
http://www.aimspress.com/journal/MBE

MBE, 20(8): 14634–14674.
DOI: 10.3934/mbe.2023655
Received: 03 August 2022
Revised: 15 January 2023
Accepted: 21 February 2023
Published: 05 July 2023

Research article

Scalable computational algorithms for geospatial COVID-19 spread using
high performance computing

Sudhi Sharma1, Victorita Dolean2,3, Pierre Jolivet4, Brandon Robinson1, Jodi D. Edwards5,6,
Tetyana Kendzerska6,7,8 and Abhijit Sarkar1,∗

1 Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
2 Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland
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Abstract: A nonlinear partial differential equation (PDE) based compartmental model of COVID-19
provides a continuous trace of infection over space and time. Finer resolutions in the spatial discretiza-
tion, the inclusion of additional model compartments and model stratifications based on clinically
relevant categories contribute to an increase in the number of unknowns to the order of millions. We
adopt a parallel scalable solver that permits faster solutions for these high fidelity models. The solver
combines domain decomposition and algebraic multigrid preconditioners at multiple levels to achieve
the desired strong and weak scalabilities. As a numerical illustration of this general methodology, a
five-compartment susceptible-exposed-infected-recovered-deceased (SEIRD) model of COVID-19 is
used to demonstrate the scalability and effectiveness of the proposed solver for a large geographical
domain (Southern Ontario). It is possible to predict the infections for a period of three months for a
system size of 186 million (using 3200 processes) within 12 hours saving months of computational
effort needed for the conventional solvers.
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1. Introduction

After the emergence of the coronavirus disease 2019 (COVID-19), many policy decisions directly
affecting personal gatherings, business operations and healthcare utilization have been predicated on
forecasted case counts and hospitalization statistics. Many such predictions use compartmental models
based on ordinary differential equations (ODEs), which capture temporal variation for a population.
Compartmental models derived from the susceptible-infected-removed (SIR) model have been used
extensively. These models often include additional compartments and stratifications based on age, co-
morbidity, sex etc., to account for complex disease dynamics [1, 2]. These approaches are based on an
aggregated population for a given geographical domain and are well suited for individual population
centers and cities or for studying global trends in broader regions. Agent- and network-based mod-
els [3,4] are also popular particularly for studying localized virus spread by employing microscale data
concerning disease transmission and population structure, which are difficult to acquire for large geo-
graphical domains. However, when the geographical domain of interest is a province/state/region or a
country, spatial variations in disease dynamics become critical for accurate predictions [5,6]. Critically
compartmental models based on partial differential equations (PDEs) [7–10] capture the continuous
spread of a virus both in space and time, providing a more complete description of disease dynamics
over a large geographical domain. Their outputs indicate highly contagious zones and the evolution of
disease dynamics among other clinically relevant information which can inform the decision makers
about preventative measures and hospital preparedness.

The numerical solution of the problem involves spatial and temporal discretizations that lead to a
nonlinear system of equations, typically with millions of unknowns. A parallel iterative solver with
an appropriate preconditioner can be used to achieve faster solutions for the linearized system derived
from the nonlinear system. Domain decomposition (DD) methods refer to approaches for solving linear
(or nonlinear) systems arising from PDEs that rely on dividing the domain into smaller sub problems
and concurrently iterating to find a converged solution. They are generally used as preconditioners to
Krylov subspace based solvers because of the inherent parallelism and ability to adapt to complex prob-
lems providing faster convergence. The development of DD has parallelly evolved into two branches
of overlapping and non-overlapping decompositions [11–15]. We utilize an overlapping Schwarz DD
framework to develop efficient preconditioners for the nonlinear system. Newton-Krylov methods lin-
earize the system by using Newton’s iteration and then employ a preconditioned Krylov solver for the
linear system obtained at each step [16, 17]. Other nonlinear preconditioning techniques available in
the literature [18–20] solve nonlinear problems in subdomains with modified preconditioners. These
are mainly suitable when localized nonlinearity cannot be effectively handled by global linearization.
In this paper we use Picard iterations for the nonlinear system followed by a DD-based iterative solver
at each step for simplicity. We find our linearization and preconditioning strategy satisfactory for the
current five-compartment model problem to demonstrate the importance and suitability of DD methods
to compartmental models of COVID-19.

Now, we note below the compelling reasons for applying a DD-based solver for COVID modelling.

• Like their ODE-based counterparts, PDE-based compartmental models can be very fine grained,
accounting for accurate dynamics among populations (see Appendix C). This can be further
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extended to consider different age groups, socio-economic status, vaccination status, and co-
morbidity (e.g., [1]). We note that corresponding spatial and temporal data for these stratifications
could be obtained from private healthcare databases (e.g., [21]). These highly complex coupled
models can be solved efficiently by using an iterative solver equipped with parallel precondition-
ers offered by DD methods.
• The application of the above mentioned five-compartment model with finer spatial and temporal

discretizations covering large geographical areas (including many public health units) involves
system sizes above millions as well as the associated computational cost.
• The inclusion of uncertainty in the model (as in [3, 22]) resulting from considering parameters

as random variables or random fields leads to stochastic PDEs which can be solved by using
sampling (Monte Carlo or quadrature) methods or sampling-free stochastic Galerkin methods
[23]. Slow convergence of Monte Carlo or large stochastic dimensions can increase the number
of deterministic sample evaluations which in turn increases the computational cost for sampling
approaches. Even though DD-based solvers can be utilized for each deterministic evaluation,
parallel overhead may reduce its efficiency. Sampling-free stochastic Galerkin methods demand
solutions of a large linear/nonlinear system of equations for the stochastic PDEs. Depending on
the stochastic discretization (number of input random variables/order of output expansion), the
size of this linear system may grow exponentially which requires scalable parallel solvers built
on DD-based methods (e.g., [24]).
• In the Bayesian inference framework, inverse problems for the estimation of model parameters

requires the forward model to be evaluated numerous times for the computation of the likelihood
function [7]. For a high resolution model with many compartments in which a single forward
evaluation takes hours, this computation could take months to complete. With the highly scalable
and efficient solver developed here, this computational cost can be reduced to days or even hours.
• For a time-dependent nonlinear system of PDEs such as a compartmental model of COVID-19,

different solution strategies can be adopted, such as: (i) discretize in time, linearize and adopt a
linear preconditioner for the iterative solver for the non-symmetric system, (ii) discretize in time
and apply a nonlinear preconditioner [18–20] and (iii) apply a parallel in time method [25]. The
first strategy is adopted in this paper where in an efficient preconditioner for the GMRES iterative
solver is described. In contrast to the conjugate gradient method used for symmetric and positive
definite systems, the convergence criteria of the GMRES algorithm is difficult to establish by
using the spectral information on the coefficient matrix. It is thus important to identify a problem-
specific preconditioner that expedites the convergence and improves scalabilities of the iterative
solver.

To this end, the main contributions of the paper are as follows.

• Development of a parallel scalable solver for the solution of complex compartmental models of
COVID-19 for large geographical areas.
• Scalability studies of the one-level restricted additive Schwarz (RAS) and two-grid Schwarz pre-

conditioner variants in terms of the iteration count and solution time.
• Development of an efficient solver through the use of a two-grid RAS preconditioner for the

nonlinear coupled PDEs. The adapted solver with an algebraic multigrid preconditioning for the
coarse problem reduces the execution time and improves scalabilities. The comprehensive numer-
ical experiments demonstrate the superior performance of this two-grid RAS solver against the
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other variant of the two-grid RAS preconditioner. While the architecture of the preconditioner is
inspired by [26–30], the specific choice of the DD preconditioner with the algebraic multigrid for
the coarse solver is novel, which improves scalabilities with respect to existing two-grid Schwarz
preconditioners for large-scale systems. The multilevel Schwarz method has been proposed in
the literature [31–33]; it uses the hierarchy of coarse spaces with additive or multiplicative cor-
rections in order to construct the preconditioners at each level. The proposed methodology uses
just a two-grid Schwarz method in which the coarse solver leverages the algebraic multigrid as
the preconditioner, thereby permitting multilevel error reduction. While the existing literature
focuses on the elliptic PDEs leading to the symmetric and positive-definite system matrices, we
tackle nonlinear PDEs which translate to solving linearized systems with unsymmetric system
matrices.
• Numerical illustration of a susceptible-exposed-infected-recovered-deceased (SEIRD) model

with spatio-temporally varying infection rate parameters that capture the realistic trends of in-
fection through the region.
• Application of the two-grid RAS-based solver to a large geographical domain of Southern Ontario

with over 92 million unknowns demonstrating the efficiency of the solver in a realistic setting.
• Verification studies for one and two-dimensional compartmental models of COVID-19 through

the use of the method of manufactured solutions (MMS).

