
Nonlinear Dyn (2023) 111:16271–16292
https://doi.org/10.1007/s11071-023-08723-0

ORIGINAL PAPER

A novel approximation method for the solution of weakly
nonlinear coupled systems

Daniel Johnston · Matthew Cartmell

Received: 27 February 2023 / Accepted: 16 June 2023 / Published online: 14 July 2023
© The Author(s) 2023

Abstract In this paper, we describe and illustrate the
application of a novel approximation technique for cou-
pled, nonlinear dynamic systems. The technique begins
by obtaining the analytical (or approximate analyti-
cal) solutions to the uncoupled system. Then, these
solutions are used to approximate particular terms in
the fully-coupled, nonlinear system in such a way that
the target system is amenable to (approximate) ana-
lytical solution algorithms. This work forms part of
a larger effort to develop robust control systems for
large-scale industrial manipulators. To this end, the
final example examined in this work considers the
FutureForge manipulator: a state-of-the-art manipu-
lator which forms part of a next-generation forging
platform under development at the Advanced Form-
ing Research Centre in Glasgow. To show the breadth
of applications of our approach, we also apply it to
more widely-recognised models like the Rayleigh and
Van der Pol oscillators. In both of these cases, we con-
sider a system of two oscillators each having dynamic
behaviour described by Rayleigh/Van der Pol oscilla-
tors and coupled together through the resulting damp-
ing matrices.
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1 Introduction

In the context of control systems design for highly non-
linear machines with high degrees of coordinate cou-
pling, obtaining a suitably linear model while minimiz-
ing uncertainty in the process is challenging. Specifi-
cally, in the context of industrialmachinery, the dynam-
ics and control of hybrid manipulators are topics which
have received much attention in recent years. This
paper puts forward a novel approximation technique
that helps to linearise and decouple the systems it is
applied to.Our intention behind the development of this
algorithm is to apply it in the control of an industrial
hybrid manipulator with reduced uncertainty by com-
parison to more commonly-used approaches. Through
this work, our approach to achieving insights into this
algorithm’s strengths, weaknesses, and general appli-
cability is based on empirical observations. In future
work, we will endeavour to calcify these observations
and extend the algorithm tomore generalised problems.

In the existing literature, many authors choose to
adopt techniques that render analytical models of the
plant unnecessary; or they solve a portion of the
model, ensuring that the controller can accommodate
the remaining error and uncertainty. Choi et al. elected
to consider the nonlinear damping in their manipulator
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as a disturbance to be compensated by the controller
[1]. This was also a consideration of Sun et al. who
produced a decentralized controller with a so-called
“extended high-gain observer” to help the systemwith-
stand a similarly defined disturbance [2]. Dogan et al.
and Okur et al. devised a means of expressing the con-
troller’s error signal as a function of the Jacobian in
the forward dynamics problem [3], [4]. In Dogan et
al.’s work, this resulted in the design of a learning-
based control system to accurately track the desired
end-effector placement. In Okur et al.’s work, this sim-
ilar approach led to the use of a backstepping control
strategy - enabled by the kinematic configuration of
their tendon-driven manipulator under scrutiny. This is
an approachmore recently interpreted byGul et al. who
used a PID controller alongside an adaptive estimator
which uses barrier Lyapunov functions to maintain a
bound on the error driving the control signal [5]. In an
adaptive control context, Guo et al. adopted a simpli-
fied model of the manipulator dynamics from Craig et
al.’s work in 1987 [6]. Based on a measurement of the
rate of parameter variations, constant approximations
were substituted in place of the systems’ inertia; and,
the stiffness and restoring forces were approximated as
linear in time [7]. Working with the state-space mod-
els, Saab and Ghanem approached this similarly by
approximating coupling terms and nonlinearities with
constants [8]. Andreev and Peregudova’s approach is
indicative of many others adopting adaptive control
for robotic manipulators whereby they split the iner-
tia, stiffness, and restoring force matrices into known
estimates and uncertain parts, thus providing a robust
predictor-corrector structuring for the controller [9].
Several other notable works have also treated nonlin-
earities and coupling terms as “uncertainties” for the
control system to adapt in accordance with [10], [11],
[12], [13].

Leite and Lizarralde also took this approach of using
an adaptive controller to resolve the complexities of a
nonlinear, coupled system. Through their cascade con-
troller design, they proposed to control a manipulator
with visual feedback and a predictor function based on
the “approximate analytical Jacobian” [14]. Friedrich
and Buss adopted feedback linearisation as a control
approach to cancel the nonlinearities of the governing
dynamics, while the coupling was taken care of via
their double-Youla approach [15]. Also known as the
dual Youla-Kucera approach, this is a means of finding
stabilizing parameters for a given plant and control sys-

tem. Helwa et al presented an adaptive multiloop con-
trol system in which the outer-loop featured a PD con-
troller and a Gaussian Process regression model [16].
With these in the outer-loop and an inverse dynam-
ics model in the inner-loop, the authors demonstrated
their approach as applicable “to any Lagrangian sys-
tem for which [linearisation techniques] can be used
to convert the nonlinear dynamics of the system to
a set of decoupled double integrators”. Meng et al.
designed a robust control system while only consider-
ing manipulator models with constant inertia, stiffness,
and restoring forces by designing a switching function
that allowed the controller to select the most appro-
priate model given the operating point of the structure
[17].

