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Abstract
We discuss under which conditions multipartite entanglement in mixed
quantum states can be characterized only in terms of two-point connected cor-
relation functions, as it is the case for pure states. In turn, the latter correlations
are defined via a suitable combination of (disconnected) one- and two-point
correlation functions. In contrast to the case of pure states, conditions to be
satisfied turn out to be rather severe. However, we were able to identify some
interesting cases, as when the point-independence is valid of the one-point cor-
relations in each possible decomposition of the density matrix, or when the
operators that enter in the correlations are (semi-)positive/negative defined.

Supplementary material for this article is available online
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1. Introduction

Entanglement is a central resource in quantum technology [1–3]. Entanglement quantifiers are
especially relevant in quantum information, quantum metrology and estimation theory [4–10],
and are recognized as valuable tools to describe quantum phases and phase transitions [6, 11].
Research has largely focused on bipartite entanglement [1, 12, 13], typically via the von
Neumann entropy [1, 12–16], entanglement spectrum [17–22], and generally pairwise entan-
glement [1, 13, 23–25].

More recently, considerable attention has been devoted to the so-called multipartite entan-
glement (ME) among subsets of a quantum state, a concept based on those of producibility and
separability [4]. However, the identification and detection of ME criteria are still a challenging
problem. Prominent tools for ME quantification are the quantum Fisher information (QFI),
presently known as the ultimate bound for ME [4, 8, 9, 26–28], andWineland’s spin-squeezing
parameter (SSP) [2, 29–32]. Methods to extract them from experiments have been discussed
[2, 29, 30, 32–34], and results for ultracold atomic gases have been presented [31, 35]. QFI
and SSP also provide efficient tomography [36, 37] for quantum phases and transitions [33,
38–43], and are proposed as benchmarks for quantum simulators [36]. In fact, ME has been
investigated e.g. in Bose–Einstein condensates [31, 35], spin systems [33, 38, 39, 43–45], also
at criticality [46–49], with long-range interactions [50–54], and in topological models [40, 41,
55–57].

Estimating ME for mixed states via the QFI can be difficult in general, and in strongly-
interacting systems it has been performed only in a limited number of cases, mainly at equi-
librium [42, 45], also establishing a direct link with dynamical susceptibility [33]. The main
reason is that the QFI for a mixed state cannot be fully expressed in terms of (one- and two-
point) correlation functions, instead it requires a sum over matrix elements with respect to all
the states diagonalizing the full density matrix [42] (see the next section for a precise defini-
tion).

In this work, focusing on mixed quantum states, we discuss physical and mathematical
conditions that make it possible to bound ME, via one- and two-point correlation functions.
The conditions to be satisfied turn out to be rather severe. However, we were able to identity
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at least two physically relevant situations, such as when the point-independence is valid of
the one-point correlations in each possible decomposition of the density matrix or when the
operators that enter in the correlations are (semi-)positive/negative defined.

2. ME

2.1. Separability and producibility

For a d-dimensional discrete system with N components (e.g. sites), c-partite entanglement,
with 1⩽ c⩽ N, implies that a partition {|ψi⟩} exists, where the maximum number of com-
ponents in a single |ψi⟩ is c. The tensor-product state |ψ⟩=

∏
⊗i

|ψi⟩ is then said to be c-
producible [4], or to have entanglement depth c. In addition, a system is said to host c-partite
entanglement if it is c-producible but not (c+ 1)-producible. Instead, the number h, with
N
c ⩽ h⩽ N− c+ 1, of disentangled subsets is the degree of separability [6, 27]. The usual
separability corresponds to h=N and c= 1. On a lattice, the subsystems are not necessarily
adjacent sites. When c=N, |ψ⟩ is said to host genuineME [58].

For mixed states, c-producibility in h subsets holds if ρ can be decomposed (generally not
uniquely) as

ρ=
∑
λ̃

pλ̃ |λ̃⟩⟨λ̃| , (1)

where pλ̃ > 0 without any lack of generality, and |λ̃⟩ are c-separable states in h subsets, not
necessarily with the same space-partition. If c=N, then equation (1) is still valid, trivially with
a single partition and in every decomposition. In general, the c-producible decomposition |λ̃⟩
is not orthogonal, thus ρ is not diagonal. Moreover, the producibility of |λ̃⟩ is generally lost in
other decompositions.

2.2. Bounds for ME

First, we focus on pure states |ψ ⟩. We denote by x,y two sites of the lattices and by ô(x), ô(y)
local operators based on these sites. In this way, the variance of the Hermitian operator

Ô=
∑
x

ô(x) (2)

on |ψ ⟩ is defined as [4]

V[|ψ⟩, Ô]N = 4
∑
x,y

⟨ψ |ô(x)ô(y)|ψ ⟩c , (3)

being

⟨ψ |ô(x)ô(y)|ψ ⟩c ≡ ⟨ψ |ô(x)ô(y)|ψ ⟩− ⟨ψ |ô(x)|ψ ⟩⟨ψ |ô(y)|ψ ⟩ (4)

two-point connected correlations [59]. V[|ψ⟩, Ô]N coincides with the QFI for pure states [4].
In the following, the QFI for pure states will be also denoted as F[|ψ⟩, Ô]N. Importantly, the
same quantity is a witness of ME for these states. This means that, if (c, h)-entanglement, but
not (c+ 1,h ′)-entanglement (with h ′ ⩾ N

c+1 ), is present, then the inequality

V[|ψ⟩, Ô]N ⩽ 4k [c(N− h)+N] , (5)

holds [27]. Indeed, (5) bounds the quantum advantage offered by (c, h)-entanglement in terms
of the sensitivity, with respect to the shot-noise (separable) limit, V[|ψ⟩, Ô]N = 4kN. In (5),
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k= (m−n)2

4 if ô(x) is constrained, with eigenvalues n⩽ q⩽ m<∞ [59]. More in detail, (5)
generates other relevant bounds [27]: for instance, it can be extended choosing h= N

c , which
yields the bound for c-producibility V[|ψ⟩, Ô]N ⩽ 4kcN [4, 26]. This implies that its viola-
tion signals at least (c+ 1)-partite entanglement [8, 9]. The ultimate limit V[|ψ ⟩, Ô]N = 4kN2,
when |ψ⟩ hosts genuine ME, is called the Heisenberg limit. Another similar estimator for c,
generally supposed to be not an integer, was found in [28], see SM 1. Similarly, one can max-
imize in c the right-hand term of equation (5), setting c= N− h+ 1 and obtaining the bound
for h: V[|ψ⟩, Ô]N ⩽ 4k [(N− h+ 1)2 + h− 1] [27, 60].

Finally, we notice that, critically, if two lattice sites x and y belong to different partitions
and |ψ⟩ is producible, then ⟨ψ |ô(x)ô(y)|ψ ⟩c = 0, for every conceivable local operator ô, see
e.g. [61, 62]. This property can be exploited to demonstrate the bounds of producibility for
pure states recalled above, see SM 2.

Now, we focus on mixed states. We define as

V̄[ρ, Ô]N ≡ 4
∑
λ̃

pλ̃ (
∑
x,y

⟨λ̃|ô(x)ô(y)|λ̃⟩c) , (6)

the average variance in a producible decomposition, as in equation (1), while the average vari-
ance in a generic decomposition {pλ, |λ⟩} of ρ (functionally defined as in equation (6)) will
be again denoted generically as V[ρ, Ô]N. The corresponding functionals involving the sums
of the modula of the connected correlations will be denoted as |V|[ρ, Ô]N and |V̄|[ρ, Ô]N.