We note that this article presents a sub-component needed for the accurate and precise predictive
COVID-19 models through the development of a scalable solver for these models. These models may
contain large numbers of compartments and associated stratifications (as described in Appendix C: 22-
compartment model) which increases the problem size posing challenges for sequential solvers. This
study illustrates the computational benefits of the proposed solver for such comprehensive compart-
mental models (i.e., drastically reducing time-to-solution in a manner that scales well). This computa-
tional efficiency is critical for future work, which will leverage data (from Ontario or elsewhere) and
more sophisticated calibration methods (Bayesian inference) to solve the inverse problem of estimating
the model parameters in a more systematic manner. Without the increase in speed afforded by these
methods, it would be prohibitively expensive to perform such calibration exercises for a system of this
size (or other geographic regions with similarly fine spatial mesh resolution).

The paper is organized as follows. Section 2 introduces the PDE-based compartmental model and
formulation of weak form to which the solver is applied. Sections 3 and 4 briefly cover the basics
of the overlapping Schwarz method, coarse corrections and a new two-grid preconditioner. Section 5
applies the different preconditioners and assesses their relative effectiveness. The selected approach
is then applied to a realistic model of Southern Ontario. The weak form of the equations are given
in Appendix A, the model validation is shown in Appendix B and details on a more complex 22-
compartment PDE-based model are provided in Appendix C.

2. Methodology

2.1. Compartmental model

A compartmental model consisting of SEIRD states is considered. The susceptible compartment is
the population density of individuals who are vulnerable to infection, but have not yet been exposed.
This state acts as the feeding state for infection to spread. The current model does not consider the
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possibility of reinfection after recovery (as we will only consider a single wave of infection); thus
the susceptible compartment decreases monotonically until a steady state is reached. The exposed
and infected compartments consist of people who are the carriers of the virus and who may infect
others. We distinguish between these two compartments by defining exposed as cases that are asymp-
tomatic or cases that end in recovery without being detected, whereas infected accounts for cases that
are positively identified. The spread of infected people is thus considered to be lower due to quar-
antine/isolation measures after detection. The deceased compartment accounts for people who die of
acute COVID-19, and the recovered compartment accounts for all other possible outcomes associated
with COVID-19 infection where the individual survives.

The movement of a population is generally based on assumptions about the behavior of the host
and their interaction with the surrounding environment [34]. A randomly mixing population on the
microscale can be modeled as a diffusion process on the macroscale (see [35], Section 11.1). The
current model assumes a heterogeneous population-dependent diffusion term for the movement of
population in space. Along with diffusion in space, at each time step, the population changes states
according to the interaction between the respective compartments. All model states are functions of
space x and time t. However, we generally omit these in our notations for brevity. The spatio-temporal
evolution of the densities of the susceptible s(x, t), exposed e(x, t), infected i(x, t), recovered r(x, t), and
deceased d(x, t) compartments are described by the following coupled nonlinear PDEs [7, 9, 10].

∂ts = ∇ · (Nν̄S∇s) + αN −
(
1 −

A
N

)
βI si −

(
1 −

A
N

)
βE se − µs (2.1)

∂te = ∇ · (Nν̄E∇e) +

(
1 −

A
N

)
βI si +

(
1 −

A
N

)
βE se − σe − γEe − µe (2.2)

∂ti = ∇ · (Nν̄I∇i) + σe − γRi − γDi − µi (2.3)

∂tr = ∇ · (Nν̄R∇r) + γEe + γRi − µr (2.4)

∂td = γDi, (2.5)

where N is the total population density defined as

N(x, t) = s(x, t) + e(x, t) + i(x, t) + r(x, t) + d(x, t), (2.6)

and ν̄S , ν̄E, ν̄I and ν̄R are the scalar diffusion coefficients dictating the spread of infection in space. The
terms containing α and µ are the population vital dynamics respectively, representing the birth rate and
death rates (excluding deaths caused by COVID-19). Given the time scale, both are considered zero for
the present study. The remaining model parameters are described below in relation to their appearance
in Figure 1, which provides a visual representation of the dynamics described by Eqs (2.1)–(2.5). It
can be noticed that these equations are analogous to a diffusion-reaction model [36, 37]. The diffusion
coefficients ν̄S , ν̄E, ν̄I and ν̄R control the spatial distribution of infection.

Note that the five-compartment model [7, 9, 10] in Figure 1 is a simplified version of the 22-
compartment model shown in Appendix C. As an initial investigation, this five-compartment model
is used to demonstrate the usefullness of the DD-based solvers.
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Figure 1. Five-compartment model (adapted from [7, 9, 10]).

In the equations above, (i) susceptible individuals flow from s to e after being exposed to the disease
by coming into contact with individuals in either the e or i compartments according to the rate param-
eters βE, βI; (ii) individuals in the exposed compartment either move to the infected compartment i if
they are detected according to the rate parameter σ, or if they go undetected, they remain in the e com-
partment for the duration of their infectious period before proceeding to the recovered compartment
at the rate γE; (iii) individuals in the i compartment will proceed to either the recovered r or deceased
compartment d according to the rate parameters γR or γD. The susceptible and exposed compartments
contain a term (1 − A/N), called the Allee effect. For a given value of A, this term enforces higher
transmission rates in locations of higher population density and conversely lower transmission rates
for regions with lower population density.

In general, precise values of these parameters are not known but can be obtained by calibrating the
model using data and prior clinical knowledge. When the domain is isolated (as is the case here), the
total population over the whole domain remains constant in time, but the density may vary through
space and time. The nonlinear coupled PDEs are discretized by using the finite element method,
converting them to a system of linearized algebraic equations as explained in the next section.

2.2. Weak form

The system of Eqs (2.1)–(2.5) can be written concisely as follows [10],

∂tu − ∇ · (ν(u)∇u) = B(u)u, (2.7)

where,

u =


s
e
i
r
d


, ν(u) = N(x, t)


ν̄S 0 0 0 0
0 ν̄E 0 0 0
0 0 ν̄I 0 0
0 0 0 ν̄R 0
0 0 0 0 0


, (2.8)
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B(u) =


α−µ−(1− A

N )βEe−(1− A
N )βIi α α α α

(1− A
N )βI i (1− A

N )βE s−µ−σ−γE 0 0 0
0 σ −γR−γD−µ 0 0
0 γE γR −µ 0
0 0 γD 0 0


. (2.9)

Previous studies involving compartmental models used the backward Euler/implicit method to
model the spread of COVID-19 due to their superior stability properties [7, 10, 38]. Implicit-explicit
(IMEX) time integration schemes have been adopted previously for compartmental models [8], treat-
ing the nonlinear diffusion term implicitly and remaining nonlinear terms explicitly. IMEX schemes
for reaction-diffusion-type problems are prone to erroneous results and can increase the number of
iterations for iterative solvers if not chosen carefully [39, 40]. We note that a finely stratified model
with 22 compartments (or more) [1] (as in Appendix C) will involve complex dynamics with a range of
time scales. Such systems will contain numerous nonlinear terms (often leading to stiff systems) which
can accentuate the errors stemming from explicit treatment of these nonlinear terms [38], consequently
affecting the stability of the IMEX scheme. A discrete time version of this PDE system for the state
vector u can be written by using a backward Euler/implicit method:

un+1 − ∆t(∇ · (ν(un+1)∇un+1)) = un + ∆t (B(un+1)un+1), (2.10)

where un+1 is the solution at time step n + 1, as computed from the solution un(x) ≈ u(x, tn) for the
previous time step. When n = 0, u0(x) is the initial condition to the problem, the weak form of Eq
(2.10) becomes:

(un+1, v) + ∆t(ν(un+1)∇un+1,∇v) − ∆t (B(un+1)un+1, v) − ∆t
∫

ΓN

ν(un+1)∇un+1 · n̂ dΓ = (un, v), (2.11)

where (u, v) =
∫

Ω
u v dx , Ω is the spatial domain, ΓN denotes the boundary where the Neumann

boundary condition is specified and n̂ denotes the unit normal vector to the boundary. A homogeneous
Neumann boundary for the domain enforces a no-flux condition which prevents the migration of a
population across the boundary of the domain. This means complete isolation of the region, which is
representative of restrictions on international/interprovincial travel.

This nonlinear system must be solved by using either Picard iterations or Newton’s method inside
the time discretizations. For simplicity, we chose to apply Picard iteration directly to Eq (2.11). Con-
sider the Picard iteration at the time step n + 1 with the current iteration number k + 1 as follows (note
that the boundary integral in Eq (2.11) vanishes due to homogenous conditions):

(un+1,k+1, v) + ∆t(ν(un+1,k)︸   ︷︷   ︸∇un+1,k+1,∇v) − ∆t (B(un+1,k)︸    ︷︷    ︸ un+1,k+1, v) = (un, v). (2.12)

The initial guess for each iteration at un+1,k=0 is chosen as the solution at the previous time step un.
In the Picard iteration, the nonlinear coefficient terms are treated explicitly by using the solution from
the previous iteration, resulting in a linear approximation at each iteration. Note that the underbraced
coefficient terms in Eq (2.12) depend only on the previous iteration k. Thus the solution to the nonlinear
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coupled PDE system is calculated at each Picard iteration inside each time step through the use of Eq
(2.12).

