
100GBit/s RF sample offload for RFSoC using
GNU Radio and PYNQ

Marius Šiaučiulis∗, David Northcote, Josh Goldsmith, Louise H. Crockett and Šarūnas Kaladė†
Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland, UK

†Advanced Micro Devices, Inc.
Email: ∗marius.siauciulis@strath.ac.uk

Abstract—Modern software defined radio systems are capable
of multi-gigabit-per-second sampling rates producing unprece-
dented amounts of digitized RF data. In applications such as
wideband spectrum sensing and machine learning algorithms
for cognitive radio, prototyping, and instrumentation, it is often
impractical to process the acquired data locally in real-time. This
motivates the need for a high speed connection to offload data
to an accelerator application running on a secondary processing
resource. In this paper, we present a novel hardware and software
co-design using the AMD RFSoC 4x2 platform, PYNQ and
GNU Radio projects. The demonstrated system is capable of
continuous 80GBit/s offload in a 100GBit/s channel, utilising a
GPU acceleration to rapidly process the Fast Fourier Transforms
of a full 2GHz bandwidth RF signal at 60 frames per second.

Index Terms—high speed offload, GNU Radio, PYNQ, Soft-
ware Defined Radio, Zynq UltraScale+ RFSoC, hardware soft-
ware co-design

I. INTRODUCTION

Software Defined Radio (SDR) is a key technology driving
innovation in various aspects of the wireless communications
field. Modern SDR platforms with high speed data converters
(ADCs and DACs) are also useful in other fields like quantum
instrumentation [1], radio astronomy [2], etc. The data convert-
ers present on AMD’s Zynq Radio Frequency System on Chip
(RFSoC) [3] devices are capable of multi-gigabit-per-second
sampling rates, enabling direct-RF sampling applications and
vast amounts of instantaneous wireless spectrum data. It is
very difficult for on-chip processors, even with hardware ac-
celerators, to process such data rates. For applications such as
machine learning algorithms for cognitive radio, and spectrum
monitoring, it is often necessary to transfer the gathered data
to a powerful server for processing and analysis.

Offloading is not a trivial problem, as it requires coordi-
nating a hardware-software solution on both the edge device
that is gathering the data, perhaps with some pre-processing
on-chip, and the connected server machine. A reliable high
speed network connection with minimal latency is difficult to
achieve, due to implementation complexity and the absence of
well-tested reference designs. Therefore there is a need for a
multi-gigabit network implementation for SDR use cases. One
such example is 100GBE-PYNQ [4] project which provides
example implementations of high speed network interfaces
for first generation AMD RFSoC based ZCU111 board. The
designs use passive loopback cables and do not include net-
work layer functionality but serve as a great starting point for
working with high speed networks on AMD SoCs.

Another example is a CASPER group tutorial for their
100Gbit/s block [5], which implements reusable modules for
high speed offload including User Datagram Protocol (UDP)
network layer, data gearbox and packetisation. Although open-
source, the CASPER toolflow relies on proprietary MathWorks
Simulink [6] and AMD Model Composer [7] software, which
might not be readily accessible and may be difficult to incor-
porate into existing design flows.

In this paper, we present an RFSoC offload design that
features high-speed data transfer between the RFSoC 4x2
board and a Commercial Off-The-Shelf (COTS) computer
via the Quad Small Form-factor Pluggable (QSFP28) port.
QSFP28 allows speeds of up to 100GBit/s which enables
data to be transferred and processed off-device directly from
the RF-ADCs at RF data rates with minimum latency. The
custom hardware design blocks are written in VHDL and
implemented with AMD Vivado [8] requiring no additional
tools. A GNU Radio-based software client with Graphics
Processing Unit (GPU) accelerated Fast Fourier Transform
(FFT) was developed to visualise the spectrum of the captured
RF signal, as well as remotely control the RFSoC’s centre
frequency and bandwidth. The authors hope to be able to make
this design available on the StrathSDR GitHub page [9] in the
future.

This section has established the background and motivation
for the high speed RFSoC offload design. In Section II, the
RFSoC 4x2 board is introduced and a high level overview of
the design architecture is presented. Section III describes the
hardware architecture and its important modules. Following,
Section IV considers the software architecture of the design
and GNU Radio-based software client implementation. