectively 
model negation, although fine-tuned BERT accurately classifies sentences as true or 
false. Similar observations were reported by Ettinger (2020), who also observed that 
BERT can generally discriminate between good and bad completions involving shared 
categories or role reversals, reliably retrieves noun hypernyms, but encounters difficul-
ties in challenging inference and role-based event prediction.

Zhou et al. (2020) investigated the common sense ability of several PLMs, including 
GPT, BERT, XLNet, and RoBERTa. While their findings are similar to those mentioned 
above, they also observe that bi-directional context and larger training corpus typically 
give an advantage. They also discovered that current models perform poorly on tasks 
that require several inference steps. An example of this in the context of semantic rela-
tions would be inferring that mosquito is a living organism from the fact that mosquito 
is an insect. Kim et  al. (2019) looked at word sense information contained in BERT 
embeddings. Mickus et al. (2020) noted that BERT’s representations of the same word 
vary depending on the position of the sentence in which it occurs, possibly because that 
one of the two tasks on which it is pre-trained is a next-sentence prediction.

A number of studies looked at numeric values of self-attention, e.g. Clark et  al. 
(2019). However, the methodological soundness of this approach has been also since 
debated, e.g. Brunner et  al. (2020), since in a multi-layer model the attention is fol-
lowed by non-linear transformations, so the patterns in individual heads do not nec-
essarily provide a meaningful picture. For this reason, we have not included numeric 
analysis of the attention distribution in our study.

PLMs have also been successfully applied to a related but distinct task of relation(-
ship) extraction, e.g. Shi and Lin (2020). Its goal is to identify instances of semantic rela-
tions (e.g. a drug affecting an illness, a protein affecting another protein, a head of state 
etc.) as expressed in specific contexts, typically text sentences. Semantic classification 
task we are focusing on here is classifying the abstract relations between concepts X and 
Y, regardless of specific context, e.g. “green” and “colour”. Once big difference between 
the two tasks is that relation extraction primarily works with named entities and a set of 
pre-determined relations, while the words of interest in semantic-classification are often 
involve common nouns. The datasets and state-of-the-art approaches for these tasks dif-
fer. Another related but a different task where transformers and PLMs have been success-
fully applied is semantic frame parsing, e.g. Gupta et al. (2018), Aghajanyan et al. (2020).

3  Models for semantic relations

3.1  Our path‑based neural model

3.1.1  Overview of the approach

Our proposed path-based neural model combines useful properties of convolu-
tional and recurrent networks, while resolving several shortcomings of the current 
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state-of-the-art model by Shwartz and Dagan (2016) as we explain below. Figure 1 
presents an informal intuitive illustration.

We jointly train our semantic classification along with an unsupervised language 
modeling (LM) task. Unlike PLM-based models, rather than building an LM for 
the entire training corpus, our path-based model builds LM for its subset: only for 
the word paths connecting pairs of words (X,Y) of interest (target pairs) within the 
same sentence. In our experiments here, we used exactly the same word paths as 
in our baselines from Shwartz and Dagan (2016). They are publicly available and 
are already described above in our Sect.  2. Since Wikipedia serves as the source 
for our word paths, and also as the corpus to pre-train one of our transformer-based 
language models (BERT), the performance between the two approaches can not be 
simply attributed to the size of the training data.

The output of LM is the probability of occurrence of any input word sequence. 
We use some of those probabilities as features for our relation classification model 
as explained in the following. Inspired by the success of convolutional networks 
(CNNs) in computer vision and other applications, we use a fixed set of trainable 
filters (kernels), which learn to respond highly to certain patterns that are indicative 
of specific semantic relations. For example, a specific filter fi can learn to respond 
highly to is a (and similar) patterns. At the same time, our recurrent LM may sug-
gest that there is a high probability of occurrence of the sequence green is a colour 
in raw text corpus. Combining those two facts suggests that green belongs to the 
category colour (true is-a relation between them). Figure 1 shows only three filters 
(and the probabilities of the sequences P1, P2, P3 ), while in our current study we 
used up to 16.

Thus, the LM probabilities act as approximate (“soft”) pattern matching scores: 
(1) similar patterns receive similar scores with the same filter and (2) similar filters 

Fig. 1  Our path-based neural approach to semantic relationship classification. The trained language 
model implemented as a recurrent network (rectangles) applies to each “soft” (trainable) pattern consist-
ing of the target words (green and colour in the example) and “pseudo” words represented by trainable 
word vectors. The probabilities obtained from the language model (P1, P2, P3 in the example) are fed 
into a semantic relation classifier. The language model, the semantic classifier and the “soft” pattern vec-
tors are trained altogether. The example uses real words in the patterns (is, as, or etc.) only for illustra-
tion. They are represented by trainable vectors in the model, thus are not restricted to the actual words in 
the vocabulary
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produce similar scores for the same pattern. LM also reduces the need for using 
many filters as explained by the following intuitive example: While training, LM can 
encounter many examples of sequences like green is a popular colour and green is a 
relaxing colour. By modeling the properties of a language, LM learns that removing 
an adjective in front of a noun does not normally result in a large drop of the prob-
ability of occurrence, so the sequence green is a colour also scores highly even if it 
never occurs in the corpus. Thus, as with CNNs used in computer vision, the limited 
number of filters does not necessary limit the number of patterns to which those fil-
ters may respond. This is because both the filters and the word vectors (embeddings) 
are trainable, thus even different patterns can produce high scores with the same 
filter.

Since the current state-of-the art path-based approach (Shwartz and Dagan, 2016) 
aggregates the word paths connecting each target pair by averaging the context vec-
tors representing all the paths (formula 3), we believe their approach has two spe-
cific drawbacks that our approach does not: (1) when averaging is applied, the dif-
ferent occurrences of word patterns are forced to compete against each other, so the 
more rare occurrences can be dominated by more common ones and their impact 
on classification decision neglected as a result. By using LM we avoid facing the 
question how to aggregate the context vectors representing each path existing in the 
corpus. (2) The other relative strength of our approach over the baseline comes from 
the fact that our model does not “anonymize” the word paths unlike (Shwartz and 
Dagan, 2016), which uniformly uses the labels “X” and “Y“ for the path ends (e.g. 
“X is a type of Y” rather than “green is a type of colour”) regardless of which words 
the target pair (X, Y) actually represents. Without the use of LM, this anonymizing 
is unavoidable to generalize to the previously unseen (X, Y) pairs, but it also misses 
the opportunity for the model to learn to transfer the knowledge from similar words.

3.1.2  Formal definitions

Language Model (LM) is a probability distribution over sequences of words: 
p(w1, ...,wm) , where w1, ...,wm is any arbitrary sequence of words in a language. We 
train LM jointly with our semantic relation classification task by minimizing cross-
entropy costs, equally weighted for both tasks.

We use a recurrent neural network, specifically a GRU variation (Cho et  al., 
2014), which works as well as LSTM while being faster to train. In our preliminary 
experiments we also used a single-layer fully-connected network which resulted is 
weaker results so we are omitting them here. We also tried bi-directional versions, 
but that did not affect the results in a noticeable way).

Thus, the probability of a word wm in the language to follow a sequence of words 
w1, ...,wm−1 is determined by using the RNN to map the sequence w1, ...,wm−1 into 
its context vector:

and then applying a linear mapping and the softmax function:

(4)�⃗vw1,...,wm−1
= RNN(w1, ...,wm−1)



1471

1 3

Fine-tuning language models to recognize semantic relations  

where W is a trainable matrix, b is a trainable bias, and softmax is a standard func-
tion to scale any given vector of scores to probabilities.

As any typical neural LM, our LM also takes distributed representations of words 
as inputs: all the words are represented by their trainable embedding vectors v1, ..., vm
.4 This is important for our model and allows us to treat LM as a function defined 
over arbitrary vectors p(vm|v1, ..., vm−1) rather than over words.

To classify semantic relations, we only look at the word paths that con-
nect the target word pairs. Thus, we only make use of probabilities of the form 
p(vy|vx, v1, ..., vk) , where (x, y) is one of the target pairs of words - those in the data-
set that are used in training or testing the semantic relations, (vx, vy) are their embed-
ding vectors. The sequence of vectors v1, ..., vk defines a trainable filter, and k is its 
size. While vectors v1, ..., vk have the same dimensions as the word embeddings, they 
are additional parameters in the model that we introduce. They are trained with the 
other ones (word embeddings + RNN matrices + the decision layer) by back propa-
gation. Due to the smoothness of a neural LM, the entire model is differentiable.

Thus, we formally define the score of each of our filters (kernels) the following 
way:

where p() is determined by our language model as the probability of the word 
with the embedding vector vy to follow the sequence of words with the vectors 
vx, v

i
1
, ..., vi

k
 . We apply log in order to deal with high variation in the orders of mag-

nitude of p(). Finally, we define the vector of filter scores by concatenating the indi-
vidual scores: ��⃗f � = [f1, f2, f3, ..fN] , where N is the total number of filters (16 in our 
study here). They are concatenated with X and Y embedding vectors to produce the 
final vector of “semantic” features f⃗  which is mapped into a specific relation label 
by using a neural network with a single hidden layer. Thus, we define:

where W2 is a trainable matrix and b2 is a trainable “bias” vector. The classification 
decision is made based on the output activations:

where W3 and b3 are also trainable parameters. As traditional with neural networks, 
we train to minimize the cross-entropy cost:

(5)
p(wm|w1, ...,wm−1) =

softmax (W ⋅ �⃗vw1,...,wm−1
+ b)

(6)fi = log p(vy|vx, vi1, ..., v
i
k
)

(7)���⃗h1 = tanh(W2 ⋅ f⃗ + b2)

(8)c = argmax (W3 ⋅
���⃗h1 + b3)

(9)cost = − log((softmax (W3 ⋅
���⃗h1 + b3))[cl])

4 We do not use the arrow over the word vectors to simplify the notation.
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where cl is the correct (expected) class label. We used stochastic gradient descent for 
cost minimization.