For the current model, a fully coupled approach involves solving the system of five PDEs in Eq
(2.12) together as a vector of compartments. However, this approach does not significantly improve
the efficiency of the solver due to the weak coupling observed among the compartments after applying
the Picard iteration. Note that the introduction of additional compartments, model stratifications, the
inclusion of uncertainty etc., can affect the system properties. In such cases, it may be necessary to
adopt a fully coupled solution approach and use Newton’s method. The detailed equations involving
the formulation for each compartment is shown in Appendix A. We use triangular elements with linear
interppolation functions for discretization. The linear system assembled from the weak form can be
solved by using Krylov subspace solvers with appropriate preconditioners inside each Picard iteration.
The Picard iteration is assumed to be converged when the error, ε reaches a specified tolerance defined
as:

ε =
‖ un+1,k+1

h − un+1,k
h ‖2

‖ un
h ‖2

, (2.13)

where uh represents the discretized solution vector. The next section introduces DD concepts and the
associated preconditioners to be applied to the above model.

3. Background on overlapping domain decomposition

The DD method is a divide and conquer algorithm that provides fast solutions to computational
models involving PDEs [11]. Independent treatment of each part of a complex domain provides a
naturally parallel formulation for multiphysics and heterogeneous domains. Generally, these methods
are applied as preconditioners to Krylov solvers at the discrete level.

Figure 2. Overlapping domain decomposition.

The two main branches of DD methods, namely overlapping and non-overlapping, are fundamen-
tally distinguished based on whether or not the adjacent subdomains overlap one another. Consider the
domain Ω, illustrated in Figure 2 as the union of two overlapping subdomains where Ω = Ω1∪Ω2 with
the boundary ∂Ω. The subdomain boundaries are ∂Ω1 and ∂Ω2 and the artificial boundary created in-
side each subdomains are Γ1 and Γ2. The overlapping DD method considers subdomains on which the
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solution is sought independently by using artificial boundary values from an adjacent subdomain. The
overlapped regions are then updated by combining the solutions from each subdomain and the process
is repeated to reach convergence of the solution. The method can be sequential or parallel. We present
here briefly the iterative version of an overlapping method for a decomposition into two subdomains.

Consider the Poisson problem of finding the solution u over the domain Ω with homogeneous
boundaries. This problem can be split into independent sub-problems in each subdomain as below
[12–15]:

−∆un+1
i = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un

3−i on Γ3−i.

(3.1)

In the parallel case, finding the solution at the iteration n + 1 on the artificial boundary of the ith

subdomain ui=1,2 involves the previous solution iteration from the adjacent subdomains which allows
the solutions to develop independently. A sequential version on the other hand alternately solves the
subdomains i = 1, 2 by using the updated solution at the current step. The implementation of over-
lapping methods is more straightforward than that for their non-overlapping counterparts, wherein it
is necessary to solve the combined interface problem before tackling the interior nodes of each subdo-
main. Also, the definition of interfacing points can be quite involved especially in higher dimensions
where cross points can appear. Overlapping methods only require consecutive solutions of the origi-
nal problem in smaller subdomains and the exchange of artificial boundary solutions to neighbouring
subdomains. While Schwarz methods can be used as solvers or as preconditioners for the accelerated
convergence of Krylov solvers, they are seldom used as solvers due to their slow convergence com-
pared to Krylov solvers. Preconditioners are operators applied to coefficient matrices transforming
them to have favourable properties of convergence for iterative solvers [41, 42]. This transformation,
in general alters the spectral properties and conditions the coefficient matrix. We briefly discuss two
main types of preconditioners used in the literature in a discrete framework [12].

The additive Schwarz method (ASM) relies on local solutions in subdomains which are then assem-
bled globally as follows [12]:

M−1
ASM =

N∑
i=1

RT
i (RiART

i )−1Ri, (3.2)

where A represents the linearized coefficient matrix assembled inside each Picard iteration for each
time step, Ri represents the restriction operator transferring the solution vector on global mesh to the
local subdomain level and RT

i is the extension matrix reversing the operation. The ASM exchanges
information between subdomains without taking into account the redundancies in the overlap. For this
reason, this can only be used as a preconditioner, since its iterative counterpart does not converge to the
true solution. It can be noted that the preconditioner formed is symmetric. The RAS preconditioner is
defined as follows [12]:

M−1
RAS =

N∑
i=1

RT
i Di(RiART

i )−1Ri, (3.3)
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where Di denotes the Boolean square matrices called partition of unity matrices such that Id =∑N
i=1 RT

i DiRi. The partition of unity matrices scale the residuals so that consistent contributions from
each subdomain are only added. These preconditioners are not assembled explicitly, as a series of steps
replicating their action are applied, i.e., matrix-vector computations and local linear solves. The global
residual computed is distributed to the local subdomain and a local Dirichlet problem is solved. This
solution is combined by using the partition of unity matrices for all subdomains. Both RAS and ASM
solve for the increment/correction to the solution for all subdomains before combining them appropri-
ately. ASM and RAS differ only in the way these corrections are combined. We use the RAS-based
preconditioners since it provides faster convergence than its counterpart.

3.1. Coarse corrections

(a) Fine grid with 10 subdomains (b) Coarse grid with 10 subdomains

Figure 3. Finite element mesh with overlapping subdomains (overlap highlighted in white).

One-level methods only communicate and exchange information with adjacent subdomains. This
strategy is effective in reducing the high frequency component of error. When the number of sub-
domains is large, one-level methods converge slowly due to significant low-frequency components of
error. The efficient global exchange of information among subdomains can be used to reduce the low-
frequency component of error which enhances scalability. This is achieved by using two-grid methods
with coarse corrections [12].

A coarse space correction is constructed to remove the low-frequency component of the error due to
small eigenvalues in the one-level preconditioned matrix. Intuitively, these components represent con-
stant functions for a Poisson problem or rigid body modes for elasticity [12]. For a complex problem,
where simple representation of the coarse space components is not available, a simple solution is to use
a coarser triangulation from which the fine grid is constructed by refinement leading to a grid-based
coarse space. In what follows, we will explain how the coarse correction matrix is built for a grid-based
coarse space.

Figure 3 shows a square domain with overlapping subdomains and an underlying finite element
mesh. We construct a rectangular matrix Z of size n × nc which is an interpolation operator from a
coarse to fine grid, where n is the total number of degrees of freedom and nc is the number of coarse
degrees of freedom. A coarse matrix Ac = R0ART

0 is constructed using the Galerkin projection where
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R0 = ZT or by directly assembling the given PDE in the coarse grid. An additive coarse correction
constructed from this coarse grid is applied to the one-level preconditioner in Eq (3.3) as follows [12]:

M−1
2 = M−1

RAS + Q, (3.4)

where Q = RT
0 A−1

c R0 is the global coarse correction. Other variants such as deflated and hybrid
forms of corrections can also be applied to obtain favourable properties [30]. Multiplicative correc-
tions update the residual in between various levels providing a better convergence rate than additive
corrections [14].

4. Two-grid Schwarz preconditioners

This section describes the two-grid Schwarz preconditioners constructed by combining the above-
described one-level methods and coarse space corrections. We utilize the multilevel parallel imple-
mentational architechture from PETSc [43] (more implementational details in Section 4.1) to construct
a two-grid preconditioner with multiplicative corrections. A three-step correction is applied with a
one-level RAS preconditioner as a pre-smoother, post-smoother and coarse grid correction in between
them. A combination of these three corrections applied at different levels (fine-coarse-fine) can be used
to construct the two-grid preconditioner as below.

