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ABSTRACT12

THAPBI PICT is an open source software pipeline for metabarcoding analysis of Illumina paired-end
reads, including cases of multiplexing where more than one amplicon is amplified per DNA sample.
Initially a Phytophthora ITS1 Classification Tool (PICT), we demonstrate using worked examples with our
own and public data sets how, with appropriate primer settings and a custom database, it can be applied
to other amplicons and organisms, and used for reanalysis of existing datasets. The core dataflow of
the implementation is (i) data reduction to unique marker sequences, often called amplicon sequence
variants (ASVs), (ii) dynamic thresholds for discarding low abundance sequences to remove noise and
artifacts (rather than error correction by default), before (iii) classification using a curated reference
database. The default classifier assigns a label to each query sequence based on a database match
that is either perfect, or a single base pair edit away (substitution, deletion or insertion). Abundance
thresholds for inclusion can be set by the user or automatically using per-batch negative or synthetic
control samples. Output is designed for practical interpretation by non-specialists and includes a read
report (ASVs with classification and counts per sample), sample report (samples with counts per species
classification), and a topological graph of ASVs as nodes with short edit distances as edges. Source
code available from https://github.com/peterjc/thapbi-pict/ with documentation including
installation instructions.
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INTRODUCTION29

Metabarcoding of DNA is a sensitive and powerful method to detect, identify, and potentially quantify the30

diversity of biological taxa present in any given environmental sample. It is based on PCR amplification31

of a “barcode” region diagnostic for the groups of organisms of interest followed by high-throughput32

sequencing of the amplimers, and is often applied to environmental DNA (eDNA) samples (Deiner33

et al., 2017). This method is revolutionising areas of research including wildlife conservation, ecological34

processes and microbiology, by highly-sensitive detection of biodiversity across many taxa simultaneously35

(Arulandhu et al., 2017). Metabarcoding enables early detection of invasive threats to plant and human36

health in support of biosecurity (Batovska et al., 2021; Green et al., 2021), and is applicable to many37

complex and intractable systems, such as soil (Ahmed et al., 2019), in which standard methods of38

microbial isolation and characterisation are impractical or costly.39

Our motivating use case is metabarcoding in which multiple environmental samples are multiplexed40

for high-throughput sequencing on the Illumina platform using paired-end reads, and for which the41

expected PCR amplification product is short enough to be fully covered by the overlapping paired reads.42

Each sample is expected to yield taxon-specific marker sequences that can be matched to a high-quality43

database of marker sequences with known taxonomic identity, to give a taxonomic breakdown reflecting44

the community composition. One of our goals was to minimise false positive identification of the45

presence of any taxon on the basis of small or disputable quantities of physical evidence. Metabarcoding46
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is prone to generation of artefactual sequence variation and sufficiently highly sensitive to register47

low-abundance sample reads at the same level as such sequences, and sequences originating from cross-48

sample contamination and “splashover” in even a careful laboratory. We therefore chose to prioritise49

accurate reporting of taxonomic assignment for high abundance sequences over sensitive detection of50

low-abundance marker sequences.51

This manuscript was initially released as a preprint (Cock et al., 2023). We describe THAPBI PICT52

v1.0.0, a metabarcoding tool developed as part of the UKRI-funded Tree Health and Plant Biosecurity53

Initiative (THAPBI) Phyto-Threats project, which focused on identifying Phytophthora species in com-54

mercial forestry and horticultural plant nurseries (Green et al., 2021). Phytophthora (from Greek meaning55

plant-destroyer) is an economically important genus of oomycete plant pathogens that causes severe56

losses and damage to plants in agricultural, forest and natural ecosystems. The Phyto-Threats project’s57

metabarcoding protocol used nested PCR primers designed to target the Internal Transcribed Spacer 158

marker sequence (ITS1; a genomic region located between 18S and 5.8S rRNA genes in eukaryotes) of59

Phytophthora and related plant pathogenic oomycetes (Scibetta et al., 2012). This approach is the current60

de facto standard within the oomycete community (Robideau et al., 2011), and these primers have been61

used in conjunction with THAPBI PICT in recent Phytophthora surveys (Vélez et al., 2020; La Spada62

et al., 2022). PICT was short for Phytophthora ITS1 Classification Tool.63

We describe the implementation, operation, performance and output of THAPBI PICT using datasets64

from the Phyto-Threats project, and public metabarcoding datasets. Although originally designed as65

a Phytophthora ITS1 Classification Tool (PICT), we show that with appropriate primer settings and a66

custom database of genus/species distinguishing markers, THAPBI PICT is an effective tool for analysis67

of short read amplicon sequencing data with barcode marker sequences from other organisms.68

WORKFLOW OVERVIEW69

The THAPBI PICT core workflow comprises (i) data reduction to unique marker sequences, often called70

amplicon sequence variants (ASVs) (ii) discard of low abundance sequences to remove noise and artifacts71