This paper is structured in the following manner.
Section 2 outlines the algorithm and demonstrates its
application to a range of appropriate systems. Section
2.1 deals with the example of a coupled system of
Rayleigh oscillators and Sect. 2.2 deals with the exam-
ple of a coupled system of Van der Pol oscillators. We
explain why these systems are considered in advance
of Sect. 2.1. We then illustrate the application of our
approach to a state-of-the-art hybridmanipulatorwhich
draws on findings from previous work [18,19]. In this
last example, we compare the result of our approx-
imation technique with that of a method considered
by some of the authors cited in our literature review.
Finally, Sect. 3 presents the main conclusions of this
work.

2 Development of the method with example
applications

This section outlines our proposed method for obtain-
ing approximate analytical solutions for nonlinear cou-
pled dynamics problems. Each example explores the
application of the technique to a different dynamic sys-
tem. In general terms, the algorithm distils to this: use
solutions to the uncoupled system behaviour to approx-
imate terms in the fully-coupled problem as necessary
to render it analytically solvable. In the subsequent
conclusion, we will note general observations on this
approach.

Derived initially to describe the acoustic vibration of
a clarinet reed, the Rayleigh oscillator has since been
used in many applications [20] ranging from robotic
bipedalmotion [21] to oscillatory phenomena observed
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in chemical reactions [22]. Given its breadth of applica-
tions and the depth of analysis devoted to it, we use this
as an illustrative case to demonstrate our approximation
technique. For similar reasons wewill also consider the
Van der Pol oscillator as a further example. These two
oscillator models can be derived from one another [23]
and they both feature heavily in the study of limit cycle
motion and self-sustained vibrations. The Van der Pol
oscillator has also appeared in the modelling of vortex
shedding patterns in the wake regions of slender bluff
bodies [24] as well as in the study of voltage oscilla-
tions in electrical circuits (the original context which
led to its derivation) [23].

A key feature of these oscillators is their relatively
weak damping properties (for small values of ε < 1)
which can either feed energy to the systems or dissipate
energy from them according to their nonlinear damping
coefficient [25].Aswill be seen in the examples that fol-
low the accuracy of our approximation technique is par-
tially informed by the accuracy of an approximate ana-
lytical solution of the uncoupled problems considered.
To explain briefly: in the case of the Van der Pol oscil-
lator systemwe use the Lindstedt-Poincaré approach to
solve a system of uncoupled oscillators first, and then
use this approximate solution to inform our approxi-
mation of the coupled system. Thus, the low damping
exhibited in the Rayleigh and Van der Pol oscillators
allows these to serve as good illustrative examples for
our purposes.

Both the Rayleigh and Van der Pol systems stud-
ied here have relatively weak nonlinear and coupling
effects due to the values of the parameter ε in both
cases. Discussion of these problems then only gives us
insight into similar problems: those where the nonlin-
ear and coupled damping effects areweak relative to the
inertia and restoring effects. The FutureForge manip-
ulator system presented in Sect. 2.3 is not one of these
systems and so presents an extension of the method’s
observed applicability. In future work, we will look to
expand the range of systems considered. However, for
the problems in this current work, the results presented
here are similar for all those with ε < 0.5.

2.1 Application to a system of Rayleigh oscillators

2.1.1 Problem specification

In this section, we consider the following system

{
ÿ1
ÿ2

}
+ε

[
ẏ21 − 1 −1
−1 ẏ22 − 1

] {
ẏ1
ẏ2

}
+

{
y1
y2

}
=

{
0
0

}
(2.1)

which is in an analogous form to the Rayleigh Differ-
ential Equation. This can be written in the simplified
form

Ÿ + P(Ẏ ; ε)Ẏ + Y = 0 (2.2)

where P(Ẏ ; ε) is the damping matrix including the
small parameter ε.

P(Ẏ ; ε) = ε

[
ẏ21 − 1 −1
−1 ẏ22 − 1

]
(2.3)

Thismethod aims to find suitably accurate approximate
analytical solutions for y1 and y2. Our simulations of
this system will involve the following generalised ini-
tial conditions

y1(0) = a, ẏ1(0) = b, y2(0) = c, and ẏ2(0) = d

(2.4)

where a, b, c, and d are constants.

2.1.2 Solution of the uncoupled system

First, we define the uncoupled system by

{
φ̈1

φ̈2

}
+ε

[
φ̇2
1 − 1 0
0 φ̇2

2 − 1

] {
φ̇1

φ̇2

}
+

{
φ1

φ2

}
=

{
0
0

}
(2.5)

where we have used φk = φk(t) to denote the uncou-
pled equivalents of yk = yk(t). By approaching this
problem using a technique such as the Lindstedt-
Poincaré method, we can obtain asymptotic approxi-
mations of its solutions

φk ≈
n∑
j=0

ε jφk, j (τk), k ∈ {1, 2}, n ∈ {0, 1, 2, · · · }

(2.6)

where τk is the stretched coordinate,

τk = t
n∑
j=0

ε jωk, j , (2.7)
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n is the same as in Eq. (2.6), and the constant values
of ω j are selected so as to remove secularity from the
resulting solutions. By substituting Eq. (2.6) and its
first two time-derivatives into the uncoupled system
(2.5), we can obtain the O(ε0) perturbation equations
for φ1(t),

ω2
1,0φ

′′
1,0(τ1) + φ1,0(τ1) = 0, (2.8)

and for φ2(t),

ω2
2,0φ

′′
2,0(τ2) + φ2,0(τ2) = 0, (2.9)

with higher-order perturbation equations being gath-
ered in the usual fashion. Solving these gives us ana-
lytical expressions for the asymptotic approximations
of φ1 and φ2.

2.1.3 Approximation and solution of the fully-coupled
system

Our approach proposes that we now substitute the
uncoupled solutionsφk into the fully-coupled system in
a way that renders it solvable through analytical means.
One way of doing this would be to substitute φ1 and φ2

in place of y1 and y2 respectively (and their derivatives)
in P(Ẏ ; ε)Ẏ in Eq. (2.2).

R ≈ −P(Ẏ ; ε)Ẏ

R = −ε

[(
φ̇1(t)

)2 − 1 −1

−1
(
φ̇2(t)

)2 − 1

] {
φ̇1(t)
φ̇2(t)

}
=

{
R1
R2

}

(2.10)

This simplifies the original system (2.2) into a systemof
two uncoupled simple harmonic oscillators with exci-
tations applied to both.

Ÿ + Y = R (2.11)

Finding the complementary functions for this sys-
tem is very simple. For generality, we use the forms

y1,c f = K1,1ψ1(t) + K1,2ψ2(t) (2.12)

and

y2,c f = K2,1ψ1(t) + K2,2ψ2(t) (2.13)

whereψ1(t) = ψ1 andψ2(t) = ψ2 are the bases of the
solutions. Using ψ1 = cos(t) and ψ2 = sin(t), we can
use the method of variation of parameters to compute
the general form of the particular integral. Finding the
Wronskian

W = ψ1ψ̇2 + ψ2ψ̇1, (2.14)

we can find the particular integrals as

y1,ps = −ψ1

∫
ψ1R1

W
dt + ψ2

∫
ψ2R1

W
dt (2.15)

and

y2,ps = −ψ1

∫
ψ1R2

W
dt + ψ2

∫
ψ2R2

W
dt. (2.16)

By computing these, and summing them with their
corresponding complementary function, we obtain the
general solutions of the system. We can obtain the par-
ticular solutions by applying the generalised initial con-
ditions.

2.1.4 Implementation and simulation

To illustrate the method and demonstrate its practical
implementation, we consider the scenario of

y1(0) = 2, ẏ1(0) = 0, y2(0) = −1, and ẏ2(0) = −√
3

(2.17)

with ε = 0.01, and we will use only the O(ε0) asymp-
totic approximation to determine our coupled approx-
imation. The numerical solution, which we will use
as our reference for the success (or otherwise) of our
approach, yields the following plots of the generalised
coordinates (Fig. 1).

Solving the uncoupled system (2.5) by means of the
perturbation method described previously, under the
conditions in (2.17), we obtain the generating solutions

φ1 = a cos(t) + bω1,0 sin(t)

= 2 cos(t)
(2.18)

and

φ2 = c cos(t) + dω2,0 sin(t)

= − cos(t) − √
3 sin(t).

(2.19)
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Fig. 1 Numerical solutions
to the coupled Rayleigh
oscillator system

These solutions are plotted in Fig. 2a to visualise their
comparison with the numerical solution of the uncou-
pled system (2.5). We compute the relative error in
these solutions by subtracting the numerical solutions
from the Lindstedt-Poincaré solutions and dividing the
results by the amplitude, 2, of the signals.

These then become the excitations, R, applied to the
approximation of the coupled system. Accordingly, for
computing the particular integrals of the solutions y1
and y2 in Eqs. (2.15) and (2.16), this means that

R1 = −ε

(
c sin(t) − d cos(t) + (

b cos(t) − a sin(t)
)

(
− 1 + (

b cos(t) − a sin(t)
)2))

= −0.0173205 cos(t) + 0.05 sin(t) − 0.02 sin(3t)
(2.20)

and

R2 = −ε

(
a sin(t) − b cos(t) + (

d cos(t) − c sin(t)
)

(
− 1 + (

d cos(t) − c sin(t)
)2))

= 0.034641 cos(t) − 0.04 sin(t) − 0.02 sin(3t).
(2.21)

By computing the particular integrals and summing
themwith the corresponding complementary functions,

we arrive at

y1 = (
K1,1 − 0.00433013 − 0.025t

)
cos(t)

+ (
K1,2 + 0.0125 − 0.00866025t

)
sin(t)

+ 0.0025 sin(3t)

(2.22)

as the general solution for y1, and

y2 = (
K2,1 + 0.00866025 + 0.02t

)
cos(t)

+ (
K2,2 − 0.01 + 0.0173205t

)
sin(t)

+ 0.0025 sin(3t)

(2.23)

as the general solution for y2. By applying the initial
conditions to these two general solutions and their first
derivatives, we arrive at the following particular solu-
tions.

y1 = (
2 − 0.025t

)
cos(t)

+ (
0.0175 − 0.00866025t

)
sin(t) + 0.0025 sin(3t)

(2.24)

y2 = ( − 1 + 0.02t
)
cos(t)

+ ( − 1.75955 + 0.0173205t
)
sin(t)

+ 0.0025 sin(3t) (2.25)

These solutions are plotted in Fig 3a and their relative
error is shown in Fig 3b.

To give context to the accuracy of this effort, Fig. 4
shows the relative error of our method alongside the
relative error in the O(ε0) Lindstedt-Poincaré solution
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Fig. 2 a The O(ε0)

Lindstedt-Poincaré
solutions of the uncoupled
Rayleigh oscillator system;
and, b the relative error in
these solutions

of the uncoupled problem. Although these errors are
clearly produced by different techniques and differ-
ent problems, this graph illustrates that the accuracy
of our method degrades at a slightly faster rate than
this widely-known method for the uncoupled problem.

2.2 Application to a system of Van der Pol oscillators

2.2.1 Problem specification

We now consider the case of a coupled system of two
Van der Pol oscillators.

{
ÿ1(t)
ÿ2(t)

}
+ ε

[
y1(t)2 − 1 y1(t)2

y2(t)2 y2(t)2 − 1

] {
ẏ1(t)
ẏ2(t)

}

+
{
y1(t)
y2(t)

}
=

{
0
0

}
(2.26)

We note that this can be generalised into the same
form as the system of Rayleigh oscillators in Sect. 2.1,
Eq. (2.2), although, this system’s damping matrix is
dependent on Y rather than Ẏ .

P(Y ; ε) = ε

[
y21 − 1 y21
y22 y22 − 1

]
(2.27)

For generality, we use the same notation for the gener-
alised initial conditions as were used in Sect. 2.1.
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Fig. 3 a Approximate
analytical solutions of the
coupled Rayleigh oscillator
system. b Relative error in
the solutions illustrated in
(a)

Fig. 4 Comparison of the
relative errors in our
approximation of the
coupled system’s behaviour
versus the O(ε0)

Lindstedt-Poincaré solution
of the uncoupled problem
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Fig. 5 a Approximate
analytical solutions of the
coupled Van der Pol
oscillator system. b Relative
error in the results shown in
(a)

2.2.2 Solution of the uncoupled system

The uncoupled system, in this example, is very similar
to the previous example.

{
φ̈1

φ̈2

}
+ ε

[
φ2
1 − 1 0
0 φ2

2 − 1

]{
φ̇1

φ̇2

}
+

{
φ1

φ2

}
=

{
0
0

}

(2.28)

Despite this slight difference to the previous uncoupled
system, Eq (2.5), the perturbation method is identical
and leads to identical uncoupled solutions at the O(ε0)-
level. This is because the difference between the two
systems is limited to the stiffness matrix, P , which is
O(ε1) in its contribution to the overall system dynam-
ics. Thus, the generating problems for these solutions
are Eqs. (2.8) and (2.9).

2.2.3 Approximation and solution of the fully-coupled
system

While the definition of the damping, P(Y ; ε), has no
impact on the uncoupled solution by comparison with
the previous example, it contributes significantly to the
form of our non-homogeneous term in the approxima-
tion of the coupled system.

R = −ε

[
φ2
1 − 1 φ2

1
φ2
2 φ2

2 − 1

] {
φ̇1(t)
φ̇2(t)

}
=

{
R1

R2

}
(2.29)

Using this, the coupled system is approximated by a
simple harmonic oscillatorwith an excitation described
by Eq. (2.11).
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2.2.4 Implementation and simulation

To illustrate the implementation in this scenario, we use
the same initial conditions and ε-value as in Sect. 2.1.
The reason for doing this is that it gives us an insight
into the impact of the differing complexities of the stiff-
ness matrix.

As should be expected, Fig. 2a and b also represent
the uncoupled solution of the Van der Pol system dis-
cussed in this section. However, there is a significant
reduction in the approximation error when we consider
the approximate analytical solutions produced by our
method.
As can be seen in Fig. 5b, the maximum error is less
than 2.5% for this example while it was close to 7% in
the previous example (see Fig. 3b).

2.2.5 The impact of higher-order approximations of
the uncoupled system

An intuitive means of increasing the accuracy of the
approximations of the uncoupled system may be to
increase the accuracy of the solutions to the uncoupled
system. This idea has some intuitive support. Finding
the O(ε0) and O(ε1) uncoupled solutions and then sub-
stituting both of these into the fully-coupled system, as
we have shown previously, we can see the following
reduction in the relative errors (Fig. 6).

There is clearly some small benefit in using the
O(ε1) approximations for the uncoupled problems.
However, there is a significant increase in the com-
putational complexity of then attempting to solve
the approximation of the coupled system analytically.
Given the motivation behind using this approach in
the first instance, we don’t find a significant advan-
tage in using the O(ε1) approximation despite itsminor
improvement in accuracy.

In Fig. 7a and bwe illustrate the error growth arising
from our approximation in comparison to that arising
from the standard Lindstedt-Poincaré solution of the
uncoupled Van der Pol oscillator. Notably, our approx-
imation retains higher accuracy than the O(ε0) uncou-
pled solution until t = 10 for y1(t) and around t = 5
for y2(t). Additionally, this error growth indicates the
presence of secular terms in our approximate solution
which do not occur in the Lindtedt-Poincaré approach.
In further work, we will look to examine a means of
accounting for such behaviour appropriately.

2.3 Application to the dynamics of the FutureForge
manipulator

2.3.1 Problem specification

TheFutureForgemanipulator is a large-scale industrial
manipulator designed to manoeuvre metallic work-
pieces in, out, and around a state-of-the-art forging
environment. In particular, one of the critical areas of
performance for this manipulator should be its ability
to place accurately and manoeuvre metallic specimens
through treatment in the hydraulic press. The wider
scope of our work is to develop a control system for
this manipulator (Fig. 8).

Considering the structure of this manipulator, rather
thanfitting into the traditional categories of either series
or parallel manipulators, this is a hybrid structure as a
series of parallelograms. The advantage to this is that
it has the enhanced workspace reach of a serial manip-
ulator with the rigidity of a parallel manipulator.

Previous work [19] derived the equations of motion
of this manipulator as

(
a1 + a2 cos(2α)

)
α̈ + (

a3 cos(α − β) + a4 cos(α + β)
)
β̈

+ (
a5 + a6 sin(2α)α̇

)
α̇ + (

a7 sin(α − β) + a8

× sin(α + β)
)
β̇2 + a9 cos(α) + a10 sin(α) = Qv

(2.30)

and

(
b1 + b2 cos(2β)

)
β̈ + (

b3 cos(α − β) + b4 cos(α + β)
)
α̈

+ (
b5 + b6 sin(2β)β̇

)
β̇ + (

b7 sin(α − β) + b8

× sin(α + β)
)
α̇2 + b9 cos(β) + b10 sin(β) = Qh .

(2.31)

in the generalised coordinates, α = α(t) and β = β(t),
marked in the schematic diagram Fig 8, and with the
applied torques Qv and Qh from the hydraulic actu-
ators on the base of the manipulator. Note that the ak
and bk (k ∈ {1, · · · , 10}) coefficients are all constants
determined by the lengths, masses, and moments of
inertia of the manipulator components. Conveniently,
this system of equations can be written in the matrix
form

M(	)	̈ + P(	, 	̇)	̇ + G(	) = Q(t) (2.32)

where 	 = [α, β]T , Q(t) = [Qv, Qh]T ,

123



16280 D. Johnston, M. Cartmell

Fig. 6 a Relative errors
resulting from using the
O(ε0) and O(ε1)

approximations of the
uncoupled system. b
Improvement in relative
error offered by using
O(ε1) uncoupled
approximation rather than
the O(ε0) solution

M(	) =
[

a1 + a2 cos(2α) a3 cos(α − β) + a4 cos(α + β)

b3 cos(α − β) + b4 cos(α + β) b1 + b2 cos(2β)

]
, (2.33)

P(	, 	̇) =
[

a5 + a6 sin(2α)α̇ a7 sin(α − β)β̇ + a8 sin(α + β)β̇

b7 sin(α − β)α̇ + b8 sin(α + β)α̇ b5 + b6 sin(2β)β̇

]
, (2.34)

and

G(	) =
[
a9 cos(α) + a10 sin(α)

b9 cos(β) + b10 sin(β)

]
. (2.35)

2.3.2 Solution of the uncoupled system

In [18] the solution of uncoupled actuation scenarios
of this manipulator was investigated. Between this and
[19], it is shown that the system can be written as

[
a1 + a2 cos(2α) 0

0 b1 + b2 cos(2α)

] {
α̈

β̈

}

+
[
a5 + a6 sin(2α)α̇ 0

0 b5 + b6 sin(2β)β̇

]{
α̇

β̇

}

=
{
Fv

Fh

}

(2.36)
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Fig. 7 Comparisons of the
relative errors in: a our
approximation of the
coupled-y1(t) versus the
O(ε0) Lindstedt-Poincaré
solution of the
uncoupled-y1(t); and, b our
approximation of the
coupled-y2(t) versus the
O(ε0) Lindstedt-Poincaré
solution of the
uncoupled-y2(t)

Fig. 8 A schematic
diagram of the FutureForge
manipulator with all joints
named and generalised
coordinates marked. This
schematic is also shown
previously in [19] and in
[18]
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Table 1 Parameters describing simulation scenarios

Case Vertical parameters Horizontal parameters t (secs)
α(0) (rad) Fv (kNm) β(0) (rad) Fh (kNm)

1 −0.305 30 2.094 −55 2

2 −0.305 30 2.094 −27.5 2

3 −0.305 15 2.094 −55 2

4 −0.305 15 2.094 −27.5 2

5 0 15 2.094 −55 2

6 −0.305 30 1.571 −27.5 2

7 0 15 1.571 −27.5 2

8 −0.305 25 1.047 40 2

9 −0.305 25 1.047 20 2

10 −0.305 12.5 1.047 40 2

11 −0.305 12.5 1.047 20 2

12 0 12.5 1.047 40 2

13 −0.305 25 1.571 20 2

14 0 12.5 1.571 20 2

where Fv and Fh are the remainders of the excitation
termswhen the components counteractinggravitational
restoring forces are removed. It was then subsequently
shown, in [18], that an approximate analytical solu-
tion of this system can be obtained via a perturbation
method and introducing a small parameter, ε, via its
nonlinear terms. The O(ε0) problems for this method
were given to be

a1α̈0 + a5α̇0 = Fv (2.37)

and

b1β̈0 + b5β̇0 = Fh (2.38)

in which α0 and β0 are the leading-order terms in the
asymptotic approximations of α and β. These can be
solved to give the O(ε0) approximate solutions in the
forms

α ≈ Kv,1 + Kv,2e
− a5

a1
t + Kv,3t (2.39)

and

β ≈ Kh,1 + Kh,2e
− b5

b1
t + Kh,3t (2.40)

where the K -terms are constants determined by the spe-
cific problem parameters. In the general case, these can

be written as follows

Kv,1 = uv0 + a1
a5

vv0 − a1
a25

Fv (2.41)

Kv,2 = −a1
a5

vv0 + a1
a25

Fv (2.42)

Kv,3 = 1

a5
Fv (2.43)

Kh,1 = uh0 + b1
b5

vh0 − b1
b25

Fh (2.44)

Kh,2 = −b1
b5

vh0 + b1
b25

Fh (2.45)

Kh,3 = 1

b5
Fh (2.46)

where uv0 and vv0 are the initial position and velocity
conditions respectively for Eq. (2.30); uh0 and vh0 are
the initial position and velocity conditions respectively
for Eq. (2.31); and, Fv and Fh are the actuating torques
in these two problems.

2.3.3 Approximation and solution of the fully-coupled
system

To approximate the fully-coupled system,we use a sim-
ilar approach as in the previous two examples of theVan
der Pol and Rayleigh oscillators. In one of the system’s

123



A novel approximation method... 16283

Fig. 9 For the simulation
of Case 1: a the
approximations of α(t); b
the percentage error in the
approximation of α(t); c the
approximations of β(t);
and, d the percentage error
in the approximation of β(t)

equations,

M1,1(α)α̈ + M1,2(α, β)β̈ + P1,1(α, α̇)α̇

+P1,2(α, β, α̇, β̇)β̇ = Fv, (2.47)

we substitute β for the approximate uncoupled solution
Eq. (2.40); and, for the other equation,

M2,1(α, β)α̈ + M2,2(β)β̈ + P2,1(α, β, α̇, β̇)α̇

+P2,2(β, β̇)β̇ = Fh, (2.48)

we substitute α for the approximate uncoupled solution
Eq. (2.39). We denote these approximations α(t) ≈
f (t) and β(t) ≈ g(t). The system can then be written
as

M1,1(α)α̈ + P1,1(α, α̇)α̇

= Fv − M1,2( f, g)g̈ − P1,2( f, g, ḟ , ġ)ġ (2.49)

M2,2(β)β̈ + P2,2(β, β̇)β̇

= Fh − M2,1( f, g) f̈ − P2,1( f, g, ḟ , ġ) ḟ (2.50)

which is in a similar form to the uncoupled actuation
problem. For readability through the rest of this work,

we denote

M1,2( f, g) = M̃1,2

P1,2( f, g, ḟ , ġ) = P̃1,2

M2,1( f, g) = M̃2,1

P2,1( f, g, ḟ , ġ) = P̃2,1.

(2.51)

The key difference between this system and the uncou-
pled one is the structure of the excitation terms which
can present a challenge for analytical solution meth-
ods. As a result, we further approximate the system
by finding Taylor Series expansions of the excita-
tion terms. With regards to the order of expansions
required, we notice that higher-order terms do not sig-
nificantly increase computational complexity for these
cases (merely the number of terms that must be com-
puted) since the difficulty that they allow us to over-
come is the integration of the transcendental terms in
the excitations of our approximated model. In practice,
the order of expansion used here is at the practitioners’
discretion. Through trial and error, we notice an accept-
able loss of accuracy when using a 10th-order Taylor
Series approximation in both equations as will be illus-
trated in the next section. In the following equations,
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Fig. 10 For the simulation of Case 1, these figures are closer
inspections of the percentage error in the approximations of a
α(t); and, b β(t)

we use the function h(·) to indicate that (·) has been
approximated in this way.

With the system approximated in this manner, we
proceed with an analytical solution via the method of
variation of parameters. The nonlinear terms occurring
on the left-hand sides of Eqs. (2.49) and (2.50), i.e. on
the diagonals of M and P , mean we can benefit from
reusing a perturbationmethod as in the uncoupled case.
As such, we introduce the small perturbation parameter
via a2 = εã2, a6 = εã6, b2 = εb̃2, and b6 = εb̃6 to
give

a1α̈ + a5α̇ + ε
(
ã2 cos(2α)α̈ + ã6 sin(2α)α̇2)

= Fv − h(M̃1,2g̈ + P̃1,2 ġ) (2.52)

and

b1β̈ + b5β̇ + ε
(
b̃2 cos(2β)β̈ + b̃6 sin(2β)β̇2)

= Fh − h(M̃2,1 f̈ + P̃2,1 ḟ ). (2.53)

As such, whenwe introduce the generalised asymptotic
approximations

α(t) ≈
n∑

k=0

(
αk(t)ε

k
)

(2.54)

β(t) ≈
n∑

k=0

(
βk(t)ε

k
)

(2.55)

for any positive integer value of n, and substitute them
into Eqs. (2.52) and (2.52), we find the following per-
turbation equations at the generating level.

a1α̈0 + a5α̇0 = Fv − h(M̃1,2g̈ + P̃1,2 ġ) (2.56)

b1β̈0 + b5β̇0 = Fh − h(M̃2,1 f̈ + P̃2,1 ḟ ) (2.57)

Solving these equations analytically is not overly trou-
blesome with determining the particular integral made
simple via the method of variation of parameters. Due
to the high order of Taylor Series approximation used
for h, we refrain from writing the full form of the solu-
tion explicitly in this work.

2.3.4 Implementation and simulation

In testing the algorithm, we undertake a range of
manoeuvres as detailed in Table 1. These particular
manoeuvres and torques are chosen because they allow
us to observe howour approximation performswith dif-
ferent excitations and different initial configurations.
For the manoeuvres with durations of t = 2 seconds,
we will also inspect the shorter timescale performance
from the same set of results as necessary.

Throughout this section, we compare our approxi-
mate analytical solution to one that is commonly used
in the control of manipulators such as this one. This
method essentially regards all nonlinearities as distur-
bances/uncertainties in the system model. So, we can
represent it here as the solutions to the uncoupled prob-
lem in Eq. (2.36).

For Case 1, Fig. 9a–d, the error of our approach is
initially lower than that of the uncoupled approxima-
tion before it grows rapidly and extremely high around
t = 1 second in both the vertical and horizontal case.
In Fig. 10a and b, we restrict the displayed time interval
as well as the percentage error to highlight the compar-
ative performance over shorter timescales.
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Fig. 11 For the simulation of Case 2: a the approximations of α(t); b the percentage error in the approximation of α(t); c the
approximations of β(t); and, (d) the percentage error in the approximation of β(t)

Fig. 12 Acloser inspection of the percentage error in the approx-
imation of β(t) in Case 2

ForCase2, Fig. 11a–d,we seevery similar behaviour
to that observed in Case 1. The difference between
these scenarios is the value of the excitation torque
Fh . With the lower value of Fh in Case 2, we observe
that the rapid growth of error in our approximation of
α is delayed slightly: more notably occurring just after
t = 1 (comparing Figs. 10a and 11b). Additionally, in
this case, the error growth in β seems slower before it
eventually surpasses that of the uncoupled approxima-
tion at approximately the same time as in the previous
case (comparing Figs. 10b and 12).

For Case 3 and those that follow, we default to dis-
playing a restricted interval in the time domain. We do
so with the proviso that the rapid growth in error seen
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Fig. 13 For the simulation
of Case 3: a the
approximations of α(t); b
the percentage error in the
approximation of α(t); c the
approximations of β(t);
and, d the percentage error
in the approximation of β(t)

Fig. 14 For the simulation
of Case 4: a the
approximations of α(t); b
the percentage error in the
approximation of α(t); c the
approximations of β(t);
and, d the percentage error
in the approximation of β(t)
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Fig. 15 For the simulation
of Case 5: a the
approximations of α(t); b
the percentage error in the
approximation of α(t); c the
approximations of β(t);
and, d the percentage error
in the approximation of β(t)

Fig. 16 For the simulation
of Case 6: a the
approximations of α(t); b
the percentage error in the
approximation of α(t); c the
approximations of β(t);
and, d the percentage error
in the approximation of β(t)
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Fig. 17 For the simulation
of Case 7: a the
approximations of α(t); b
the percentage error in the
approximation of α(t); c the
approximations of β(t);
and, d the percentage error
in the approximation of β(t)

in Cases 1 and 2 can also be observed similarly in all
cases. The error in this simulation of α is seen to be
lower than in Case 1 and similar to that in Case 2 (over
the restricted domain in t). Equally, the error in the
Case 3 simulation of β is seen to be lower than in Case
1 and slightly lower than that in Case 2 (Fig. 13).

In Case 4, the errors computed for both α and β are
lower than in Cases 1–3 (Fig. 14).

In Case 5, we see our approach perform more desir-
ably than for Cases 1 and 2. However, it exhibits a
significant loss in accuracy in comparison to Case 4
(Figs. 15, 16, 17).

In the interest of comparing the accuracy of our
approach versus the uncoupled approximation in Cases
1–7,we showFig. 18a andb.The curves on these graphs
are found by subtracting the error of our approach from
the error of the uncoupled approximation. Therefore,
when a curve is greater than 0 on the vertical axis, our
approximation is superior at that point.

For interest, we highlight that Case 2 is the only
simulation (of these seven) that sees our approximation
initially produce a less accurate result. The curve for
this particular simulation, however, soon surpasses the
reference approach.

Fig. 18 For Cases 1–7, we compare the percentage errors in our
coupled approximation versus the uncoupled approximations for
a the vertical actuation coordinate, α(t); and, b the horizontal
actuation coordinate, β(t)
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Fig. 19 Comparison of the percentage errors in our coupled
approximation versus the uncoupled approximation for α(t) in
Cases 1–7

In Cases 1–7, for α(t), Case 3 exhibits the great-
est improvement in accuracy while Case 4 shows the
longest retention of its accuracy.Case 7 appears to show
the lowest improvement in the accuracy for this set of
simulations. And, Case 6 is the first to become less
valuable than the reference approach. For β(t), Case 2
shows the highest improvement in accuracy (although
closely followed by Case 1) while Case 7 is the only
result in this set of simulations (for either coordinate) to
show no improvement by comparison to the reference
method. Additionally, for β(t), Case 6 retains supe-
rior accuracy for the longest duration by contrast to the
aforementioned Case 7.

In Cases 8–7, we see some similarities in compari-
son to the previous cases. However, there are also some
key differences which will be reflected upon in the sub-
sequent section.

In this set of simulations, forα(t), Case 12 shows the
greatest improvement in accuracy while Case 14 shows
the least. Case 13 retains its superiority for the longest
duration, and Case 9 is the first to degrade below the
reference method’s accuracy. Note that Case 14 ini-
tially dips below the 0% improvement line, but rises
up beyond this and retains its benefit for longer than
Cases 9 or 11. Regarding β(t) in Cases 8-14, Case 12
exhibits the greatest improvement in accuracy as Case
13 exhibits the least (showing largely inferior perfor-
mance to the uncoupled approximation). Additionally,
it is also Case 12 that retains its accuracy for the longest
duration while Case 13 is also the first to degrade.

Fig. 20 For Cases 8–14, we compare the percentage errors in
our coupled approximation versus the uncoupled approximations
for a the vertical actuation coordinate, α(t); and, b the horizontal
actuation coordinate, β(t)

2.3.5 Discussion regarding the FutureForge
manipulator simulations

In the simulations detailed in Table 1, we have explored
the following question. Is the accuracy of our approach
affected by changing actuation forces, initial condi-
tions, and/or manoeuvre durations? Clearly, yes. A
question remains though as to how precisely these
changes impact the accuracy of our approximations.

In the first set of simulations, Cases 1–7, the greatest
improvement offered by our approximation was found
in Cases 1–4. In these cases, we are varying the excita-
tions applied to the systemwhilemaintaining the initial
conditions across them. Cases 5–7, in which we varied
the initial conditions while maintaining the excitations,
generally performed worse than Cases 1–4. That being
said, a small improvement in accuracy was still exhib-
ited in these results. In the second set of simulations,
Cases 8–14, the improvement offered by our approx-
imation technique was generally lower than in Cases
1–7 although still present. Inevitably, the accuracy of
our method will stem from how reasonable it is to use
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Fig. 21 A comparison of
our approximation method
with the uncoupled
approximation (used as a
measure of success in the
FutureForge manipulator
example) applied to a the
Rayleigh oscillator system
and b the Van der Pol
oscillator system

the uncoupled systemdynamics to approximate aspects
of the coupled system’s behaviour.

In the context of the control of hybrid manipula-
tors such as this, accurate system prediction over short
timescales can be arguably more beneficial than accu-
rate prediction over longer durations. In model pre-
dictive control systems, the prediction horizon is the
parameter specifying how far into the future the pre-
diction model forecasts. If this is less than 1 second,
then our approximation technique is superior to the
standard uncoupled approximation as it accounts for
a higher proportion of model uncertainty. However, for
prediction horizons greater than this timescale, prefer-
ence may still lie in the uncoupled approach.

3 Conclusions

In this work, we have described a novel method for the
approximation and resulting analytical solution of cou-
pled, nonlinear dynamic systems. We have also illus-

trated its application in three different contexts. The
first of these was a system of coupled Rayleigh oscil-
lators; the second was a system of coupled Van der Pol
oscillators; and, the third was a next-generation indus-
trial hybrid manipulator. In each of these contexts, we
showed the application of our approximation technique
before showing the advantage offered by this approach.

In the cases of the Rayleigh and Van der Pol sys-
tems, our method performs well by comparison to the
O(ε0) solution of the uncoupled problems (see Figs. 4,
7a, b). For the manipulator example, we compared our
approach to a widely-used approximation in the con-
text of predictive control systems: considering all non-
linearities and coupling effects as uncertainties. If we
compare our approximations of the Rayleigh and Van
der Pol systems to this same technique, then we see our
method outperforms this reference approach in both
cases (see Fig. 21a, b).

By comparison to the uncoupled approximation of
the system, we see that our method generally achieves
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greater accuracy over an initial interval in the time
domain before becoming inferior after this interval is
exceeded. This seems to be a reasonable trade-off: our
method is not a universal cure-all for the approximation
and analytical solution of coupled, nonlinear systems.
Rather, it offers practitioners (particularly in the field of
control) an alternative means of approximation which
has enhanced accuracy in the short term.We appreciate
that there is much work to be carried out to fully under-
stand the error growth, optimal means of application,
and potential pitfalls of this approximation technique.

3.1 Comments for further work

In future work, we will explore the generalisation of
this method in two senses. Firstly, we will conduct a
parameter study for the Rayleigh and Van der Pol sys-
tems described here. This is intended to give an under-
standing of the parameter space in which our approach
is applicable and affords some benefit to the user. Sec-
ondly, we will look to extend this—from a parameter
study based on the specific problems studied in this
paper—to a study of the parameter space of more gen-
eralised ordinary differential equations. Additionally,
we look to explore the application of this technique
in the context of designing a control system for the
FutureForge manipulator. However, for now, we hope
that this broad presentation of the concept is interesting
and finds some utility in the realm of the linearisation
of nonlinear systems.
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