Starting from equation (1) and exploiting the bound in equation (5), we have that, see [27],
the inequality in equation (5) holds also for V̄[ρ, Ô]N in equation (6), the average variance

V̄[ρ, Ô]N ⩽ 4k [c(N− h)+N] , (7)

in the presence of (c, h)-entanglement for the densitymatrix ρ in equation (1), since
∑

λ̃ p̃λ = 1
[63, 64]. Actually, (c, h)-entanglement is a sufficient but not necessary condition for the validity
of equation (7). Moreover, maximizing in h the right-hand term in equation (7), the more
common bound [4]

V̄[ρ, Ô]N ⩽ 4kcN , (8)

is obtained. Correspondingly, maximizing in c the right-hand term in equation (7), h is bound as
V̄[ρ, Ô]N ⩽ 4k [(N− h+ 1)2 + h− 1]. Equation (7) is obtained by exploiting the producibility
of all the states |λ̃⟩, with the same c and h (but not necessarily the same space-partition), so that
the bound in equation (5) holds for all of them. Instead, no orthonormality hypothesis of the
|λ̃⟩ set is required. Moreover, note that the average variance for mixed states in a producible
decomposition is related to the pure state variance equation (3) via

V̄[ρ, Ô]N =
∑
λ̃

pλ̃V[|λ̃⟩, Ô]N . (9)

In this way, V̄[ρ, Ô]N also saturates the corresponding convexity inequality

V[ρ, Ô]N ⩽
∑
λ̃

pλ̃V[|λ̃⟩, Ô]N , (10)

valid in a generic decomposition [4].
As it will be required later on, we introduce the quantity

|V̄|[ρ, Ô]N ≡ 4
∑
λ̃

pλ̃ (
∑
x,y

|⟨λ̃|ô(x)ô(y)|λ̃⟩c|) , (11)
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(notice that |V̄|[ρ, Ô]N is not themodulus of V̄[ρ, Ô]N). The same bounds in equations (7) and (8)
also hold, in the presence of (c, h)-entanglement for the density matrix ρ in equation (1), for
|V̄|[ρ, Ô]N i.e. V̄[ρ, Ô]N ⩽ |V̄|[ρ, Ô]N, and |V̄|[ρ, Ô]N ⩽ 4kcN, both for pure states and mixed
states. The proof of the latter statement follows from the derivation presented in SM 2, where
the bound V̄⩽ 4kcN is shown for pure states. Then, the extension to mixed states is done as
from equation (7) to equation (6).

2.3. Relation with the QFI

Formixed states, the bounds in equations (7) and (8) are also valid for theQFI [4]. This quantity
is defined, in terms of the average variances in every decomposition {pλ, |λ⟩}, as follows [3,
65–67]:

F[ρ, Ô]N = 4Tr
[
ρ Ô2

]
− 4 sup

{pλ,|λ⟩}

∑
λ

pλ ⟨λ|Ô|λ⟩2 . (12)

Notice that we are denoting by {|λ⟩} a generic decomposition, while {|λ̃⟩} are the c-separable
states entering equation (1).

It turns out that {V̄[ρ, Ô]N,V[ρ, Ô]N}⩾ F[ρ, Ô]N, as formalized in the ‘so-called convex roof
theorem’ [65, 66]: for chosen ρ and Ô, the resulting QFI is the minimum average variance
between all the possible decompositions {pλ, |λ⟩} of ρ. The same property allows to demon-
strate immediately that the bounds in equations (7) and (8) also hold for the QFI, as it is well
known in literature [4]. We also stress that the convex inequality in equation (10) is fulfilled
also by the QFI, that is saturated for pure states.