(rather than attempting error correction by default), and (iii) classification using a curated reference72

database. This approach contrasts with commonly-used operational taxonomic unit (OTU) clustering73

approaches (as implemented, for example, in QIIME (Caporaso et al., 2010), UPARSE (Edgar, 2013),74

and MOTHUR (Schloss et al., 2009)), which can be sensitive to changes in the input data resulting in75

unpredictable clustering behaviour (Callahan et al., 2017) and overestimate population diversity (Nearing76

et al., 2018).77

THAPBI PICT’s approach of reducing amplicons to ASVs is similar to that of DADA2 (Callahan78

et al., 2016) but, by contrast, THAPBI PICT does not by default attempt to correct sequencing errors with79

a denoising model. Our approach is instead to discard low-abundance sequences because we consider that80

they are likely not to represent meaningful biological information in the sequenced sample. We observe81

using synthetic control sequences that the abundance of such controls accidentally transferred between82

samples tends to exceed by no small margin the abundance of amplicons whose sequence variation might83

constitute “noise” in the amplicon sequence data. We consider the observed abundance of (e.g. synthetic)84

control sequences, which could not have been present in the biological sample, to be a lower bound for85

the abundance of reads we can confidently claim derive from that sample. Consequently, ASVs with86

much lower total abundance cannot confidently be determined to derive from the analysed sample, and so87

are discarded. In general, we consider that proper use of negative and synthetic controls, to account for88

alternative sources of experimental error, such as accidental transfer or “splashover” from one well to89

another, should be considered best practice in metabarcoding.90

Figure 1 gives an overview of the workflow. Paired raw Illumina FASTQ files for each sample91

are merged by overlap, trimmed to remove primers, and reduced to a list of observed unique marker92

sequences (labelled by MD5 checksum) with abundance counts. Discarding low abundance sequences93

further reduces the data volume - unique reads alone may represent half the data (and 90% of the ASVs),94

but may not derive from the sequenced sample. The remaining higher abundance sequences are then95

classified by matching them to a curated database. By default a species-level assignment is made when a96

database entry is identical or different by at most one base pair (1bp; algorithm onebp) to the query. The97

matching algorithm can be chosen to adjust sensitivity for taxonomic classification (Table 1)98

Following read preparation and ASV classification, the pipeline generates two tables describing (i)99

taxon presence/absence for each sample, and (ii) ASV presence/absence for each sample (Figure 2 (a)100
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Figure 1. THAPBI PICT workflow overview. Raw paired FASTQ input data is transformed (commands
prepare-reads, sample-tally, classify) into intermediate FASTA and TSV (tab-separated
value) format files recording tallies of ASV counts and ASV classifications, using a local marker
sequence database. Summary report generation (command summary) produces output in reproducible
(TSV, TXT file) and user-focused (e.g. colour-coded Excel spreadsheet) formats. The stages of THAPBI
PICT can be run individually, or as a single pipeline command that incorporates the
prepare-reads, sample-tally, classify and summary commands. Sample metadata can
optionally be incorporated into report output, and used to sort reports and support downstream
interpretation. In addition BIOM format output can be requested. An ASV edit graph for the samples can
be generated (command edit-graph) to aid in diagnosis and interpretation.

Name Description
identity Perfect match in database (strictest)
substr Perfect match or perfect substring of a database entry
onebp Perfect match, or one bp away (default)
1s2g As onebp but falling back on up to 2bp away for a genus only match.
1s3g As onebp but falling back on up to 3bp away for a genus only match.
1s4g As onebp but falling back on up to 4bp away for a genus only match.
1s5g As onebp but falling back on up to 5bp away for a genus only match.
blast Best NCBI blastn alignment covering at least 85% of the query, and 95% identity.

Table 1. Taxonomic classifier algorithms in THAPBI PICT. Names constructed as XsYg reflect an edit
distance of up to and including Xbp for species classification, and Ybp for genus-level classification.
Genus-level classification does not attempt to assign a species-level identity to the sequence.
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Figure 2. Screenshots of the (a) sample and (b) read reports, using the “m6” ITS2 MiSeq run from
Palmer et al. (2018), also used in Figures 3 and 4. Both tables show cells with read counts in the lower
right section, using conditional formatting to apply a red background for non-zero entries. Excel shows
read counts as “##” where the count is too wide for the column width, as in (a) where the default sample
report layout prioritises showing an overview. The column widths in the sample report have been adjusted
for display in (b), and the bottom of the table cropped. In this example two fields of user-supplied
metadata (sample alias and group) are included in both reports, which have been used for sample sorting
and the automatic use of a rainbow of five pastel background colours to visually show the sample
groupings. In this case the environmental samples are in pairs. The next fields are from the data itself,
reads counts in the samples as raw FASTQ, after read merging with Flash, primer trimming with
Cutadapt, the abundance threshold applied, the maximum ASV read count for non-spike-in or spike-in
sequences, number of singletons, number of unique ASVs accepted, and the total number of reads for the
accepted ASVs. These fields were used to generate Figure 4. The read report also includes the full ASV
sequence and its MD5 checksum which is used internally as an identifier, and a concatenation of all the
species present in the classifier output as a single field.
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and (b) respectively), in both plain text and Excel format. If the user provides suitably formatted sample101

metadata, cross-referenced by the filename stem, this can be incorporated into the report to make for102

easier interpretation. Additionally, an edit-graph showing the distances between the ASVs recorded in the103

sample can be exported (e.g. Figure 3).104

Read preparation105

The first and slowest stage of the workflow is read preparation. Paired raw Illumina FASTQ files are106

processed into intermediate FASTA files per amplicon marker containing the ASV sequences and their107

abundances. It is simplest to run the pipeline on all input data sequentially, but with large projects or for108

most efficient usage of a computer cluster it is advisable to run the read preparation step in batches, for109

example by MiSeq plate or sample batch, as separate jobs.110

The first step is merging the overlapping FASTQ read pairs, currently done using Flash (Magoč and111