Earlier into our experiments, we had a theoretical concern that the conditional 
probabilities of target word occurrences are subject to frequency bias. However, 
we did not observe the impact of that that in practice, possibly due to the fact that 
their word embeddings are also fed into the classifier, thus it learns to adjust for 
more/less frequent words.

3.2  Attention‑based transformer as PLM

Here, we briefly explain how the attention-based transformer (Vaswani et  al., 
2017) operates and how we use its pre-trained versions for a language model, spe-
cifically BERT (Devlin et al., 2018) and T5 (Raffel et al., 2020).

Instead of recurrent units with “memory gates” essential for RNNs, attention-
based transformers use additional word positional embeddings which allows them 
to be more flexible and parallelizable than recurrent mechanisms which have to 
process a sequence in a certain direction.

A full transformer consists of a decoder and encoder, and maps a sequence of 
vectors into another sequence of vectors, which in turn can be used in the down-
stream task, e.g. generating output words for machine translation or a sentence 
classification such as sentiment analysis.

The conversions from the inputs to the outputs are performed by several lay-
ers, which are identical in their architecture, possibly varying only in their hyper-
parameters and trained weights. In order to obtain the vectors on the layer above, 
the vectors from the layer immediately below are simply weighted and added 
together. After that, they are transformed by a standard nonlinearity function, e.g. 
tanh:

here, ��⃗vi′ is the vector in the i-th position on the upper layer, ��⃗vt is the vector in the t-th 
position on the lower layer,

W is a trainable matrix (same regardless of i but possibly different at different lay-
ers), and �t is a trainable function of vectors ��⃗vi and

��⃗vt , such as the weights for all ��⃗vt add up to 1.
(Vaswani et al., 2017) uses a scaled dot product of the vectors ��⃗vi
and ��⃗vt:

where W ′ is a trainable matrix (same regardless of i and t at the same layer but pos-
sibly different at different layers). The normalization to 1 is accomplished by using a 
softmax function.

(10)��⃗vi
� = tanh(W ⋅

k∑

t=1

𝛼t ��⃗vt)

(11)𝛼t = ��⃗vi ⋅W
�
⋅ ��⃗vt
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This mechanism allows rich vector representations to be formed at the highest 
layers that can capture the entire content of a word sequence (e.g. a sentence or 
a word pair)

so it can be effectively used for any application such as text classification or 
generation. As it is commonly done with the transformers, we make our out-
put classification decision based on the very first vector on the top level (called 
“classification token”). We do not use a hidden layer here, so we apply our for-
mula 8 above to h1 defined as the following:

where { ��⃗vu
t
} is the vector sequence produced by the transformer for the top level.

Since the operations above are primarily matrix multiplications, they are 
algorithmically faster than back-propagation in time needed for recurrent neu-
ral networks. As a result, ready-to use attention-based models have been trained 
using large corpora such as Wikipedia.

We did not need to use BERT’s decoder part for this task since our output is 
not a sequence. As common in other applications and recommended by Devlin 
et  al. (2018), we have also not used the decision making layer of BERT pre-
trained on masked word and next sentence prediction. Thus, we fed the inputs to 
BERT in the standard two-sentence format: [CLS] X [SEP] Y [SEP], and set the 
required masks according to the documentation. Here, (X,Y) is the target pair of 
words. Based on transformers architecture, we conjectured that explicitly defin-
ing CNN-like filters defined by us in formula 6 of our path-based model is not 
necessary here, since a transformer should be able to “add" those words prior, 
between or after (X, Y) if needed on higher layers.

As we detail in our   4, indeed adding those filters explicitly did not affect 
the performance in any way. Thus, we argue and empirically verify that PLM 
approach can be viewed as both distributional and path-based. This is because 
the word path distribution is already contained in a PLM, so the latter takes over 
the role of the RNN showed on the left in our diagram in Fig. 1. The PLM also 
supplies the pre-trained word embeddings.

It is not possible to skip the decoder when using T5 since it is strictly a 
sequence-to-sequence model. Thus, as recommended by the documentation and 
used in the prior works, we assign the target text to the relation name, use the 
word "relation" as custom prefix (instead of the standard ones like “summarize", 
“predict sentiment", etc.) and put X and Y separated by empty space, without 
introducing any additional separators between them.

4  Empirical evaluation

4.1  Illustration on synthetic datasets

In order to gain additional insight into which model works best, we also exper-
imented with a synthetic dataset. Using synthetic data is commonly used to 

(12)���⃗h1 =
��⃗vu
0



1474 D. Roussinov et al.

1 3

illustrate the limitations of a specific approach. For example, inability to learn 
a XOR function by a single layer neural network illustrates the need for a hidden 
layer. Thus, we sought to generate as simple and easily replicable text as possible, 
while still having the properties that are present in real datasets and may present a 
challenge to a particular model.

For the ease of interpretation, we limited the number of semantic relations in 
the simulation to 2 (true/false): an example of such situation is the problem of 
verifying membership in a semantic category, e.g. (colour, green, true), (coffee, 
drink, true) but (coffee, green, false). Rather than generating the text and then 
extracting the paths from it, we directly generate the paths, so they all start/end 
with x/y where (x, y) is one of our target pairs of words. Without loss of general-
ity, we call y a category, and we call x a candidate. We generate three non-over-
lapping types of words: 

(1) Category labels: {c1, c2,..., cC}, where C is the total number of categories.
(2) Candidates: {w1,...,wW}, where W is the total number of them. These are the 

words that may happen to belong (true-pair) or not to belong (false-pair) to the 
specific categories.

(3) Connectors: {is1, is2,..., isM}, where M is the total number. They represent typi-
cal word patterns that connect true category-candidate pairs. For example, for 
the path water is liquid, the connector is is. For simplicity, all our connectors 
consist of a single-word, and x always precedes y.

Every category uses only a randomly-assigned subset of m connectors for posi-
tive (correct) candidates, which mirrors the real text where, for example, category 
colour uses “is a” but does not use “is”, while category actor uses “is” but does 
no use “is a". Each category also uses m − 1 connectors for negative pairs. Thus, 
the only difference between true and false candidates is that the true candidates 
occur with larger number of connectors. Since we wanted to stress our algo-
rithms, we deliberately generated positive and negative pairs that are challenging 
to tell apart.

We generate all the paths by the following: for each category c, each true candi-
date x and each connector o we generate the path x + o + c if x is a true instance of 
c and connector o is used by c. Otherwise, we generate the path x + o + w, where w 
is sampled uniformly from {w1,...,wW}. So basically, if the connector is not used by 
category c or if x is not a true instance of c, then the combinations of x and connec-
tor c can be followed by any arbitrary words. E.g. since red is not a drink, we will 
not have paths like red is drink, but may have instead paths like red is colour, red is 
stop, etc. In our first round of experiments, we used W = 10000,M = 6,m = 4.

We separately generated training and testing subsets of equal size, with-
out overlapping categories. Guided by the sizes of our real datasets listed 
in Table  1, we tested the numbers of categories on the logarithmic scale: 
{10, 50, 100, 500, 1000}.

Both the baseline and our model were able to achieve the F1 score – the met-
ric used by our baseline papers (Shwartz and Dagan, 2016) above 95%. In order 
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to further strain both methods and to make our data more realistic, we imposed 
additional noise by repeating each path r number of times, where r was randomly 
selected between 1 and 10. We have also added the paths consisting entirely 
of “noise" words, which were randomly selected from the {n1, ..., nNn} set. We 
set Nn = C to avoid introduction of an additional simulation parameter but still 
reflecting the scale of the generated set.

Figure 2 presents the results for several numbers of categories C. We report the 
maximum score on the test set. It can be seen that for the small number of catego-
ries both approaches still work well, but for 100+ categories the state of the art 
method, which is based on averaging the context vector, starts getting disoriented. 
One possible explanation may be that it happens because the occurrences of some 
connectors lose their impact on the classification decision when averaging occurs. 
Since our approach is based on a language model rather than on averaging, it is 
not affected by the introduction of additional noise (the filter values remain the 
same).

We have run the similar experiments with the word embeddings and network 
sizes in the {25, 50, 100, 200} set. While the specific F1 scores were different, the 
overall comparison remained the same: only our approach was able to handle the 
imposed noise well. Only after we reduced the number of filters to below 6 (the 
number of unique possible connectors in the simulation), its performance also 
dropped below 90

4.2  The datasets

Table 1 summarizes general statistics of the datasets.

Fig. 2  F
1
 scores of our model 

compared to the state-of-the-art 
baseline on synthetic data

Table 1  The relation types and statistics in each dataset

Dataset Dataset relations #Instances #Unique X #Unique Y

K&H+N Is a, part of 57509 1551 16379
BLESS Is a, part of, event, attribute 26546 201 8089
ROOT09 Is a 12762 1218 3436
EVALution Is a, part of, attribute, opposite, made of 7378 1631 1497
Hypenet Lexical Is a 20335 16044 5148
Hypenet Random Is a 49475 38020 12600
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We used the same datasets as our baselines: the first two are from Shwartz et al. 
(2016) and were built using a similar methodology: the relations used in them have 
been primarily taken from various sources including WordNet, DBPedia, Wikidata 
and Yago.