In a (spectral) decomposition |n⟩, where ρ is diagonal, the QFI, denoted in the following as
F[ρ, Ô]N, is written as [4]

F[ρ, Ô]N = 2
∑
x,y

∑
n,m

(
pn− pm

)2
pn+ pm

⟨n|ô(x)|m⟩⟨m|ô(y)|n⟩ . (13)

The described non-trivial relation between the QFI F[ρ, Ô]N and the average variances
V[ρ, Ô]N calculated in generic decompositions {pλ, |λ⟩} can be illustrated considering for
instance a one-dimensional array of N= 6 spin-1/2, described by the XXZ Heisenberg
Hamiltonian in a transverse magnetic field,

H=−
N−1∑
i=1

[
Jx
2
(σ

(+)
i σ

(−)
i+1 +σ

(−)
i σ

(+)
i+1 )+ Jzσ

(z)
i σ

(z)
i+1

]
− hxSx , (14)

where Jx and Jz are exchange interactions, and Sβ =
∑

i
σ
(β)
i
2 (ℏ≡ 1), β = {x,y,z}. For hx = 0,

the total magnetization, Sz =
∑

i
σ
(z)
i
2 , is conserved, a fact exploited in [45] to compute the

QFI efficiently. Due to this symmetry, the operator Ô= Sx has ⟨λ|Ô|λ⟩= 0, ∀|λ⟩ with defin-
ite Sz. To analyze a mixed state scenario, we consider Markovian dissipation, according to a
Gorini–Kossakowski–Sudarshan–Lindblad master equation [68–70], with local spin-flip and
spin-dephasing noise described by jump operators Lm = {σ(x)

m ,σ
(z)
m } respectively. Dissipation

rates are denoted by γSx and γSz .
Figure 1 shows the time evolution of the different functionals F[ρ, Ô]N and V[ρ, Ô]N (here

both calculated in the diagonal decomposition), starting from the ground state of H, with Sz =
0, in the presence of two forms of dissipation. In figure 1(a), we include dissipation, as Li =
σ
(z)
i . As the Sz symmetry is conserved throughout the evolution, ⟨λ|σ(x)

i |ν⟩= 0 at any time,
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Figure 1. Dissipative evolution of a XXZ chain of N= 6 site, using exact diagonaliz-
ation, with a time-step of Jxdt/ℏ= 0.01, chosen to ensure numerical convergence. We
begin the evolution from the ground state of H, with Sz = 0, in the gapless phase for
Jz/Jx = 0.8, and study the evolution with (a) symmetry-respecting σ(z)

i dissipation, and

(b) symmetry-breaking σ
(x)
i dissipation. The observables for all panels are shown in

the legend of (a). We also defined M(Sx)≡ V[ρ,Sx]−F[ρ,Sx], with both V[ρ,Sx] and
F[ρ,Sx] calculated in a diagonal decomposition.

then both F[ρ, Ô]N and V[ρ, Ô]N reduce to the first term in equation (12), 4Tr[ρ Ô2]. In contrast,
when the dissipation Li = σ

(x)
i does not preserve the magnetization, as shown in figure 1(b),

then the QFI quickly differs from V[ρ, Ô]N, the last quantity being higher in value, as expected
from the convex roof theorem.

3. Discussion of conditions to estimate ME by correlation functions

3.1. The general problem

The producible decompositions |λ̃⟩ and pλ̃, where V̄[ρ, Ô]N is defined as in (6), are not gen-
erally known a priori. Thus, in order to be a useful witness of ME, V̄[ρ, Ô]N is required
to be calculable without the knowledge of |λ̃⟩. To focus on this central problem, it is use-
ful to decompose V̄[ρ, Ô]N into two terms: V̄[ρ, Ô]N ≡ V̄1[ρ, Ô]N− V̄2[ρ, Ô]N. The first term,
V̄1[ρ, Ô]N ≡ 4

∑
x,y

∑
λ̃ pλ̃ ⟨λ̃|ô(x)ô(y)|λ̃⟩, can be recast as

V̄1[ρ, Ô]N = 4
∑
x,y

Tr [ρ ô(x)ô(y)] = 4Tr[ρ Ô2] (15)

(the first term in equation (12)), where ρ and ô(x) are meant to be expressed in a generic
basis |α⟩ of the Hilbert space, possibly orthonormal, as |λ̃⟩=

∑
α cλ̃α|α⟩. This expression

does not depend explicitly on |λ̃⟩, thus it is covariant, and invariant in value, under changes of
decomposition. This transformation is realized via a unitary operator U, acting as (see SM 3):