Salzberg, 2011). This is invoked with the allow “outies” option and maximum overlap increased from the112

default 65 to 300bp, which was especially important when working with smaller fragments. Initially we113

used Pear (Zhang et al., 2014), but open source development ended with Pear v0.9.6, and Flash was faster114

with equivalent output. The merged sequences for each sample are tallied (discarding the per-base quality115

scores), which avoids re-processing repeated sequences in each sample.116

Next, we use cutadapt (Martin, 2011) to identify each amplicon sequence using the primer sequences,117

which are then removed. These shorter unique sequences in each sample are re-tallied, and unique reads118

appearing only once in a sample (singletons) are discarded at this point. This gives a list of ASVs with119

counts per marker per sample.120

Earlier versions of the tool and the pre-cursor metapy pipeline (Riddell et al., 2019) started by121

removing the Illumina adapter sequences using Trimmomatic (Bolger et al., 2014), before merging122

the overlapping reads. Flash was developed before tools like Trimmomatic, and does not require this.123

Skipping adapter trimming at the start was faster, and made minimal difference to the output, especially124

since any residual adapter sequence is removed when primer trimming.125

Collectively our dataset for the Phyto-Threats project (Green et al., 2021) and related work including126

natural ecosystems (Riddell et al., 2019), is now over 30 MiSeq plates, with several thousand sequenced127

samples. To balance performance versus complexity we run the read-preparation by plate. In a typical run128

on HPC nodes with 2nd-Gen Xeon Scalable (Cascade Lake; 2019) processors preparing the slowest plate129

took 12.5 minutes, while global tallying through to reporting (see below) added a further 7.5 minutes,130

giving a total elapsed time of approximately 20 minutes.131

Sample tallying and optional read-correction132

Once all the FASTQ sample files have been prepared (which is the slowest part of the pipeline), the unique133

ASVs are tallied per marker per sample. This workflow accommodates large projects where new plates of134

MiSeq data are sequenced over time, and exploring the effect of adjusting settings like the abundance135

thresholds.136

At this point, before applying abundance thresholds (see below), optional read-correction can be137

applied. This can use our re-implementation of the original UNOISE2 read-correction method as described138

in Edgar (2016) using the Levenshtein distance as implemented in the Rapid Fuzz library (Bachmann139

et al., 2022). Alternatively, it can call the later UNOISE3 algorithm via Edgar’s command line tool140

usearch, or as reverse engineered in vsearch (Rognes et al., 2016).141

The ASV sample tally table is output as a plain text tab-separated variable (TSV) file, and optionally in142

the Biological Observation Matrix (BIOM) format facilitating use with alternative classifiers (McDonald143

et al., 2012).144

Abundance thresholds145

There are two compelling reasons to impose abundance thresholds. Firstly, most rare ASVs including146

singletons are generated via errors in either the PCR amplification or sequencing steps (Edgar (2016);147

Figure 4), and their removal improves the signal to noise ratio and results in a marked improvement148

in computational efficiency. Secondly it plays a key role in dealing with cross-sample contamination,149

including Illumina tag-switching (Schnell et al., 2015).150

The tool implements both an absolute minimum abundance threshold defaulting to 100 copies (based151

on examination of our own datasets), and a fractional threshold defaulting to the widely used value of152

0.1% (Muri et al., 2020) of the paired reads in a sample which passed primer trimming for that marker.153
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(a) Default 0.1% abundance threshold, showing 360 ASVs:

(b) Synthetic control inferred 0.0156% abundance threshold, showing 3097 ASVs:

Figure 3. Example ASV edit-graph, exported as an XGMML format graph, then opened in Cytoscape
v3.9.1 (Shannon et al., 2003) showing ITS2 sequences from the same Palmer et al. (2018) MiSeq run
shown in Figures 2 and 4. Each node represents an ASV, orange if matched to a synthetic control, dark
red for a matched genus, grey otherwise. The node circles are scaled according to the number of samples
it was in, and shown here without labels for clarity. The edges are solid for a one base pair edit distance,
dashed for a two base pair edit distance, and dotted for a three base pair edit distance. The nodes were
arranged in CytoScape using edge weighted prefuse force directed layout, and their placement is not
consistent between (a) and (b). As the abundance threshold is lowered from (a) to (b), the number of
nodes increases roughly ten-fold. The more common ASV nodes become the centre of a halo of 1bp
variants, typically each seen in a single sample, which we attribute to PCR noise and/or sequencing error.
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Figure 4. Stacked line graph illustration of how the raw FASTQ read counts are reduced to ASV tallies,
showing reads counts from ITS2 sequences from the same Palmer et al. (2018) MiSeq run shown in
Figures 2 and 3. Starting from raw FASTQ files, over 90% could be merged into overlapping reads, most
of which could be primer trimmed. At this point the data is already held as ASV tally tables internally.
The next drop represents removing singletons, leaving about 80% of the starting reads. Applying the
default minimum abundance thresholds drops this to just over 60% of the original reads. The final drop
off shown, from millions to hundreds of sequences, is to illustrate switching from counting reads to
counting unique sequences (ASV) as a tally table. The samples are the synthetic control, biological
mocks, and then numerical codes for environmental samples.