Thus, X-s is primarily a named entity (places, films, music albums and groups, 
people, companies, etc.). The important difference is that in order to create the parti-
tion between training, testing and validation sets for HypeNet Lexical, the lexical 
separation procedure was followed (Levy et al., 2015), so that there is no overlap in 
words (neither X nor Y) between them. This reduces “lexical memorization”. The 
last four datasets are from Shwartz and Dagan (2016), which originate from various 
preceding studies: K&H+N (Necsulescu et  al., 2015), BLESS (Baroni and Lenci, 
2011), ROOT09 (Santus et al., 2016), EVALution (Santus et al., 2015). Most of the 
relations for them were also taken WordNet. BLESS dataset also contains event and 
attribute relations, connecting a concept with a typical activity/property, e.g. (alli-
gator, swim) and (alligator, aquatic). EVALution dataset contains the largest num-
ber of semantic relations including antonyms, e.g. (good,bad). It also has the small-
est size. To make our comparison more direct, we used exactly the same partitions 
into training, development (validation) and testing subsets as in the baselines. We 
also used exactly the same word paths data, as it is made publicly available by the 
authors.

4.3  Experimental setups

We set the word embedding size, the RNN context vector size, and the hidden layer 
size the same within all our path-based models. We tested their values in the range 
of {50-1000}. This size is the only hyper-parameter that was varied in our experi-
ments. We used the static learning rate of 0.01. As it is commonly done.

We report the results computed on the test sets with the hyper-parameter and the 
number of training iterations that maximize the F1 scores on the validation sets, thus 
using exactly the same metrics and procedures as were used to obtained the base-
line results: scikit-learn (Pedregosa et al., 2011) with the “weighted” set-up, which 
computes the metrics for each relation, and reports their average, weighted by sup-
port (the number of true instances for each relation). For HypeNet datasets, that was 
accordingly set to “binary”. We also verified through personal communications with 
the authors of Shwartz and Dagan (2016) that our metrics are numerically identical 
for the same sets of predicted labels. For our path-based models, all the trainable 
parameters were initialized by a normal distribution around 0 average and standard 
deviation of 1.

For our PLMs, we used the base model of BERT (Devlin et al., 2018) (mono-lin-
gual English uncased version) which has 12 layers and the output vector size of 768, 
with a total number of trainable parameters of 110 million. We also used “base” T5, 
which has 220 million parameters, and larger pre-training corpus than BERT.
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4.4  Comparing against the baselines

Table 2 presents our results. We followed the same comparison methodology as in 
Shwartz and Dagan (2016), which provided our data and baselines. We performed 
pair-wise statistical significance tests as they are less affected by re-using the same 
data-points in different runs. Additionally, each reported result has been obtained by 
4 different parameter initialisations and random presentation order of the training 
data. The maximum confidence interval observed was ±0.0031 . For additional com-
parison, we include the “Concat” baseline result from Shwartz and Dagan (2016) 
obtained by a single layer fully connected model applied to the concatenation of 
the embeddings of the word pair. They also noticed that applying it to the differ-
ence of embeddings worked worse. Both approaches were explored prior to their 
work. While the results from KEML (Wang et al., 2021) were not available when we 
carried our experiments and presented preliminary results, we still have decided to 
include it here as an additional baseline. Similarly, we decided to include WBR from 
(Barkan et al., 2020). For HypeNet Random and Evalution datasets, we provided the 
larger values that we obtained in our re-implementation of the distributional meth-
ods that they used rather than their reported values.

The following can be observed: 

(1) Our neural word path model has been able to improve the state-of-the-art within 
that type of approaches on three out of six datasets: Hypenet Lexical, Bless 
and Root09. The differences are statistically significant at the level of .01. On 
the remaining three datasets (HypeNet Random, K&H+N and Evalution), our 
results are the same as with the baseline performance (no statistically significant 
difference at the level .05). The scores for HypeNet Random and K&H+N are 
already high due to “lexical memorization”, as further tests below reveal. Since 
the models were evaluated on the same data, the obtained results clearly suggest 

Table 2  F
1
 scores of our tested models compared to the state-of-the-art baselines

Model Hypenet L Hypenet R K&H+N BLESS ROOT09 Evalution

Best word path models
 Concat N/A N/A 0.904 0.811 0.646 0.525
 Lexnet 0.700 0.901 0.985 0.893 0.814 0.600
 Our path language model 0.740 0.899 0.990 0.927 0.832 0.602

Best Distributional
 SphereRE N/A N/A 0.990 0.938 0.861 0.620
 WBR N/A N/A 0.988 0.941 0.864 0.628
 KEML N/A N/A 0.993 0.944 0.878 0.660

Our PLM-based
 Using BERT 0.832 0.905 0.987 0.942 0.921 0.701
 Using T5 0.843 0.899 0.981 0.925 0.902 0.685
 Human 0.90 0.90 0.98 0.96 0.95 0.82
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that our neural model is better than the current state-of-the-art word-path model 
by Shwartz et al. (2016).