Consider three preconditioners P1,P2,P3 applied to the system as a pre-smoother, coarse correction,
and post-smoother respectively as follows [30],

ui+1/3 = ui + P1(f − Aui) (4.1)
ui+2/3 = ui+1/3 + P2(f − Aui+1/3) (4.2)

ui+1 = ui+2/3 + P3(f − Aui+2/3). (4.3)

Substituting Eq (4.1) into Eq (4.2) and further Eq (4.2) into Eq (4.3) gives us,

ui+2/3 = ui + (P1 + P2 − P2AP1)︸                  ︷︷                  ︸
P4

(f − Aui) (4.4)

ui+1 = ui + (P4 + P3 − P3AP4)︸                  ︷︷                  ︸
P5

(f − Aui), (4.5)

where P5 is our desired preconditioner expanded as,

P5 = P1 + P2 + P3 − P2AP1 − P3AP1 − P3AP2 + P3AP3AP1. (4.6)

Using P1 = P3 = M−1
RAS and P2 = Q, the final two-grid preconditioner can be written as,

M−1
2 = M−1

RASP + QPQ−1M−1
RAS + Q −M−1

RASPAM−1
RAS, (4.7)

where P = (I − AQ) is the projection matrix. The residual is recalculated at each level by using an
updated solution which results in multiplicative corrections. The restriction and interpolation operators
are R0 and RT

0 respectively as defined earlier.
For the two-grid preconditioner above, it is evident that the coarse problem has the same structure as

the original problem; hence it can be constructed just by using an interpolation operator from the orig-
inal system matrix. It also couples all of the subdomains enabling global error propagation. However,
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for very large meshes, the system size grows rendering the solution of the coarse problem computation-
ally expensive using a direct solver. In these cases, it is useful to adopt a preconditioner to iteratively
solve the coarse problem A−1

c in the coarse correction Q effectively to reduce the execution time and
memory requirement. To this end, we adopt two choices: (i) a one-level RAS preconditioner as in Eq
(3.3); (ii) an algebraic multigrid (AMG) V-cycle preconditioner [44]. Through numerical experiments,
we demonstrate that the AMG preconditioner is more effective than the one-level RAS preconditioner.
Next, we briefly explain the multigrid method relevant to the problem.

Multigrid methods offer hierarchy of grids (geometric or algebraic) through which errors are itera-
tively reduced [44–47]. The error in the iterative solution is decomposed into geometrically oscillatory
and non-oscillatory parts. By utilizing a simple and cheap solver/smoother, highly oscillatory compo-
nents of the errors are removed through a smoothing/relaxation step. The remaining non-oscillatory
errors in the fine grid are corrected by using a coarse grid. The advantage lies in the fact that geo-
metrically smooth errors in the fine grid become oscillatory in the coarse grid, and are then removed
easily. After solving for the error in the coarse grid they are interpolated back to the fine grid to correct
the solution [45]. Following the same steps repeatedly in cycles on these grids reduces the errors to
required precision. Algebraic multigrids work on the same principle but do not depend on geometric
information on the grid for error reduction [44]. This is useful for complex domains with unstructured
meshes where the construction of the coarse grid is difficult. In an AMG, the coarse level is constructed
by analyzing each entry in the coefficient matrix and selecting a specific subset of elements with the
greatest contribution to the solution compared to their neighbours [48, 49]. Using such a multi-level
preconditioner for coarse grid solvers improves the scalability of the two-grid RAS solver of the origi-
nal system.

The linearized system at each Picard iteration is solved by using the GMRES iterative solver and
associated preconditioners. Next we point out the different variants of the one-level and two-grid
preconditioners and their notations used in this work.

• One-level RAS: one-level RAS preconditioner as in Eq (3.3).
• Two-grid RAS: two-grid RAS preconditioner with a coarse problem solved by the direct solver

(LU factorization).
• Two-grid RAS - V2: two-grid RAS preconditioner with a coarse problem solved by using a

GMRES iterative solver equipped with a RAS preconditioner.
• Two-grid RAS - V3: two-grid RAS preconditioner with a coarse problem solved by using a

GMRES with an AMG preconditioner.

Note that the application of a two-grid preconditioner for the coarse solver in the two-grid precon-
ditioners is avoided due to the complexity of constructing coarser levels and associated interpolation
operators among them. The time taken for the construction of preconditioners in this case may not be
able to offset the reduction in solution time achieved. In contrast, the two-grid RAS - V3 efficiently
handles this by avoiding the use of grids in the construction of the coarse level preconditioner as is
made evident by numerical experiments later.

4.1. Implementational details

All numerical experiments were carried out in FreeFEM [50] integrated with PETSc [43]. The codes
are downloadable from https://bitbucket.org/sudhipv/mbe covid. The correspondence among the code
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and relevant equations is detailed on the README.md file in the repository. The two-grid variants
of preconditioners differ only in the coarse solver. The preconditioner architecture is implemented by
using a single V-cycle multigrid framework from PETSc. The two-grid RAS-V3 makes use of HYPRE
[51] which is available through PETSc which runs BoomerAMG [52] as preconditioner for the coarse
solver. This multilevel coarse solver adopts a V-cycle with Jacobi smoother and Gaussian elimination
for coarse correction [43, 44]. This was specifically chosen to address the convergence bottleneck
for high-resolution models. A minimum overlap is used for RAS algorithms in all cases as depicted
in Figure 3. All preconditioners are used within the GMRES solver with the right preconditioning
since it calculates the true residual norm in contrast to the preconditioned residual norm as in the
left preconditioned systems. This permits a direct comparison of residuals among different methods
[41, 43]. The stopping criteria for the Krylov solver (GMRES) follow PETSc implementations [43]
which are based on (a) the absolute residual norm, atol (set as 10−50), (b) the decrement of the residual
l2 norm relative to the l2 norm of the right-hand side, rtol (set as 10−5), and (c) the relative increment in
residual, dtol (set as 105). The convergence and divergence in any iteration j is established respectively
as follows:

‖ r j ‖2 < max (rtol × ‖ b ‖2, atol) (4.8)
‖ r j ‖2 > max (dtol × ‖ b ‖2) (4.9)

where r j denotes the residual at the jth iteration of the GMRES solver and the right-hand vector b. Apart
from this, the maximum number of outer and inner (coarse) Krylov iterations for two-grid solvers
were restricted to 200 and 100 respectively. In cases where an inner GMRES solver is used, the
outer solver is modified to use the Flexible GMRES (FGMRES) algorithm [53] which permits changes
in the preconditioning at every step. A detailed comparison of preconditioned Krylov methods for
nonsymmetric systems relevant to this study can be found in [54].

In high performance computing (HPC) terminology, a process (or task) refers to an instance of the
data parallel program that is delegated to a specific core. In our implementation, the computational
domain is divided into several overlapping subdomains by using DD. The DD algorithm lends itself to
a data parallel program which utilizes Message Passing Interface (MPI) libraries to exploit distributed
memory machines (linux clusters) maintained by Digital Research Alliance of Canada [55] such as
Beluga [56] or Niagara [57]. In these machines, each computational node consists of 40 Intel Skylake
cores running at 2.4 GHz connected through an EDR infiniband network. In our parallel implementa-
tion, the MPI initializes the same number of tasks/processes as the number of cores giving exactly one
task per core called a pure distributed-memory program [58]. Although no hybrid parallelism is used in
the current investigation, it can be implemented by delegating subdomain (local) solves to accelerators
such as graphics processing units.

5. Numerical experiments

This section applies the preconditioners mentioned in the previous section to solve the linearized
system in Eq (2.12) at each Picard iteration for all time steps. With five compartments, the total number
of unknowns becomes five times the number of degrees of freedom for the finite element mesh. The
coarse grid is nested inside the fine grid, with a splitting ratio of two for a fine-to-coarse grid. One-
level and two-grid preconditioners are compared by using their average number of Picard and GMRES
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iterations and total time-to-solution for a square domain. The numerical and parallel scalabilities for
each case were studied to select the most suitable preconditioner. This preconditioner has been applied
to a large geographical domain of Southern Ontario to demonstrate the scalibility of the solver in a
realistic setting. The parameter values used in each of the numerical experiments are shown in Table 1.
We denote the units of a population as ‘people’, time in ‘days’ and length in ‘km’. The initial ratio
of exposed to infected population was assumed to be 1 : 1 (50 % detection was assumed). The
time step for all experiments was fixed at 0.1 days based on converged solutions with fine spatial
discretizations. We have explicitly demonstrated temporal and spatial convergence properties of the
one- dimensional model in Section B.2. We used the order of accuracy criteria (see Eqs (B.1)–(B.6))
to test the convergence and the theoretical order of accuracy (for both spatial and temporal scales) was
retrieved from the numerical models in Tables B2 and B3. Considering the two-dimensional square
domain model, the spatial and temporal grid convergence studies were also conducted but not shown
for brevity. Using the MMS, we have plotted the sum of relative error for all compartments (see Eq
(B.7)) over time in Figure B2e. Under the condition of small diffusion, a comparison of time traces of
compartments for PDE-based compartmental model against an ODE-based SEIRD model is plotted in
Figure B3. For the domain of Southern Ontario, spatial and temporal grid convergence studies were
also conducted but the results are not shown for brevity.

Table 1. Parameter values used in numerical experiments. The values for Section 5.1 are
from [7]. The parameters for Section 5.2 were obtained by manual tuning.