These are applied to each sample. The fractional threshold is more appropriate than an absolute threshold154

if the sampling depth varies dramatically between samples. The default absolute threshold may be too155

high for low yield runs like the Illumina Nano Kit protocol, or if the focus is maximising sensitivity. An156

ASV supported by a single read is known as a singleton, and for efficiency these are always automatically157

excluded. In most cases singletons are a single base pair away from a more dominant sequence, and are158

presumed to originate from amplification or sequencing errors, resulting in a halo effect when visualised159

as an edit-graph (see Figure 3). In such cases, read correction would map them to that central node,160

but this is not always clear cut as there can be multiple high abundance high occurrence adjacent nodes.161

Unlike the tools DADA2 (Callahan et al., 2016), obiclean (De Barba et al., 2014; Boyer et al., 2016), or162

UNOISE2 (Edgar, 2016), we default to simply excluding these reads via the abundance threshold.163

Another source of unwanted low abundance sequences comes from Illumina tag-switching (Schnell164

et al., 2015). Using metabarcoding synthetic controls, Palmer et al. (2018) quantified the effective rate165

as under 0.02%, consistent with between 0.01% and 0.03% of reads in earlier work reviewed by Deiner166

et al. (2017). However, while excluding low abundance variants from PCR noise and tag-switching is167

important, as in Muri et al. (2020) we use a higher default of 0.1% for excluding most contamination.168

The tool supports a data-driven minimum abundance threshold using (unwanted) amplification in negative169

control samples, a widely used strategy (Sepulveda et al., 2020). The control samples are processed before170

the non-controls, in order to infer and apply a potentially higher control-driven threshold to the other171

samples in that batch. Sample batches are defined by providing input data in sub-folders, which could be172

MiSeq runs, or reflect samples amplified together.173

Simple blank negative controls should contain no sequences at all, so the highest abundance sequence174

present can be used as an inferred absolute abundance threshold (if higher than the default), and applied175

to all the samples in that batch. Massart et al. (2022) caution however that trace levels of DNA in an176

otherwise empty control may amplify very efficiently, overestimating contamination, and so recommend a177

spike-in or positive control approach.178

If the experiment uses synthetic sequences spiked into a negative control, it is possible to distinguish179

the expected spike-in sequences (subject only to technical noise and artifacts from PCR and sequencing)180
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from biological contamination from laboratory practices (Palmer et al., 2018). In principle a biological181

out-group or “alien control” could be used as the spike-in (Massart et al., 2022), but unique novel synthetic182

control sequences will provide the greatest confidence. Provided the tool can identify and thus ignore183

the spike-in sequences, any remaining reads in those controls can be used to raise the absolute threshold.184

However, the percentage of the most abundant non-spike-in sequence can be taken as an inferred fractional185

abundance threshold (if higher than the default). Palmer et al. (2018) takes a more optimistic approach186

in their tool AMPtk by applying ASV specific thresholds, assuming the other biological sequences not187

observed as cross contaminants are well behaved. THAPBI PICT takes the more pessimistic approach of188

taking the worse case as indicative of cross contamination rates for that sample batch in general.189

In our own data, (cross-)sample contamination appears to be more of an issue than Illumina tag-190

switching. At the time of writing we have completed 30 Phytophthora ITS1 MiSeq sequencing runs with191

synthetic control samples, covering plant nurseries (Green et al., 2021) and environmental samples. One192

run was discarded after finding 1 to 5% non-synthetic reads in all the controls, traced to contamination of193

the PCR master mix. Another problematic run saw 4 of the 6 controls in a 96-sample amplification plate194

with over 2% non-synthetic reads. These had an identical ASV profile, suggesting a single contamination195

event after pipetting the first two controls. The dominant contaminant here was a rare Phytophthora196

species not seen on the rest of the samples being sequenced, making the most likely contamination source197

DNA from an older sample previously processed in the laboratory. Thalinger et al. (2021) has a number of198

recommendations on the laboratory side for minimising contamination events. By using the worst control199

non-synthetic read fractions as thresholds for those plates we reduce the chances of false positives, at the200

cost of false negatives for minority community members. This is not unprecedented - for example guided201

by their mock community controls, Hänfling et al. (2016) used thresholds of 0.3% and 1% for their 12S202

and cytB amplicons respectively (and an absolute threshold of at least 3 reads per ASV).203

CLASSIFIERS AND DATABASES204

Classifier implementations205

All of the classifiers in THAPBI PICT are based on independent comparisons of each ASV to the206

sequences in the database as strings of letters. There is no clustering, meaning the classification can be207

performed on a global listing of all ASV, without considering the context of what other sequences were208

present in the same samples.209

Technically the identity classifier does the matching with an SQL query within SQLite. For210

performance the substr classifier is done in Python after loading all the database sequences into211

memory. The edit distance based classifiers also load all the sequences into memory, and then use the212

Levenshtein metric as implemented in the Rapid Fuzz library (Bachmann et al., 2022), where a one213

base-pair insertion, deletion, or substitution is considered an edit distance of one. All our distance214

classifiers accept a species level match at most one base pair away, equivalent to about a 99.5% identity215

threshold (assuming amplicons around 200bp long). This may seem high, but historic thresholds like 97%216

for the 16S marker are too relaxed (Edgar, 2018). The least stringent classifier currently implemented217

(blast) assigns the species of the best BLAST nucleotide match within the database Camacho et al.218