(2) Our PLM-based models have shown significant improvements over state-of-the-
art baselines, including both path-based and distributional models, on four out 
of six datasets and worked as well on the remaining two (2). The differences are 
statistically significant at the level of .01. There are no statistically significant 
differences on Bless and K&H+N.

(3) On four out of six datasets, our PLM models outperformed our neural word path 
model. The differences are statistically significant at the level of .01. There are 
no statistically significant differences on the remaining two. It is noteworthy that 
the improvements due using BERT and T5 were consistent across all the datasets.

This suggests that PLMs are highly effective in modeling semantic relations. While 
they have demonstrated their effectiveness in various other applications, this is the 
first study that has used them for this particular task.

We estimated the human performance on our datasets by giving 100 randomly 
selected word pairs to 3 independent graders, who were allowed to look up the 
meanings online (last row). It can be seen that the state-of-the-art approaches 
have already achieved the human level on the datasets where no improvement was 
detected (HypeNet Random and K&H+N), so this may explain why our approaches 
did not substantially improve them any further.

4.5  Effect of lexical separation

The results in Table 2 make an impression that with the models that we are suggest-
ing here, the algorithmic performance is closely approaching human level on 4 data-
sets out of 6, and only slightly below on the remaining 2. However, we argue that 
this impression is a result of somewhat over-estimated algorithmic performance due 
to the effect of “lexical memorization”. Indeed, Levy et al. (2015) noted that super-
vised distributional methods instead of learning a relation between the two terms, 

Table 3  F
1
 scores of our tested 

PLM-based models on the 
lexically separated datasets 
showing larger gaps between 
human and algorithmic 
performance

Model K&H+N BLESS ROOT09 EVALution

Lexical separation
Path-Based .721 .833 870 .587
BERT .733 .855 .881 .594
T5 .719 .791 .853 .682
Undersampling to the same size:
Path-based .931 .886 .905 .601
BERT .933 .889 .910 .607
T5 .963 .915 .898 .684
Human 0.98 0.96 0.95 0.82
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tend to learn an independent property of a single term in the pair. For example, if 
the training set contains pairs such as (dog, animal), (cat, animal), and (cow, ani-
mal), the algorithm learns to classify any new (X, animal) pair as true, regardless of 
X. Similar effect happens with respect to Y. The more times X and Y are repeated 
in the dataset (shown in Table 1), the higher the effect of “lexical memorization”. 
This effect has been already alleviated by introducing negative examples into the 
ROOT09 dataset (Santus et al., 2016). In order to appraise this effect and to create 
more accurate benchmarks, we aslo applied the procedure of “lexical separation” 
from (Levy et al., 2015), so the training and testing parts don’t have any words in 
common.

Table 3 presents the results of our PLM-based models on the lexically separated 
datasets. Since the separation decreases the training size by roughly a factor of 3, we 
also add the results on the same amount of training data without applying separa-
tion. We could not include the performance of Lexnet, SphereRE, WBR and KEML, 
on our lexically separated datasets since that would require re-implementing them. 
The following can be observed: 

(1) The reduction in performance due to lexical separation is substantially larger 
than the drop due to reducing the training data size alone.

(2) On the lexically separated datasets, the algorithmic performance is still far from 
human. This suggests that modeling semantic relation task is still far from being 
solved.

(3) The performance drops are remarkably similar between BERT and T5 on all the 
datasets except Evalution (the most challenging out of 6 used here), in spite of 
their somewhat different models, number of trainable parameters and corpora 
used.

We make our lexically separated datasets available, hoping that in future they will be 
used by other researchers to assess how close the automated approaches are to the 
human level.

Table 4  F
1
 scores for the specific semantic relations for the PLM-based models. The path-based results 

are included in parenthesis

Relation Example K &H+N BLESS ROOT09 Evalution

Hypernym Cat-animal 0.95 (.93) 0.94 (.92) 0.98 (.91) 0.70 (.62)
Sister-term Cat-dog 0.98 (.97) 0.97 (.95) 0.87 (.83)
Meronym Car-wheel 0.65 (.71) 0.93 (.92) 0.75 (.66)
Event Axe-sharpen 0.90 (.89)
Attribute Apple-juicy 0.92 (.90) 0.87 (.76)
Random Van-reservoir 0.98 (.98) 0.96 (.97) 0.92 (.84)
Antonym Join-quit 0.74 (.61)
Made of Wind-air 0.67 (.58)
Synonym Equal-even 0.43 (.37)
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4.6  Further analysis

Table 4 shows F1 scores for the specific relations from our BERT-based model fol-
lowed by the results of our Path-based model in parenthesis. The blank entries are 
for the relations that are not present in that particular dataset.