Parameter Square domain Southern Ontario Units
(Section 5.1) (Section 5.2)

A 500 8.9 × 10−3 people
km2

βI , βE 3.78 × 10−4 Eq (5.3) km2

people×days

νS , νE, νR 3.94 × 10−6 4.5 × 10−7 km4

people×days

νI 10−8 10−9 km4

people×days

γR 1/24 1/11 1
days

γD 1/160 1/750 1
days

σ 1/7 1/5 1
days

γE 1/6 1/15 1
days

5.1. Comparison of preconditioners

For numerical investigation, a unit square domain with a uniform total population density of N =

2000 people
km2 was selected. A Gaussian function models the initial infected population at the center of

domain as:
i(x, y) = 0.1N exp

(
−10

[
(x − 0.5)2 + (y − 0.5)2

])
, (5.1)

where N represents the total population density. The densities of compartments e, r and d were initially
set to zero. The susceptible density s is calculated by subtracting the known densities from total density.
The domain is discretized in space by using triangular elements and backward Euler discretization is
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used for temporal discretization. The error tolerance for the Picard iteration was set to 10−8. The time
traces of all compartments averaged over the entire domain and the contour plot for infected density at
10 days is shown in Figure 4.
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(a) Integrated solution over entire domain with time (b) Infected density at 10 days

Figure 4. The case of the square domain.

Table 2 shows the time taken and iteration counts for various cases as obtained by using a fine mesh
of size 4000 × 4000 solved using 600 processes. We report the time-to-solution for 10 time steps for
comparison. In the decoupled approach, since all compartments are solved separately inside Picard
iterations, the Krylov solver iteration counts are calculated as the sum of all five compartments. The
Picard iteration counts and the Krylov solver iteration counts are reported as the averaged value over
all time steps. The Picard iteration counts do not change from one level and two-grid versions of
the RAS preconditioners. However, the number of Krylov iterations reduces drastically for two-grid
methods. As the system size grows, the convergence rate decreases for one-level methods which can
only be compensated with a coarse solver enabling global error propagation. Comparing two-grid
methods, the time taken to solve 10 steps is lowest for RAS-V3, followed closely by RAS-V2. The
direct factorization of the two-grid RAS consumes more time than its counterparts which increases the
execution time. It is interesting to note the shorter time for one-level RAS than two-grid RAS which
demonstrates the importance of optimizing the coarse solver. We also note that the reported parameters
for two-grid solvers do not change in time significantly; and that the selected duration represents the
average behaviour. The numerical studies conducted using time steps of 0.05 days, 0.1 days, and
0.2 days (not shown in manuscript) indicated that the Picard iteration counts decrease with smaller
time steps but the iteration counts of the preconditioned GMRES solver remain unchanged [59]. This
demonstrates that the preconditioner is insensitive to time steps in the current model.
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Table 2. Comparison of various precondtioners for a fine mesh size of 4000 × 4000.

Variants

Average
Number of

Krylov
iterations

Average
Picard

iteration
count

Time taken
for 10 steps

(s)

One-level RAS 3399 4 868
Two-grid RAS 21 4 1308
Two-grid RAS - V2 26 4 530
Two-grid RAS - V3 21 4 434

After preliminary analysis, we selected the two-grid variants RAS-V2 and RAS-V3 to perform fur-
ther scalability studies using the same square domain and the same model parameters. The strong
parallel and strong numerical scalabilities are measured by the execution time and the Krylov solver
iteration counts respectively to solve a fixed problem with an increasing number of subdomains. A
higher level of parallelization decreases the execution time demonstrating strong parallel scalability.
Constant iteration counts with increasing processes shows the numerical scalability. However, a stag-
nation point is reached when the interprocessor communication time overwhelms the floating point
operation time and it is no longer suitable to increase the number of processes. For the fixed fine mesh,
the number of processes/subdomains are increased from 80 to 600. We have plotted the preconditioner
setup time and system solve time which are fully parallelizable. The simulation involves 10 time steps.
Figure 5a shows the reduction in time for variants RAS-V2 and RAS-V3 with increasing processes.
For a large number of subdomains/processes, both RAS-V2 and RAS-V3 have minimal difference
in the time-to-solution. Even though iteration counts are constant with increasing processes for both
RAS-V2 and RAS-V3, RAS-V2 takes higher iterations for convergence (see Figure 5b).

Weak parallel and weak numerical scalabilities are related to a nearly constant execution time and
constant Krylov iteration counts respectively for a constant problem size per subdomain with increasing
the number of processes. Hence the total problem size is increased along with number of processes.
Figure 5c and 5d show the parallel and numerical scalabilities of both two-grid preconditioners. The
system size is shown on the right y axis of Figure 5c. As the problem size increases, the execution
time for RAS-V2 increases significantly, but the execution time for RAS-V3 remains nearly constant
in Figure 5c. From the perspective of numerical scalability, note that outer iteration counts are the
same for RAS-V3 and RAS-V2 for all processes, with the exception of a slight increase observed for
RAS-V2 (see Figure 5d).

The degraded performance of the RAS-V2 can be attributed to the coarse solver. It is found that
the coarse solver for the RAS-V2 preconditioner requires more than 100 iterations to reach a specified
tolerance for some compartments (e.g., susceptible, exposed) while RAS-V3 converges in less than 10
iterations. This increased coarse solver iterations at each outer Krylov iteration drastically increases
the execution time for RAS-V2. This performance degradation of RAS-V2 becomes severe with an
increase in the size of coarse grid. On the other hand, RAS-V3 shows excellent scalability having
constant iteration counts at fine and coarse levels. This is due to the multiple levels of error reduction
in the coarse solver, as obtained by using the AMG preconditioner, leading to better convergence
behaviour.
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Next, we demonstrate the performance of the RAS-V3 preconditioner, including the speedup and
the efficiency of the solver. The speedup is defined as the ratio of the sequential solve time to the
parallel solve time and the efficiency is the ratio of speedup and the number of processes [13, 14]. For
the fixed problem size of 80 million, a minimum of 80 cores are needed to solve the system. Figure 6
shows the preconditioner setup and solve times associated with the two-grid RAS-V3 preconditioner
with the same problem size as shown in Figure 5. Figure 7 demonstrates the speedup achieved while
increasing the number of processes from 80 to 600 with an efficiency of 95.5%. In Figure 6b, note that
the execution time remains nearly constant as the number of process is increased to 640 for the fixed
problem size/core of 0.5 million which demonstrates the weak scalability of the algorithm. These re-
sults clearly highlight the scalability of the RAS-V3 preconditioner against problem size and processes
(subdomains).
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Figure 5. Scalability for two-grid RAS versions.
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Figure 6. PC setup (blue) and solve times (orange) - Two-grid RAS-V3.
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5.2. Application: Southern Ontario

In this section we apply the two-grid RAS - V3 preconditioner to the region of Southern Ontario.
This region, consisting of 27 Public Health Units (PHUs), is densely populated, accounting for 95%
of the population of the province of Ontario, while only occupying approximately 13% of area [60].
The public data on COVID-19 statistics from these PHUs can help to infer the status of COVID-19
infections in time and space. We utilized the open source software QGIS [61] to define the geographical
boundaries and generate a mesh file [62]. The meshed domain was then subdivided into different
subdomains for the domain decomposition solver. The mesh of Southern Ontario subdivided into 200
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subdomains is shown in Figure 8 (overlapping parts not shown for clarity). Note that these subdomains
do not correspond to the aforementioned PHUs. The initial conditions were obtained from publicly
reported testing data on September 1, 2020. We generated the densities of each compartment as a sum
of 27 Gaussian pulses, centered at the main city of each PHU (following a similar approach as [7]):

s(x, 0) =

27∑
i=1

Ai exp
[ (x − xi)2 + (y − yi)2

2B2
i

]
, (5.2)

where each (xi, yi) denotes the coordinates of the cities, and Bi represents the radius around (xi, yi)
which captures 95 % of the population of the ith PHU. The value of Ai is a constant which ensures
that the integral of the two dimensional function over the entire domain equals to the total number of
people in the respective compartment for that PHU.

Windsor

Toronto

Ottawa

Figure 8. Southern Ontario subdivided in to 200 subdomains.