√
pλ̃ |λ̃⟩= Uλ̃λ

√
pλ |λ⟩ . (16)

In contrast, the second term

V̄2[ρ, Ô]N ≡ 4
∑
x,y

∑
λ̃

pλ̃ ⟨λ̃|ô(x)|λ̃⟩⟨λ̃|ô(y)|λ̃⟩⩾ 0 (17)

is neither invariant nor covariant under the transformation U in general, hence to evaluate
it requires the explicit knowledge of |λ̃⟩. In turn, the non-covariance of V̄2[ρ, Ô]N makes it
difficult to calculate V̄[ρ, Ô]N in a generic decomposition, and to use it as an efficient ME
estimator. The same problem occurs in calculating the QFI, via [sup{pλ,|λ⟩}

∑
λ pλ ⟨λ|Ô|λ⟩2]

6
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in equation (12). This is the main reason why the cumbersome expression in equation (13)
must be used, in general.

3.2. Two conditions for the calculability of equation (6)

In the present subsection, we discuss two situations when the quantity∑
λ

pλ ⟨λ|Ô|λ⟩2 =
∑
λ

pλ
∑
x,y

⟨λ|ô(x)|λ⟩⟨λ|ô(y)|λ⟩ (18)

in equation (12) can be calculated, in a generic decomposition |λ⟩, in spite of the difficulties
mentioned above.

(a) Let first consider Ô as a semipositive or seminegative defined operator in the considered
Hilbert space.We recall that an operator ô is called positive definite on a given Hilbert state
if, for any vector |v⟩ on this space, ⟨v|ô|v⟩> 0. Similarly, it is called semi-positive definite

if ⟨v|ô|v⟩⩾ 0.Wemention for instance collective spin operators
(
S(x,y,z)

)2
=
∑

i

(
s(x,y,z)i

)2
for s> 1

2 or S̃
(x,y,z) =

∑
i

(
± sI+ s(x,y,z)i

)
for s⩾ 1

2 (notice that F[ρ,aI+ Ô]N = F[ρ, Ô]N).
In this condition, if ⟨λ|Ô|λ⟩= 0, for any state |λ⟩ in a chosen decomposition, then the
quantity in equation (18) vanishes in any other decomposition, since also

∑
λ ⟨λ|Ô|λ⟩=

Tr
[
ρ Ô

]
= 0 and Tr

[
ρ Ô

]
is invariant under changes of decompositions.

(b) Second, let us consider states with the property that

⟨λ|ô(x)|λ⟩ ≡ oλ (19)

is independent of x, for the chosen local operator ô(x) and for every |λ⟩ of a certain decom-
position. Translationally invariant states can be included, see more details below. In this
condition, the quantity in equation (18) is evaluated as follows. Defining Tr[ρ ô(x)ô(y)]≡
c(x,y) (appearing in V̄1[ρ, Ô]N, equation (15), and always depending on x and y), if∑

λ

pλ ⟨λ|Ô|λ⟩2 = N2 lim|x−y|→∞ c(x,y)≡ N2 c∞ , (20)

then it is possible to recast the average variance V[ρ, Ô]N, in the present decomposition
{pλ, |λ⟩}, as

V[ρ, Ô]N = 4 [
∑
x,y

c(x,y)−N2 c∞] . (21)

The conditions for the validity of equation (20) will be discussed in the next subsection.

Although evaluated in a specific decomposition, this functional will be used to determine
conditions under which it is possible to bound ME for the mixed state described by ρ. This
result will be shown in the next section, as well as the relation of the same functional with
V̄[ρ, Ô]N in equation (6) and with the QFI, F[ρ, Ô]N.

3.3. Derivation of equation (19)

In this section, we derive and motivate equation (21). In order to perform this task, we have
to discuss first the conditions for the validity of equation (20). For this purpose, beyond
equation (19), the second property that we assume at first is:

7
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⟨λ|ô(x)ô(y)|λ⟩ → ⟨λ|ô(x)|λ⟩⟨λ|ô(y)|λ⟩ , (22)

if |x− y| →∞ [71–73]. However, this property will be relaxed in the following subsections,
since eventually it will not be strictly required to justify equation (21) as an entanglement
witness.

Notice that the simultaneous validity of equations (19) and (22) requires strictly that
⟨λ|ô(x)ô(y)|λ⟩ does not depend on the unit vector of x− y, nor on x and y themselves, at
least if |x− y| →∞. Sufficient, but not necessary, conditions for this scenario are rotational
invariance and again translational invariance.

We also stress that, in order to guarantee that the one-point correlations are not point-
dependent, here translational invariance must be understood for every translation ai, con-
necting two sites of the lattice and for every state |λ⟩. For regular lattices, these translations
decompose into sums of translations inside a unit cell and primary lattice vectors, see e.g.
[74]. Finally, if the condition in equation (22) holds for every local operator ô(x), this is called
‘cluster decomposition’ in the literature.

Importantly, equation (22) does not imply at all that Tr [ρ ô(x)ô(y)] tends, even for large
space separations, to the product Tr [ρ ô(x))]Tr [ρ ô(y)]: this can be seen also as an effect of the
classical weights pλ, not encoding entanglement. Moreover, the fact that oλ is not x-dependent
implies the same fact for Tr [ρ ô(x))] =

∑
λ pλoλ. The opposite implication does not hold in

general, requiring further assumptions, as translational invariance.
We also comment that the latter property sets a tight limitation to the degree of producibility

c, even for a single pure state |ψ⟩: indeed, consider two adjacent points x and y: as argued in
section 2.2, if they belong to the same entangled subset |ψi⟩, then ⟨λ|ô(x)ô(y)|λ⟩c is nonzero
in general, otherwise the same quantity is forced to vanish. Translational invariance, for every
translation ai, connecting two sites of the lattice, implies

⟨λ|ô(x+ ai)ô(y+ ai)|λ⟩c = ⟨λ|ô(x)ô(y)|λ⟩c . (23)

From the discussion in section 2.2, the latter equality implies immediately that c= 1 or c=N.
More involved scenarios would be possible instead if translational invariance was allowed only
for a subset of the entire set of lattice-translation {ai}.

Under the two conditions in equations (19) and (22), the quantity in equation (18) can be
evaluated straightforwardly, leading to equations (20) and (21) (see more details in SM 5).
We stress that the same derivation exploits that all the states of the decomposition |λ⟩ fulfill
equation (22). However, the same property ceases to hold in general, as the decomposition
is changed along equation (16). Consequently, one can verify that equation (21) is not equal
to V̄[ρ, Ô]N nor to F[ρ, Ô]N, in general. Nevertheless, the same functional (21) will reveal still
useful to bound ME in any decomposition.

3.4. Comments on the space independence of the one-point correlations

Here, having in mind the point (b) of section 3.2, we discuss under which conditions the inde-
pendence of the one-point correlations on the point itself can hold in every decomposition.

At first, we consider, in a given decomposition |λ⟩, the matrix elements ⟨λ|ô(x)|λ⟩ and
⟨λ|ô(y)|λ⟩, y ̸= x, and we assume the stronger condition of translational invariance. Note that
we do not a priori require that these conditions hold in every decomposition.We can interpolate
between the two matrix elements above, writing:

⟨λ|ô(y)|λ⟩= ⟨λ|T̂y−x ô(x) T̂
−1
y−x|λ⟩ , (24)
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where T̂y−x = ei P̂(y−x) is a unitary translation operator, generated by the momentum operator
P̂. Here y− x is a multiple number of the lattice steps, possibly even in different primary
directions for regular lattices. If |λ⟩ in translationally invariant, then T̂y−x |λ⟩= ei k(y−x)|λ⟩, k
being the momentum quantum number. The space-dependent phases cancel out in the matrix
element ⟨λ|ô(y)|λ⟩, so that, in the end:

⟨λ|ô(y)|λ⟩= ⟨λ|ô(x)|λ⟩ , (25)

as expected. Notice that, critically, the same cancellation does not occur in general for the
off-diagonal matrix elements ⟨λ ′|ô(y)|λ⟩, |λ ′⟩ ̸= |λ⟩.

Consider now a second decomposition |η⟩: this is obtained from |λ⟩ as in equation (16), so
that:

⟨η|ô(y)|η⟩=
∑
λ,λ ′

√
pλpλ ′

pη
[U∗]λ ′ ηUηλ ⟨λ ′|ô(y)|λ⟩ . (26)

Importantly, the involved unitary matrix Uηλ is not space dependent, as well as the numerical
factors

√
pη and

√
pλ. Therefore, the only difference between the elements ⟨η|ô(y)|η⟩ and

⟨η|ô(x)|η⟩ can come from the phases ei k(y−x), ei k
′ (y−x), not canceling out in the off-diagonal

matrix elements ⟨λ ′|ô(y)|λ⟩, |λ ′⟩ ̸= |λ⟩.
We conclude that, if the states of the decomposition |λ⟩ are such that ⟨λ|ô(x)|λ⟩ does

not depend on x, the same property holds for another related decomposition |η⟩ (at least) if
⟨λ ′|ô(x)|λ⟩= 0 when |λ ′⟩ ̸= |λ⟩ and ∀x. A required, but not sufficient, condition, is clearly
that, in the same condition, also ⟨λ ′|Ô|λ⟩= 0. Due to equation (26), the same conclusion is
reached in the more general case when the independence of ⟨λ|ô(x)|λ⟩ is realized without
the strongest assumption of translational invariance (still provided the vanishing of the off-
diagonal matrix elements, assumed x-dependent).

Various examples are plausible with the feature described above. Consider for instance a
density matrix with an orthogonal decomposition (as a spectral one) |λ⟩, such that its elements
are eigenstates of Ô= Sz =

∑
iσ

(z)
i (i labelling the sites, now), as in the example of section 2.3,

with periodic boundary conditions. However, now all these states are characterized by different

eigenvalues of Ô. Since clearly
[
Sz,σ

(z)
i

]
= 0, then σ(z)

i |λ⟩=
∑

λ ′ ′ aλ,λ ′ ′ |λ ′ ′⟩, where |λ ′ ′⟩
are eigenstates of Sz with the same eigenvalue of |λ⟩. In the subspace spanned by the set |λ ′ ′⟩,
the same states |λ ′ ′⟩ can be always assumed to be arranged orthogonal to |λ ′⟩ ̸= |λ⟩. Therefore
⟨λ ′|σ(z)

i |λ⟩= 0.

3.5. Further comments on the property in equation (22)

In the following, we analyze some consequences of equation (22), relevant for our purposes.
In particular, the same equation immediately implies, and is implied by, that, for a certain pure
state |ψ⟩, the scaling ofV[|ψ⟩, Ô]N withN is below the Heisenberg one. Similarly, if the average
variance V[ρ, Ô]N in a certain decomposition {pλ, |λ⟩} can be written in the invariant form (21)
(then it is possible to set

∑
λ pλ o

2
λ = c∞), its scaling with N is below the Heisenberg one, and

vice versa.
These facts hold because, if

|⟨ψ |ô(x)ô(y)|ψ ⟩c| ∼ |x− y|−2α when |x− y| →∞ , (27)

then |V|[|ψ⟩, Ô]N, scales with N→∞ as [33, 41, 75]:

|V|[|ψ⟩, Ô]N ∼ N2−2α
d . (28)

9
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Notice that, as required by the simultaneous validity of equations (19) and (22) (see
section 3.5), in equation (27) we still assumed that ⟨λ|ô(x)ô(y)|λ⟩ does not depend on the unit
vector of x− y, nor on x and y themselves, at least if |x− y| →∞. Conversely, equation (27)
implies the scaling |⟨ψ |ô(x)ô(y)|ψ ⟩c| ∼ |x− y|−2α. Moreover, equation (28) completes the
previously known result (see e.g. [33, 41]) that |V|[|ψ⟩, Ô] increases extensively with N if
|⟨ψ |ô(x)ô(y)|ψ ⟩c| decays exponentially with |x− y|, as for short-range gapped systems.