(2009), ranked by bit-score subject to a minimum alignment length and score intended to exclude the most219

obvious false positives. In objective assessment (see below), this does over-predict (assigning sometimes220

tenuous species matches). This BLAST based classifier should only be used for preliminary analyses like221

exploring a new dataset with an uncurated database.222

Database and classifier interactions223

The tool has been designed as a framework which can be applied to multiple biological contexts, demon-224

strated in the worked examples discussed below. In each case, a relevant reference database will need to225

be compiled.226

Applied to environmental samples, some primer pairs will amplify a much wider sequence space227

than others, either reflecting a more diverse genome region, or simply from having longer amplicons.228

Related to this, the fraction of observed sequences with a published reference will also vary - a problem229

particularly in understudied organisms, or with novel barcoding amplicons. This means the density of230

the references in experimentally observed sequence space is context dependant, and thus so is the most231

appropriate classifier algorithm.232
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The default classifier allows perfect matches, or a single base pair (bp) difference (substitution,233

insertion or deletion). This requires good database coverage with unambiguous sequences trimmed to234

the amplicon only, which we have been able to achieve for the Phytophthora ITS1 region targeted. This235

classifier can still be used with reference sequences containing a single IUPAC ambiguity code (which236

will count as the single allowed mismatch), but more than that and the reference could only be used with237

a less stringent classifier (such as the best BLAST nucleotide match).238

Default ITS1 database and conflict resolution239

Our chosen ITS1 primers target a region of eukaryote genomes between the 18S and 5.8S rRNA genes,240

with nested PCR primers to selectively target Phytophthora (Scibetta et al., 2012), related paraphyletic241

genera of downy mildews and the sister taxa Nothophytophthora. They have been observed to occasionally242

amplify related genera, such as Pythium and Phytopythium, especially when Phytophthora levels in the243

sample are very low. Our curated database initially focused on Phytophthora, building on the work244

in Català et al. (2015) and Riddell et al. (2019). Published ITS1 sequences are often truncated to the245

start of the ITS1 region, and thus omit our left primer and the highly conserved 32bp section of the 18S246

region at the start of our amplicon of interest, which handicapped building a reference set. In addition247

to using public sequences, we also performed additional Sanger capillary sequencing. Also, given that248

Phytophthora rRNA is known to be present in variable numbers of copies in a tandem array with potential249

variability between copies, we also ran some single isolates from culture collections through the MiSeq250

pipeline which determined that many species were uniform but others revealed secondary ITS1 variants.251

The primary goal was classification of the genus Phytophthora, but widening coverage to downy mildews252

and related genera such as Nothophytophthora and the rarely amplified Pythium created two additional253

challenges. First, there are fewer published sequences available, and thus the default classifier becomes254

too strict to assign many species. The Phyto-Threats project therefore uses a more relaxed classifier255

which falls back on a genus level classification based on the closest database entries up to 3bp edits256

away. Second, the taxonomic annotation becomes less consistent, particularly within the former Pythium257

genus that was subject to taxonomic revision that generated new genera such as Globisporangium or258

Phytopythium. This led to many conflicts with database accessions of (near) identical ITS1 sequences259

having different genus names. These direct conflicts, and similar cases of apparent misannotation, were260

resolved manually by excluding the unwanted accessions in the database build script.261

With any amplicon marker, it is possible that distinct species will share the exact same sequence. For262

example, this happens with model organism Phytophthora infestans and sister species such as P. andina263

and P. ipomoeae. In such cases the classifier reports all equally valid taxonomic assignments. The database264

author could instead record a single assignment like Phytophthora infestans-complex. Conversely, some265

Phytophthora genomes are known to contain multiple copies of our target marker ITS1 through tandem266

repeats of the rDNA ITS region. In such cases the recognised variant forms should be added to the267

reference database. Despite their shortcomings, the ITS1 region has remained the de-facto standard within268

the oomycete community (Robideau et al., 2011), but alternatives are being explored (Foster et al., 2022).269

CLASSIFICATION ASSESSMENT270

In assessing classification performance, it is the combination of both classification method (algorithm)271

and marker database which matters. Settings like the abundance threshold are also important, and the tool272

default settings partly reflect one of the original project goals being to avoid false positives.273

To objectively assess a metabarcoding classifier we require sequenced samples of known composition,274

which generally means single isolates (where a single marker sequence is typically expected), or mock275

communities of known species (the bulk of our examples). Carefully controlled environmental samples276

may also be used, such as Muri et al. (2020) in our worked examples. Here a lake was drained to collect277

and identify all the individual fish, but this is problematic as the lake was large enough that DNA from278

each fish could not be expected at all the sampling points, giving an inflated false negative count.279

Our tool includes a presence/absence based assessment framework based on supplying expected280

species lists for control samples, from which the standard true positive (TP), false positive (FP), true281

negative (TN), and false negative (FN) counts can be computed for each species. These are the basis of282

standard metrics like sensitivity (recall), specificity, precision, F-score (F-measure, or F1), and Hamming283

Loss. It is simple but not overly helpful to apply metrics like this to each species, rather the overall284

performance is more informative.285
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However, some scores like the Hamming Loss are fragile with regards to the TN count when comparing286

databases. The Hamming Loss is given by the total number of mis-predicted class entries divided by the287

number of class-level predictions, thus (FP+FN)/(T P+FP+FN+T N). Consider a mock community288

of ten species, where the classifier made 11 predictions which break down as 9 TP and 2 FP, meaning289

10−9 = 1 FN. Suppose the database had a hundred species (including all ten in the mock community),290

that leaves 100−9−1−2 = 88 TN, and a Hamming Loss of 3/100 = 0.03. Now suppose the database291

was extended with additional references not present in this mock community, perhaps expanding from292

European Phytophthora species to include distinct entries for tropical species, or a sister group like293

Peronospora. The denominator would increase, reducing the Hamming Loss, but intuitively the classifier294

performance on this mock community has not changed. To address this, the classifier assessment also295

includes a modified ad hoc loss metric calculated as the total number of mis-predicted class entries divided296

by the number of class-level predictions ignoring TN, or (FP+FN)/(T P+FP+FN) which in this297

example would give 3/12 = 0.25 regardless of the number of species in the database. This is an intuitive298

measure weighting FP and FN equally (smaller is better, zero is perfect), a potential complement to the299

F-score.300

Note that the assessment framework only considers species level predictions, ignoring genus only301

predictions and unknowns, and thus will not distinguish between the default onebp classifier and variants302

like 1s3g (see Table 1).303

As a benchmark of the default classifier and Phytophthora focused database, we used the 10 and304

15 species mixes in Riddell et al. (2019), see Table 2. This was originally analysed with the metapy305

pipeline with a high stringency classifier using bowtie to find perfect alignments, and a more relaxed306

classifier using swarm for clustering. In both samples and both classifiers, Phytophthora boehmeriae307

was not found, and this was attributed to uncompetitive amplification in a mixed DNA sample due to poor308

PCR primer binding. That being so, the best classifier results would be either 14 TP and 9 TP respectively,309

with 0 FP if the markers were unique, and 1 FN. Note however not all the markers are unique, both mixes310

contain species known to share their ITS1 marker with other species, giving unavoidable technical FP,311

also discussed in Riddell et al. (2019).312

Using F1 score or our ad hoc loss ranking, THAPBI PICT is clearly performing best on the 10 species313

mix (and better than metapy did). However, with default settings it does worse on the 15 species mix,314

due the high FN count where the default ASV abundance threshold of 100 reads is excluding expected315

species. In this MiSeq dataset the Illumina Nano Kit was used giving lower yields, making the default316

100 read threshold overly harsh. Optimising on maximising the F1 score and minimising ad-hoc-loss, and317

weighting the two communities equally, suggests running THAPBI PICT with an ASV read abundance318

threshold of around 50 reads performs best overall here. This is a fundamental problem however, low319

abundance community members can be indistinguishable from background noise/contamination, meaning320

without controls the best threshold is arbitrary.321

REPORTING322

The pipeline produces two tabular reports (which can also be requested directly with the summary323

command), output as both tab-separated plain text, and Excel format with colouring and conditional324

formatting (Figure 2). These include information on read counts from the preparation stage (as used325

in Figure 4), information on the abundance thresholds, and foremost the species classification from the326

chosen method. The user may provide a table of metadata cross referenced by the sample FASTQ filename327

stem, which will be used for sorting the samples and if possible colouring inferred sample groupings (e.g.328

sample source, or replicates) to ease interpretation. This allows quick visual comparison of replicates as329

adjacent rows/columns.330

The read report by default sorts the ASVs by their taxonomic classification, and then by abundance.331

This makes it easy to identify the most common unknowns or genus-only predictions for manual review332

(using the ASV sequence). This sorting also means that when the thresholds are low enough to let through333

noise, the grey halo effect shown in the edit graph (see Figure 3) is also visually distinct as highly abundant334

rows followed by less abundance variants. This read report can also be exported in BIOM format.335

For many of the worked examples the sample metadata on the NCBI Short Read Archive (SRA) or336

European Nucleotide Archive (ENA) had to be supplemented by information in the associated publication.337

Providing such metadata to the archives using an approved ontology based checklist is non-trivial, but338

adds greatly to the reuse potential (Tedersoo et al., 2015). We provide an ena-submit command which339
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Mock community Method TP FP FN F1 Ad hoc loss
15 species mix metapy/bowtie 11 1 4 0.81 0.333
15 species mix metapy/swarm 14 4 1 0.85 0.263
15 species mix THAPBI PICT (defaults) 8 2 7 0.64 0.529
15 species mix THAPBI PICT (50 reads) 11 3 4 0.76 0.389
15 species mix Theoretical best 14 0 1 0.97 0.067
10 species mix metapy/bowtie 7 6 3 0.61 0.563
10 species mix metapy/swarm 9 10 1 0.62 0.550
10 species mix THAPBI PICT (defaults) 8 2 2 0.80 0.333
10 species mix THAPBI PICT (50 reads) 8 2 2 0.80 0.333
10 species mix Theoretical best 9 0 1 0.95 0.100
Combined metapy/bowtie 18 7 7 0.72 0.438
Combined metapy/swarm 23 14 2 0.74 0.410
Combined THAPBI PICT (defaults) 16 4 9 0.71 0.448
Combined THAPBI PICT (50 reads) 19 5 6 0.78 0.367
Combined Theoretical best 23 0 2 0.96 0.080

Table 2. Species level classifier assessment on the Riddell et al. (2019) mock communities, with TP and
FP counts from their Table 1, and FN counts from their text. THAPBI PICT using default settings has an
abundance threshold of 100 reads, also shown using just 50 reads. The theoretical best assumes
everything except Phytophthora boehmeriae could be found, and ignores that some of the ITS1
amplicons are ambiguous at species level. F1 score or F-measure calculated as 2T P/(2T P+FP+FN),
given to 2dp. Ad hoc loss defined as (FP+FN)/(T P+FP+FN), given to 3dp.

facilitates using the interactive ENA upload step for matching FASTQ filenames to previously entered340

sample information.341

The tool’s repository includes a number of helper scripts, including a pooling script written for the342

Phyto-Threats project for preparing plant nursery specific summary reports. This simplifies the sample343

report by combining replicate samples into a single row, and can either use the read count sum, or just “Y”344

(present) or “N” (absent).345

The other noteworthy report from the tool is an edit graph, invoked via the edit-graph command, as346

shown in Figure 3. By default this outputs the edit graph in XGMML format which can then be visualised347

in a tool like Cytoscape (Shannon et al., 2003), with a choice of node layouts and representations (e.g.348

customising node size by sample count, or colour by genus). The graph can help guide the choice of349

minimum abundance threshold (as discussed above), and the choice of classifier. In the example shown350

with a 3bp maximum edit-distance shown, the cliques formed are for the most part clearly distinct species,351

with a single central node. With the default ITS1 marker used for Phytophthora we find greater sequence352

variation and therefore more diverse non-simple clusters for species like Phytophthora nicotianae and P.353

gonapodyides, but most species show a single central ITS1 sequence.354

DEVELOPMENT PRACTICES355

THAPBI PICT is released as open source software under the MIT licence. It is written in Python, a free356

open source language available on all major operating systems. Version control using git hosted publicly357

on GitHub at https://github.com/peterjc/thapbi-pict/ is used for the source code,358

documentation, and database builds including tracking the hand curated reference set of Phytophthora359

etc ITS1 sequences. Continuous integration of the test suite is currently run on both CircleCI (Linux)360

and AppVeyor (Windows). Software releases are to the Python Packaging Index (PyPI) as standard for361

the Python ecosystem, and additionally packaged for Conda via the BioConda channel (Grüning et al.,362

2018). This offers simple installation of the tool itself and all the command line dependencies on Linux or363

macOS. Installation on Windows requires manual installation of some dependencies. The documentation364

is currently hosted on Read The Docs, updated automatically from the GitHub repository.365
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WORKED EXAMPLES366

In this section we briefly discuss the application of THAPBI PICT to public data sets from several367

published papers, covering a range of organisms and markers. The selection has prioritised examples368

including mock communities and negative controls, and have been included in the tool documentation as369

worked examples. These worked examples generally are highly concordant with the published analyses,370

with differences largely down to the exact choice of thresholds.371

The example scripts first-run times range from a few minutes with under 1GB of raw FASTQ data372

(Bakker, 2018; Riddell et al., 2019; Walker et al., 2019; Muri et al., 2020), to a few hours with the larger373

datasets like Ahmed et al. (2019) with 12GB of input. These times are dominated by the merging the374

paired reads during read preparation stage, and as discussed earlier, running the read preparation stage in375

parallel across a cluster is advised on larger projects.376

The first worked example is a simple one using the provided Phytophthora ITS1 database we have377

generated for this work to reexamine Riddell et al. (2019). This example does not include the synthetic378

controls introduced later, but does have blanks as negative controls and simple mock communities as379

DNA mixes (discussed above for classifier assessment). The second example uses Redekar et al. (2019)380

but focuses on how to build a database, including how species names can optionally be validated against381

the NCBI taxonomy.382

The example based on Muri et al. (2020) is a single 12S marker for fish, with a custom database383

including numerous off-target matches like humans and sheep. In this case the lake contents were384

determined by draining the lake and collecting the fish, but this did not determine which of the sampling385

sites any given fish might have visited, complicating interpretation compared to an artificial mock386

community. Another single marker example based on Walker et al. (2019) uses COI in simple mock387

communities of bats, and shows the importance of the database content with the default classifier. The388

most interesting single marker example is based on Palmer et al. (2018), fungal ITS2 markers with mock389

biological fungal communities and synthetic control sequences. This has been discussed above in the390

context of setting abundance thresholds.391

There are examples with multiple markers which were sequenced separately in Klymus et al. (2017),392

two different 16S mitochondrial markers with mock communities, and Ahmed et al. (2019), four different393

markers in mock nematode communities. The example in Batovska et al. (2021) uses three markers394

together, while Arulandhu et al. (2017) sequences over a dozen markers together. Here the primer395

sequences themselves are non-overlapping and so serve to separate out the amplicons for each sample,396

allowing them to be matched to the relevant reference set. Note currently a primer cocktail as used for397

the COI example in this data set is not supported. This paper is also noteworthy as an inter-laboratory398

replication study of metabarcoding.399

Datasets from some potentially useful publications could not be used directly, generally for technical400

reasons. Many used custom multiplexing (Elbrecht and Leese, 2015; Port et al., 2016; Elbrecht et al.,401

2016, 2017, 2019; Braukmann et al., 2019), and thus would require separate de-multiplexing before use.402

Some like Braukmann et al. (2019) and Duke and Burton (2020), use an amplicon too long to span with403

overlapping Illumina MiSeq paired reads. Sometimes however papers did not provide the raw FASTQ404

files. For instance, Blanckenhorn et al. (2016) did not share the raw FASTQ files at all, while Hänfling405

et al. (2016) and Zaiko et al. (2022) provided primer trimmed FASTQ files. Some older papers (also) used406

the Roche 454 or Ion Torrent platforms, which would require re-engineering mainly around the different407

error profile, which is potentially unsuited for our default strict classifier.408