The parameters reported for the Southern Ontario case involved a two-step manual tuning. First,
an ODE-based SEIRD model was initialized with the values used for the square domain. The time-
invariant rate parameters γE = 1/15 days, σ = 1/5 days, γR = 1/11 days and γD = 1/750 days
(summarized in Table 1) were then obtained by manually adjusting these parameters until satisfactory
agreement was achieved between the models output and the reported statistics for active cases and
deaths for the six-month period from September 1, 2020 to February 28, 2021 (representing the sec-
ond wave of infection in the province [63]). Second, using the PDE model with negligible diffusion
(νs, νe, νi, νr), the parameters βE and βI were tuned to match the integrated model output with the aggre-
gated case counts for all PHUs in Southern Ontario. Then, the diffusion coefficients were made to be
non-zero to allow for the modelling of the localized spatial interaction/spread of the different compart-
ments. It was assumed that the diffusion among susceptible, exposed and recovered persons would be
similar. However, the diffusion of infectious individuals was expected to be lower due to self-isolation
restrictions. An iterative process was used wherein the diffusion coefficients were adjusted to encour-
age sufficient mixing of the population within the city without causing significant inter-city population
movement. Then the infection rate parameters βE and βI and the Allee parameter A were adjusted by
trial and error until the results shown in Figure 9 were achieved.

We have defined the infection rate parameters βi(x, t) and βe(x, t) as sigmoid functions in time to
mimic the sudden reduction in disease transmission following the provincial lockdown after the 2020
holiday season as shown in Figure 9a. Furthermore, we subdivided the domain of Southern Ontario
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into western, central and eastern regions as in Figure 9b. The central region contains many PHUs with
large populations in close proximity to one another. This region is separated from the larger population
centers in the eastern and western regions of the province by large areas of low population density. In
order to capture this spatiotemporal variation of the infection rate, we assume:

βi(x, t) = βe(x, t) =

(
0.101 −

0.05
1 + exp(130−t)

)
︸                        ︷︷                        ︸

β(t)

β(x), (5.3)

where,

β(x) = βcentral +
βeastern − βcentral

(1 + exp−5(x−xeastern))
+

βwestern − βcentral

(1 + exp10(x−xwestern))
, (5.4)

with xeastern and xwestern denoting the longitudinal boundaries separating the eastern from the central
region and the central from the western region of the domain, respectively. Similarly βeastern, βcentral and
βwestern are the infection rates in the corresponding regions. In Eq (5.4), we model the spatial variation
for βi(x, t) and βe(x, t) along the longitude x, but they are invariant along the latitude y.
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Figure 9. The spatiotemporal variation of infection rate for Southern Ontario.

Figure 10 shows the averaged infected population counts for different regions against the reported
field data. The contour plots in Figures 11 and 12 show the interaction of the populations of adjacent
PHUs in the central region (containing the densely populated Greater Toronto and Hamilton areas)
as the case counts increase. We can observe similar growth in the number of infections in the more
isolated regions of Windsor in the western region as well as Ottawa in the eastern region. The use of a
heterogeneous population density-dependent diffusion coefficients permit the mixing of the population
at a relatively local scale within individual PHUs and with adjacent PHUs in high density regions. This
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does not permit a realistic account of the spread of the disease among the population centers that are
separated by regions of low density. In this case, more sophisticated methods such as that in [22], which
uses kinetic transport equations to model commuters and diffusion to model non-commuters, or [8]
which defines an anisotropic diffusion coefficient according to various geographical features (such as
highway networks, rivers and mountains) would be required. A more rigorous framework would model
the effects of human mobility patterns (e.g., [6, 64]) to reflect the spatial spread. Note that the spatial
variability in COVID-19 incidence rates can be related to various social and economic parameters
(e.g., [5] and [64]), which can be captured in the model by including much finer stratifications of age,
socio-economic status etc. as described in [1]. Although these stratifications are not included in the
current model, an extensive 22-compartment model is proposed for future studies (see Appendix C).
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(c) Central Ontario
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Figure 10. Comparison of simulation results and reported case counts from Sep. 1, 2020 to
Feb. 28, 2021.
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(a) Infected - initial state (b) Infected - 50 days (c) Infected - 120 days (d) Infected - 180 days

Figure 11. Infected densities in Southern Ontario.

(a) Deceased - initial state (b) Deceased - 100 days (c) Deceased - 150 days (d) Deceased - 180 days

Figure 12. Deceased densities in Southern Ontario.

To demonstrate the scalability of the solver for a realistic case involving Southern Ontario, we var-
ied the problem size from 47.69 to 186.57 million. Figure 13a demonstrates the reduction in time to
solution for a problem size of 186.57 million with an increasing number of processes. Using 800 pro-
cesses as the reference we can calculate the speedup and efficiency. Sub-linear speedup was observed
as we increased the number of processes to 1600 with an efficiency of 92.1% which then decreased
to 74.7% using 3200 processes. The decreased efficiency using 3200 processes is due to the parallel
overhead stemming from the communication cost, as incurred by using a large number of processes.
For weak scalability in Figure 13b, the problem size was increased from 47.69 to 186.57 million with
a corresponding increase in the number of processes from 800 to 3200. The moderate increase in the
execution time again can be attributed to the increased communication cost.

Extrapolating the results in Figure 13a to a single core, the simulation time for three months with
a problem size of 186.57 million can be approximated by using a time step of 0.1 days as follows,
t1 = 1330

10 ×
800
1 ×

3×30
0.1 ×

1
3600×24 = 1108.3 days. However, with 3200 processes this time could be reduced

to, t3200 = 445.1
10 ×

3×30
0.1 ×

1
3600×24 = 0.46365 days = 11.128 hours. Hence, the speedup can be computed

as 1108.3/0.46365 = 2390.3 with an efficiency of 2390.3/3200 = 74.7%. These values demonstrate
the savings in computational cost by utilizing DD-based solvers instead of a sequential solver.
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(a) Strong scalability (b) Weak scalability

Figure 13. Scalability using domain of Southern Ontario for 10 time steps (PC setup in blue
and solve in red).

Here, we have only employed deterministic modelling with constant parameters showing the ex-
cellent scalability of DD-based preconditioners. However, model parameters like the infection rate,
the diffusion coefficient, recovery rates etc., as well as initial conditions of the system are not pre-
cisely known. Moreover, error in modelling and noise in the data could also be taken into account
by using a stochastic error term. It is thus important to consider a stochastic model to calibrate and
reliably predict the infections with uncertainty bounds. The increased dimensionality and increase in
time taken for likelihood evaluations with the sampling approach could be effectively reduced by using
the sampling-free approaches and DD-based solvers [65–67]. Details on future works that extend this
five-compartment model to the 22-compartment model and apply the state of the art Bayesian inference
algorithms for reliable predictions are provided in [1].

6. Conclusions

A PDE-based compartmental model for COVID-19 is essential for continuous space-time trace of
infections. For high resolution meshes, finely stratified compartmental models can drastically increase
the computational requisite needed to accurately capture the disease dynamics. In this investigation,
a DD-based parallel scalable iterative solver was developed to enhance the computational efficacy of
these complex models. A two-grid RAS preconditioner equipped with an algebraic multigrid pre-
conditioner for the coarse solver provides excellent scalability. A five-compartment SEIRD model of
COVID-19 for a large geographical domain of Southern Ontario has been used to demonstrate the scal-
ability of the solver in a realistic setting. The solver is capable of simulating the infections for a period
of up to three months for a problem size of 186.57 million within 12 hours when using 3200 pro-
cesses, thereby saving orders of magnitude computational time as compared to conventional sequential
solvers.
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Appendix

A. Details of weak form

The bilinear form of Eq (2.12) is explicitly written for each of the compartments by using a de-
coupled approach below. This approximation of handling each PDE seperately works best for weakly
coupled systems. This approach has advantages for a stochastic extension of a sampling-free method
for uncertainty quantification [24] whereby each scalar PDE is transformed into a coupled set of deter-
ministic PDEs. More elaborate studies on this aspect is a subject of future research. Note that we have
ignored α and µ terms in the formulations below since their values are considered to be zero for the
current study, although their inclusion is straightforward. We define the different indices as follows:

1) n + 1: current time step,
2) n: previous time step,
3) k + 1: current Picard iteration number and
4) k: previous Picard iteration number.

The weak form for the SEIRD compartmental model can be written as follows:
Susceptible

(sn+1,k+1, φS ) + ∆t
(
(1 −

A
Nn+1,k )βI sn+1,k+1in+1,k, φS

)
+ ∆t

(
(1 −

A
Nn+1,k )βE sn+1,k+1en+1,k, φS

)
+ ∆t

(
Nn+1,kν̄S∇sn+1,k+1,∇φS

)
= (sn, φS ) (A.1)

Exposed

(en+1,k+1, φE) − ∆t
(
(1 −

A
Nn+1,k )βE sn+1,k+1en+1,k+1, φE

)
+ ∆t

(
(σ + γE)en+1,k+1, φE

)
+ ∆t

(
Nn+1,kν̄E∇en+1,k+1,∇φE

)
= (en, φE) + ∆t

(
(1 −

A
Nn+1,k )βI sn+1,k+1in+1,k, φE

)
(A.2)

Infected

(in+1,k+1, φI) + ∆t
(
(γD + γR)in+1,k+1, φI

)
+ ∆t

(
Nn+1,kν̄I∇in+1,k+1,∇φI

)
= (in, φI) + ∆t

(
σen+1,k+1, φI

)
(A.3)

Recovered

(rn+1,k+1, φR) + ∆t
(
Nn+1,kν̄R∇rn+1,k+1,∇φR

)
= (rn, φR) + ∆t

(
γRin+1,k+1, φR

)
+ ∆t

(
γEen+1,k+1, φR

)
(A.4)
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Deceased

(dn+1,k+1, φD) = (dn, φD) + ∆t
(
γD in+1,k+1, φD

)
, (A.5)

where φS , φE, φI , φR and φD are the test functions for each compartments. Note that once the solution
is obtained for a particular (e.g., susceptible) compartment at the iteration k + 1, its updated value can
be used in the calculations of the other compartments. This has been used to improve the convergence
rate of the algorithm [7].