The following can be observed: (1) The most challenging category is synonyms. 
Analysis of the confusion matrix suggests that it is often confused with antonyms 
and hypernyms, and also due to the fact that there are fewer paths that can link them 
which is consistent with the observation made by the prior research (Shwartz and 
Dagan, 2016) and with the gap in performance between our two types of models. (2) 
On Root09 dataset, the hypernym relation works almost ideally, so the mistakes are 
almost exclusively because of confusion between the other two relations. 3) Mero-
nyms are only challenging in K&H+N since there are only 768 training examples 
there out of 58,000 total.

We also informally explored the model’s ability to handle adversarially created 
test pairs. We were motivated by a simple observation that the vast majority of 
positive examples in Hypenet dataset are named entities and that the vast major-
ity of negative examples are not topically related (“oregon” and “piano”, “asia” and 
“female”, “russo” and “switzerland”, etc.). We manually created 100 test cases con-
sisting of made-up named entities on the topic of aviation by combining general 
words and the word “air” (“car air”, “circle air”, “new air”, etc.). The model trained 
on HypeNet Lexical dataset erroneously classified all those cases as “airline.” It also 
erroneously classified all the 30 correct airline names that we submitted as “air-
ports” while still correctly classifying them as “airline” as well. The proportion of 
correct airline names classified as “recording label” was 62%, which is lower than 
for the correct category (hypernym), but still alarmingly high. We did not find a 
single false-positive within the entire original test-set that involved erroneous clas-
sification of a general word (“car”, “book”, “new”, etc.) as something that expects a 
name entity. The above stated observations suggest that what the model designates 
all topically related named entities as positives and other candidates as negatives. 
Being able to check for those two conditions is sufficient to obtain a high score since 
very few categories in the dataset are topically related (e.g. “airport” and “airline” 
). We made similar observations using test-cases on other pairs of related topics, 

Fig. 3  Using only portion of 
HypeNet Lexical dataset for 
training

Fig. 4  Using only portion of 
Root dataset for training
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specifically city/river, movie/book, and actor/director."5 Since our path-based exper-
iments are limited by the available path data that we used from Shwartz and Dagan 
(2016), we were not able to carry out the same experiments with our path-based 
model, and this left it for future work.

4.7  Ablation studies

We have also tested the influence of training size on the model by comparing its 
performance with 5, 10, 25, 50 and 75% of randomly selected training subsets of 
the two datasets on which both our models provided the biggest gains over the 
baselines: HypeNet Lexical and Root09. The results shown in figures  3 and  4 sug-
gest the importance of the dataset size and the possibility of further improvements 
when more training data is available for the path-based approach. At the same time, 
out transformer-based model needs much less training to reach its top possible 
performance.

Table 5 shows the relative drop in performance (F1), when lower layers of BERT 
transformer were used. The following can be observed: (1) Lowering the level nor-
mally results in performance reduction. This is expected since less of the pre-trained 
information is used and the number of trainable parameters is reduced. However, the 
fact that the drop does not exceed 16 % suggests that the bulk of semantic knowl-
edge is contained in the word embeddings rather than in the transformer’s heads. 
(2) The relative decrease varies from 16% on Root to 6% on Bless. The difference 
can be explained by the larger size of Bless. (3) Depending on the preferences for 
the accuracy trade-off, on some datasets the lower layers can be used in practice in 
order to slash the processing time by a factor between 2 and 10, since according to 
the transformer algorithm, the processing time is roughly proportional to the number 
of layers used.

We also verified that using a hidden layer did not result in any increase in per-
formance with either of our PLM-based transformer models. This is most likely 
due to the layered architecture of a transformer itself. Since out downstream task is 

Fig. 5  Performance drop when using lower BERT layers

5 The test sets are included in the released resource.
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relatively simple (as compared e.g. with automated question answering), there likely 
to exist some over-parametrization at each of transformer’s layer. The model can 
learn to use those under-utilized dimensions as a hidden layer since the transforma-
tions within a fully-connected network and an attention-based transformer are very 
similar.