DISCUSSION409

Here we present a novel and flexible pipeline for the objective analysis of metabarcode data, not just of410

single markers but also pooled markers where the amplicons can be separated via their primer sequences.411

Some of the design choices and default settings reflect the initial use case being Phytophthora ITS1412

sequence markers in a context where specificity was favoured over sensitivity. In general, appropriate413

abundance thresholds and classifier algorithm will be experiment and/or marker specific, with the quality414

of the reference database a key factor. All amplicon barcoding experiments should be designed with415

suitable controls to assess the limits of quantification versus presence/absence (Lamb et al., 2019),416

including the effects of the PCR (Thielecke et al., 2017) and contamination (Thalinger et al., 2021).417

By design, the tool currently reports lists of genus/species for each ASV, without attempting anything418
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like a most recent common ancestor analysis. This limitation can be a handicap with some use-cases419

where the markers may not readily resolve at species level, and/or an ASV is often shared between420

genera. See for example, the Brassicaceae discussed in Arulandhu et al. (2017), and fish examples in421

Muri et al. (2020). Moreover, it makes the tool unsuited to markers like regions of the bacterial 16S422

rRNA gene which are typically used at phylum level with environmental datasets (Straub et al., 2020).423

Rather it is appropriate for comprehensive analyses of better defined taxonomic markers such as the plant424

pathogenic oomycete ITS1 marker used primarily for Phytophthora, where it is proving valuable for the425

ongoing characterisation of a comprehensive set of several thousand samples from plant nurseries in the426

Phyto-Threats project (Green et al., 2021) and in natural ecosystems (Riddell et al., 2019).427

Our pipeline supports using negative or synthetic spike-in controls to set an abundance threshold on428

groups of samples (such as each sequencing run). Rather than ASV-specific thresholds as in Palmer et al.429

(2018), THAPBI PICT takes the more cautious approach of interpreting the worst case as indicative of430

cross contamination rates for that sample batch in general.431

The pipeline does not currently explicitly attempt to find and remove chimera sequences beyond the432

use of abundance filters. As discussed in Edgar (2016), chimeras which are also only 1bp away from a433

reference sequence cannot be distinguished from a point error, and would be matched to that reference by434

all but our strictest identity classifier. Apart from this special case, any high abundance chimera would435

likely appear in our reports as an unknown, and would most likely be only in a single sample. Regular436

manual inspection of the high abundance unknown reads appearing in multiple samples was part of437

the ongoing quality assurance during the Phyto-Threats project, primarily to identify any gaps in the438

database coverage. The only clear chimeras identified were from our synthetic controls, where part of439

our non-biological sequence was fused to some unexpected sequence. Potentially more complex mock440

communities of synthetic sequences could be used to generate a gold standard for identifying chimeras441

which might serve as a benchmark dataset for testing chimera algorithms.442

Another important difference from other ASV based tools like DADA2 (Callahan et al., 2016), obitools443

(Boyer et al., 2016) and UNOISE2 (Edgar, 2016), is THAPBI PICT does not by default attempt read444

correction. From the halo pattern of PCR induced variants seen from synthetic inputs as viewed on an445

edit-graph, like Figure 4(b), there is usually a natural central node to which a variant can be attributed.446

However, the situation is not always clear cut, with some species like Phytophthora gonapodyides447

showing a range of known ITS1 sequences. Rather our approach is to exclude most PCR noise through448

the abundance filters, and allow a modest amount of variation when matching the higher abundance449

sequences to the reference database. As an option however, the pipeline can apply our re-implementation450

of the original UNOISE2 Levenstein distance based read-correction described in Edgar (2016), or invoke451

the UNOISE3 algorithm implemented in the USEARCH or VSEARCH tools. Read-correction seems452

most appropriate where the reference sequences are well separated, unlike our default Phytophthora ITS1453

amplicon where a single base pair can distinguish known species, and thus read correction can mask lower454

abundance species under their more abundant neighbours.455

Examination of mock community samples of our synthetic spike-in sequences showed ASV abundance456

to be at best semi-quantitative, as found in other work (Palmer et al., 2018; Lamb et al., 2019). For the457

Phyto-Threats project reports sent to plant nursery owners we therefore only use species presence/absence458

(above or below the abundance threshold, and pooled replicates). However, the raw abundances are in the459

main tool reports, and can be used for plots or a quantitative interpretation where appropriate. The nested460

primer protocol with two rounds of PCR may be a factor in undermining quantitative interpretation, and461

increasing the risk of cross-sample or other sample contamination.462

CONCLUSION463

Here we present a novel and flexible pipeline for the objective analysis of metabarcode data, with user464

friendly reports including ASV read counts enabling custom graphs, as well as summary species lists465

per sample. While initially designed for Phytophthora ITS1 sequence markers, the THAPBI PICT tool466

can be applied more generally, including to samples containing multiple marker regions. It is best suited467

to markers where ASV are at least genus specific. Care should be taken picking appropriate abundance468

thresholds, which can be set using negative and/or synthetic controls, and in applying read-correction469

for de-noising. While high-throughput amplicon sequencing does give read counts per species (or per470

ASV), we and others caution against treating these as quantitative (Palmer et al., 2018; Lamb et al.,471

2019). The most suitable classifier algorithm will be marker specific, with the quality and coverage of the472
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reference database a key factor. Including mock communities in your experiment allows the performance473

of classifier and database to be evaluated objectively.474
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