B. Model verification

The SEIRD compartmental model can be verified by using the process of the method of manu-
factured solutions (MMS). Convergence of the finite element solutions with increasing discretizations
in space and time are studied. This process is applied to both one-dimensional and two-dimensional
models. Validation of the model is conducted by comparing the spatially averaged PDE solution to an
ODE model which provides a time trace of aggregated infection over a region.

B.1. Method of manufactured solutions

MMS is a process of generating analytical solutions to mathematical models of a system to verify
the numerical solutions [68,69]. This approach can help to detect errors in numerical implementations
and solution accuracy. Mathematical models of many physical processes do not have exact analyti-
cal solutions; and hence, numerical methods are used to obtain solutions. The MMS can verify the
numerical solution through the manufactured solution. A compatible forcing function to generate the
manufactured solution is then found by solving the model backwards. This forcing function is used to
generate the numerical solutions and their accuracy can be verified through the manufactured solutions.

Typically, three different acceptance criteria for the test can be used, namely the percentage error,
consistency, and order of accuracy. Consistency ensures that the discretization error decreases to zero
as the grid size tends to zero [68]. However, it is not feasible to test this aspect since reducing the
grid size to zero is computationally impractical. The order of accuracy criterion checks for consistency
and calculates the order in which the error decreases. The observed order of accuracy, ps for spatial
discretization and pt for temporal refinement are calculated as follows [68]:

Egrid1,s ≈ Cs∆hp (B.1)
Egrid2,s ≈ Cs(∆h/rs)p (B.2)
Egrid1,t ≈ Ct∆tp (B.3)
Egrid2,t ≈ Ct(∆t/rt)p (B.4)

ps ≈
log

(Egrid1,s

Egrid2,s

)
log(rs)

(B.5)

pt ≈
log

(Egrid1,t

Egrid2,t

)
log(rt)

(B.6)
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where Egrid1,s, Egrid2,s, Egrid1,t and Egrid2,t are the error in discretization for grid 1 and grid 2 in spatial
and temporal scales respectively, ∆h is the grid spacing, ∆t is the time step, rs and rt are the refinement
ratios which dictate the amount of refinement in spatial and temporal discretizations, respectively, and
Cs and Ct are the constants independent of ∆h and ∆t. The theoretical order of accuracy for a triangular
element with linear interpolation functions can be estimated to be two [70]. Similarly, the temporal
order of accuracy for the backward Euler implicit scheme can be computed as one [71]. We test
our numerical solutions to retain the theoretical order of accuracy as obtained from the interpolation
functions and temporal discretization scheme. The relative error εα for any given compartment α =

s, e, i, r, d is calculated as:

εα =
‖ u − uh ‖2

‖ u ‖2
(B.7)

where u, uh are the true solution and its finite element counterpart for a compartment respectively.
Hence, the total relative error can be computed as the sum of all individual compartments.

B.2. One-dimensional model

The order of accuracy in spatial and temporal dimensions for a simple one-dimensional SEIRD
model is examined in this section. The manufactured solutions for each compartment is expressed as
follows:

s = B sin(10x + 0.2t) + AS (B.8)
e = B sin(10x + 0.2t) + AE (B.9)
i = B sin(10x + 0.2t) + AI (B.10)
r = B sin(10x + 0.2t) + AR (B.11)
d = B sin(10x + 0.2t) + AD, (B.12)

where B = 25, AS = 500, AE = 300, AI = 200, AR = 100 and AD = 80 are the constant parameter
values.

Table B1. Parameter values used for one dimensional model [10].

Parameter Value Units
A 0 people
βI , βE 0.01 1

people×days

νS , νR 4.5 × 10−5 1
people×days

νE 10−3 1
people×days

νI 10−10 1
people×days

γR 1/24 1
days

γD 1/160 1
days

σ 1/8 1
days

γE 1/6 1
days
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The model parameters used are given in Table B1. Note that the domain is normalized by dividing
with the original length as X̂ = x/L which is also reflected in the units. The initial conditions and
Dirichlet boundary conditions on both ends are derived from the manufactured solution. Since the
model involves both spatial and temporal discretizations, it is important to remove the error caused
by one discretization on the other. Thus we chose a sufficiently small time step of ∆t = 10−5 days
to remove any error propagating from the temporal scale while computing the order of the accuracy
in the spatial scale, ps as shown in Table B2. Similarly we fixed the characteristic element length
∆h = 2 × 10−4 and calculated the error at 5 days to estimate the order of accuracy in the temporal
scale, pt as in Table B3. Note from Tables B2 and B3 that the estimated accuracies of spatial and
temporal discretizations were close to 2 and 1 as expected from theoretical considerations. Figures B1
demonstrates that the numerical solutions and manufactured solutions match closely both in space and
time with ∆h = 0.0005 and ∆t = 0.1 days.

Table B2. Order of accuracy in spatial discretization for one-dimensional model.

∆h (Characteristic element length) Error at 0.002 days Order of Accuracy (ps)

0.05 0.01289
0.02 0.00208 1.9920
0.01 0.00052 1.9985
0.002 2.0809 × 10−5 1.9998
0.001 5.2025 × 10−6 1.9999
0.0005 1.3008 × 10−6 1.9998
0.0002 2.0842 × 10−7 1.9985

Table B3. Order of accuracy in temporal discretization for one-dimensional model.

∆t (Time step) Error at 5 days Order of Accuracy (pt)

0.1 0.00374
0.01 0.00037 0.9995
0.005 0.00019 0.9994
0.001 3.7553 × 10−5 0.9982
0.0005 1.8847 × 10−5 0.9946
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(c) Infected people in space at 10 days.

Figure B1. Spatial and temporal variations of infected people.

B.3. Two-dimensional model

The sinusoidal functions similar to those in the one-dimensional case are used as the manufactured
solutions for the two-dimensional case as follows:

s = B sin(10xy + 0.2t) + AS (B.13)
e = B sin(10xy + 0.2t) + AE (B.14)
i = B sin(10xy + 0.2t) + AI (B.15)
r = B sin(10xy + 0.2t) + AR (B.16)
d = B sin(10xy + 0.2t) + AD, (B.17)

where B = 25, AS = 500, AE = 300, AI = 200, AR = 100 and AD = 80. Other model parameters are
given in Table 1 for the square domain, with the exception of the value of A = 100. We use Neumann
boundary conditions that vary in time, as derived from manufactured solution as follows:

gN,left = −10By cos(0.2t + 10xy) (B.18)
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gN,right = 10By cos(0.2t + 10xy) (B.19)
gN,top = 10Bx cos(0.2t + 10xy) (B.20)

gN,bottom = −10Bx cos(0.2t + 10xy) (B.21)
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(b) Infected compartment at (0.7, 0.3).
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(d) Deceased compartment at (0.7, 0.3).
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Figure B2. Temporal variation of infected and deceased compartments.
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A square domain with a mesh size containing 13, 470 vertices and a time step of ∆t = 0.01 days
was chosen to verify the solutions. A fully implicit approach of time discretization was implemented.
The tolerance of the Picard iteration (see Eq (2.13)) was chosen to be 10−10. The GMRES solver with
a one-level RAS preconditioner was used for the linearized system solve. The integrated solution over
the entire domain and the solution at a point against time are shown in Figure B2. The sum of relative
error for all compartments (see Eq (B.7)) reduces over time in an oscillatory fashion.

B.4. Comparison with the ordinary differential equation model

The PDE-based SEIRD model captures the variation of infection in space through the diffusion
term. By decreasing the diffusion to a very low value and integrating the solution over the entire
domain, the PDE model can be reduced to an equivalent ODE system. Thus, from Eq (2.1) to Eq (2.5)
an ODE compartmental model describing the same dynamics as the PDE model can be expressed as
follows:

ds
dt

= −(1 − A)βI si − (1 − A)βE se (B.22)

de
dt

= (1 − A)βI si + (1 − A)βE se − σe − γEe (B.23)

di
dt

= σe − (γR + γD)i (B.24)

dr
dt

= γEe + γRi (B.25)

dd
dt

= γDi, (B.26)

where s, e, i, r and d denote the susceptible, exposed, infected, recovered and deceased proportion of
the population, where the sum of all compartments s + e + i + r + d = 1. The model parameters can
be observed from the square domain case in Figure 1, with the exception of the diffusion coefficients
are now 10−20. As the initial condition, 10% of the total population was chosen to be in the infected
compartment. The initial value of the exposed, recovered and deceased compartments were set to be
zero, and the susceptible compartment was calculated as 0.9. For the PDE model, all compartment
densities were initially assumed to be uniform over the entire domain. For the square domain, we
considered the population sizes of 10 and 100 respectively for numerical investigation. The tolerance
of the Picard iterations was set to 10−10 and the integration time step of 0.1 days was used for a total
duration of 210 days. The PDE model was integrated over the entire domain and normalized by the
total population for comparison with the ODE model. The results in Figure B3 demonstrates that the
solutions of PDE and ODE models match closely when the diffusion coefficients are very small.
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Figure B3. Comparison of ODE model with the integrated and normalized PDE model
output.

C. 22-compartment model

This 22-compartment PDE-based SEIRD model becomes computationally expensive which in-
spired the development of the scalable solvers reported in this paper. Next we describe the extension
of a 22-compartment ODE-based SEIRD model to the PDE-based system to consider the geo-spatial
spread of the disease dynamics. If properly calibrated by field data, such a comprehensive model can
more realistically represent the disease dynamics in order to assist clinical and public health decision-
makers. To this end, we chose to modify the 22-compartment ODE-based model proposed by Robinson
et al. [1], to a system of PDEs, representing the model states as population densities in space and time.
In the system of equations below, we use capital letters to denote model compartments (see Table C4)
to maintain consistency with the format presented in [1], and we use Greek letters to denote model
parameters (see Table C5).

The following 10 compartments involves a diffusion term, modeling spatio-temporal population
movement : S , V , E, F, A, B, C, P, R1, R2. Publicly available data may not permit construction
and calibration of stratified SEIRD models based on age, co-morbidity, sex, socio-economic status,
etc. [1]. However, private health care databases (e.g., COVID-19 database from ICES [21]) can permit
such detailed stratified SEIRD-based modeling.
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Figure C4. 22-compartment model (adapted from [1]).

Susceptible:

∂S
∂t

= −λS − γVS + γT V + γR(R1 + R2) + ∇ · (νS∇S ) (C.1)

Vaccinated:

∂V
∂t

= −(1 − rV )λV + γVS − γT V + ∇ · (νV∇V) (C.2)

Exposed:

∂E
∂t

= (1 − δS )λS + (1 − δV )(1 − rV )λV − γE E + ∇ · (νE∇E) (C.3)

Exposed, isolating:

∂Q
∂t

= δS λS + δV (1 − rV )λV − γE Q (C.4)
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Infectious, presymtomatic:

∂A
∂t

= γE E − γPA + ∇ · (νA∇A) (C.5)

Infectious, pre-symptomatic, isolating:

∂W
∂t

= γE Q − γPW (C.6)

Infectious, asymptomatic:

∂F
∂t

= σAγPA − γAF − γDAF + ∇ · (νF∇F) (C.7)

Infectious, mild-to-moderate symptoms:

∂B
∂t

= (1 − σA)(1 − σS )γPA − γM B − γDM B + ∇ · (νB∇B) (C.8)

Infectious, severe symptoms:

∂C
∂t

= (1 − σA)σS γpA − γS 1C + ∇ · (νC∇C) (C.9)

Infectious, asymptomatic, isolating:

∂X
∂t

= σAγPW − γAX − γDAX (C.10)

Infectious, mild-to-moderate symptoms, isolating:

∂Y
∂t

= (1 − σA)(1 − σS )γPW − γMY − γDMY (C.11)

Infectious, severe symptoms, isolating:

∂Z
∂t

= (1 − σA)σS γPW − γS 1Z (C.12)

Infectious, isolating after testing positive:

∂G
∂t

= γDA(F + X) + γDM(B + Y) − γIG (C.13)

Inadequate access to health care resources:

∂N
∂t

= (1 − σH)γS 1(C + Z) − γS 2N (C.14)

Hospital:

∂H
∂t

= σH(1 − σC)γS 1(C + Z) − πH H (C.15)

Pre-ICU:

∂H1
∂t

= σHσCγS 1(C + Z) − πAH1 (C.16)

ICU:
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∂I
∂t

= πAH1 − πBI (C.17)

Post-ICU:

∂H2
∂t

= (1 − κI)πBI − πC H2 (C.18)

Recovered:

∂R1
∂t

= (1 − φC)
(
(1 − φM) (γIG + γA(F + X) + γM(B + Y)) (C.19)

+ (1 − φS ) ((1 − κN)γS 2N + (1 − κH)πH H + πC H2)
)

+ (1 − φP)(1 − κP)γC P − γRR1 + ∇ · (νR1∇R1)

Recovered with long-term health complications:

∂R2
∂t

= (1 − φC)
(
φM (γIG + γA(F + X) + γM(B + Y)) (C.20)

+ φS ((1 − κN)γS 2N + (1 − κH)πH H + πC H2)
)

+ φP(1 − κP)γC P − γRR2 − γLR2 + ∇ · (νR2∇R2)

Post-acute COVID-19:

∂P
∂t

= φC (γIG + γA(F + X) + γM(B + Y) + (1 − κN)γS 2N + (1 − κH)πH H + πC H2) − γC P + ∇ · (νP∇P) (C.21)

Death:

∂D
∂t

= κHπH H + κIπBI + κNγS 2N + γLR2 + κPγC P (C.22)
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Table C4. Model states/compartments, indices have been omitted for brevity (reproduced
from [1]).

Symbol Definition

S Susceptible

V Vaccinated

E Exposed

Q Exposed, isolating

A Infectious, pre-symptomatic

W Infectious, pre-symptomatic, isolating

F Infectious, asymptomatic

B Infectious, mild-to-moderate symptomatic (i.e., symptoms not requiring hospitalization)

C Infectious, severe symptomatic (i.e., symptoms requiring hospitalization)

X Infectious, asymptomatic, isolating

Y Infectious, mild-to-moderate symptomatic, isolating

Z Infectious, severe symptomatic, isolating

G Infectious, mild-to-moderate symptomatic, isolating but not previously in isolation

N No access to hospital care

H Hospitalized, never to be admitted to the intensive care unit (ICU)

H1 Hospitalized, to be admitted to the ICU

I Hospitalized, in the ICU

H2 Hospitalized, after being discharged from the ICU

R1 Recovered, without long-term health complications

R2 Recovered, with long-term health complications

P Post-acute COVID-19

D Death
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Table C5. Model parameters with definition and reference, indices omitted for brevity (re-
produced from [1]).

Symbol Definition

rV Vaccine effectiveness (1 indicates 100% immunity, 0 indicates no immunity)

δS Probability that a susceptible individual exposed to the virus will self-isolate (without prior testing)

δV Probability that a vaccinated individual exposed to the virus will self-isolate (without prior testing)

γA 1/the average duration of the infectious period for asymptomatic individuals

γC 1/the average duration of sub-acute COVID-19

γDA Rate of detection among asymptomatic cases

γDM Rate of detection among mild-to-moderate cases

γE 1/the average incubation period

γI 1/the average duration of self-isolation

γL Rate of deaths due to long-term health complications

γM 1/the average duration of the infectious period for individuals with mild-to-moderate symptoms

γP 1/the average duration of the pre-symptomatic infectious period

γR 1/the average effective duration of temporary immunity from having recovered from the virus

γS 1 1/the average duration of severe symptoms before seeking hospitalization

γS 2 1/the average remaining duration of symptomatic period for individuals with severe symptoms

γT 1/the average effective duration of temporary immunity from vaccination

γV Rate of vaccination

σA Probability that an infectious individual is asymptomatic

σC Probability that a hospitalized case will be admitted to the ICU

σH Probability that an individual has access to hospital care

σS Probability that a case displaying symptoms will require hospitalization

πA 1/the average time in hospital prior to ICU

πB 1/the average time in ICU

πC 1/the average time in hospital following ICU

πH 1/the average duration of hospitalization (non-ICU track)

φA Probability of acute COVID

φM Probability of long-term complications for asymptomatic, mild-to-moderate cases

φS Probability of long-term complications for severe cases

φP Probability of long-term complications for post-acute COVID-19 cases

κH Probability of death among hospital cases

κI Probability of death among ICU cases

κN Probability of death among cases without access to hospital care

κP Probability of death among post-acute COVID-19 cases
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