We have also verified that the following did not have any noticeable effect on 
the performance: (1) Using any other position in the transformer’s output instead of 
the recommended classification token (“[CLS]”). (2) Not adding the special tokens 
“[CLS]” and “[SEP]” at all. (3) Concatenating the entire layer instead of using the 
classification token, or several (up to 4 in our experiments) layers. The explanation 
for that probably lies again in the fact that the task is much less data intensive in 
comparison from the primary tasks for which the transformer is pre-trained (masked 
word or next sentence prediction), thus the model learns to delegate the role of spe-
cial tokens to those under-utilized parameters.

We have experimented with adding reserved (“[unused*]”) or real but rarely used 
words from BERT’s vocabulary before, between and after X and Y, hoping that this 
may help the model to learn certain validation patterns (e.g. “X is a Y” for hypon-
ymy), but we did not observe any effect of this on the performance. Similarly, no 
effect was observed when doing this in T5.

Using “small” version of T5 indeed resulted in reduced performance. We did not 
try run larger T5 versions than the base one. Using large BERT did not result in any 
noticeable improvements.

5  Conclusions

We have presented our original exploration on the successful utilisation of a pre-
trained language model (PLM) in the identification of semantic relations. Given a 
pair of words (phrases, concepts, etc.) X and Y, the task is to automatically classify 
which relation label (e.g. “is a”, “part of”, “property of”, “opposite of”) describes 
the pair best irrespective of the specific context. We have made improvements to 
and compared two families of approaches derived from prior research: (1) those that 
model the existing word paths connecting the given pair in the corpus, and (2) those 
that focus on modelling the occurrences of either X or Y separately, regardless of 
their proximity to each other.

In order to introduce PLM into a path-based approach, we have come up with 
an original model that combines useful properties of convolutional and recurrent 
networks and avoids limitations of the prior models. Our model has improved the 
state-of-the-art performance within this family of approaches on 4 out of 6 standard 
datasets. An important feature of our approach is that it builds a language model not 
for the entire corpus, but only for the subset: the word paths that connect X and Y. 
This may result in significant computational savings.

Our implementation of a distributional approach uses a pre-trained language 
model (BERT or T5) pre-trained on the entire corpus, and thus digests larger 
amount of data and is more computationally demanding. Such an approach can 
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be viewed as both path-based and distribution-approach at the same time. While 
fine-tuning classification step to the initial word representation is a standard 
architecture used for many current NLP tasks, at the time of our experiments and 
at present, our work stands out as the first to apply PLM to model global abstract 
properties of such small building blocks of human language as separate words, 
rather than their contextual usage in specific sentences or paragraphs.

Our PLM-based approach has further improved the state-of-the-art perfor-
mance on 4 out of the same 6 datasets, approaching the human level performance. 
We have performed rigorous ablation studies on the importance of the specific 
parts of our models (such as the depth of the layer at which the pre-trained trans-
former is used), and the size of the training data needed. Furthermore, we dem-
onstrate, that the current standard datasets tend to over-estimate the performance 
due to the effect of “lexical memorization”. By applying the procedure of lexical 
separation, we have produced the datasets that don’t have any common words 
between the testing and training partitions. When measured on those datasets, the 
best algorithmic performance is still significantly below that of humans. Thus, 
automated semantic classification remains an unsolved task and poses numerous 
challenges for future research.

The importance of this task extends to various practical applications and is con-
sidered fundamental in the development of Artificial General Intelligence. While 
manual dictionaries exist for semantic relations, they are primarily available for 
well-resourced languages like English or German, often lack updates, and may not 
cover specialized domains. Therefore, there is a strong demand for automated rela-
tion classification, particularly in domains such as medicine and law. To facilitate 
further research and practical implementations, we make our code and data publicly 
available.

There is an emerging topic of detecting what pre-trained models “know” about 
language and the world. While it has been shown that their weights can be used to 
predict some linguistic properties, such as semantic roles (Rogers et  al., 2020) or 
word analogy (Vulic et al., 2020), our study is the first to show that the pre-trained 
models still have limitations, which are not always revealed by the standard datasets. 
For example, they can learn to reliably recognise names (countries, cities, compa-
nies, etc.) and their relatedness to a certain topic (e.g. “aviation”), but still they often 
fail to distinguish between closely related categories such as “airport” and “airline”. 
Since these observations only scratch the surface, so we have left more methodo-
logical exploration for future studies.

Another promising research direction concerns the ability to transfer prediction 
models to less resourced languages via multilingual transfer, for example via mul-
tilingual embeddings (Sogaard et  al., 2019), especially when we want to transfer 
our models between closely related languages, such as French and Italian (Sharoff, 
2020). It is known that multilingual PLMs share enough information between lan-
guages to make this successful (Lample and Conneau, 2019). However, more spe-
cific experiments are needed to prove the possibility of successful fine-tuning on the 
lexical relations task across languages. The mechanisms inspired by meta-learning 
can be also applied, e.g. Roussinov and Puchnina (2019).
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