It is immediate to check, by direct analogy, that the same proof of equation (28) [75] holds
for the link between |V|[ρ, Ô]N and the argument∑

λ

pλ |⟨λ|ô(x)ô(y)|λ⟩c| (29)

of the sum in x and y in its definition, as in equation (11).
From equation (28), it results that the ‘clustering’ property in equation (22) (α⩾ 0 in

equation (27)) is generally required, but not sufficient (since another operator ô(x) could
evade it), to have c<N, c bounded as in equation (5). Instead, its violation, α⩽ 0, implies
c=N. Actually, even when the point-independence holds of the one-point correlations in
equation (19), the described difficulty to evaluate V̄2[ρ, Ô]N in equation (17) (and c∞ in a gen-
eric decomposition {pλ, |λ⟩}) is directly related with the general violation of equation (22).

Finally, we notice that a lower bound for the scaling of c can be obtained further from
the failure of equation (22) and without exploiting the scaling of |V|[|ψ⟩, Ô]N: c∼ Nγ , γ ⩾
(d− 1)/d, see SM 4. This bound reflects the entanglement between a bulk point and the bound-
ary of the lattice implied by the failure of equation (22). Moreover, it demonstrates c∼ N in
the mean-field limit d→∞.

4. Use of the functional in equation (21) to bound ME

We are not able to provide constraints on a density matrix ρ, sufficient to assure that the prop-
erty in equation (22) holds in any decomposition. However, this task will turn out not to be
strictly required for our purposes.

Indeed, in the present section, we show how the functional in equation (21) can be exploited
to bound ME, provided that the property in equation (19) holds for each decomposition—even
without invoking the cluster decomposition property (22).

Two main situations can occur:
– c<N: in this case, the property in equation (22) holds for the decomposition {pλ̃, |λ̃⟩}

in equation (1), from the discussion of the previous subsection. Therefore, the average vari-
ance V̄[ρ, Ô]N can be expressed in the form of equation (21). The same expression is covari-
ant and invariant under changes of decomposition (therefore, it can be equivalently evaluated
in {pλ̃, |λ̃⟩} or in any other decomposition), and it is also equal to the QFI in the present
conditions:

V̄[ρ, Ô]N = V[ρ, Ô]N = F[ρ, Ô]N . (30)

Indeed, referring to equation (12):

sup
{pλ,|λ⟩}

∑
λ

pλ ⟨λ|Ô|λ⟩2 = inf
{pλ,|λ⟩}

∑
λ

pλ ⟨λ|Ô|λ⟩2 = c∞ . (31)

Therefore, equation (21) can be exploited to bound, via the bounds in the section 2.2, the
actual value of c. Clearly, this value must be lower than N, as implied also by the construction
of equation (21)).

10
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– c=N: in this case, if the property in equation (22) holds, everything works as in the
previous case, apart from the fact that now the estimated value of c by the functional V[ρ, Ô]N
in equation (21) can saturate to N.

Instead, if equation (22) does not hold, the same functional (not sharing any clear general
relation with F[ρ, Ô]N, at the best of our understanding), still calculated in a chosen work-
ing decomposition, can yield a lower value c<N (again by construction of equation (21)).
Therefore, a lower bound for c is still established.

5. Conclusions

We discussed some physical and mathematical conditions that make it possible to bound ME
for mixed quantum states, via one- and two-point correlation functions.

Our analysis holds for discrete systems, but it could be extended—although not
straightforwardly—to continuous systems [28, 76]. Further investigation is required to identify
other physically interesting cases, where our approach can be useful.
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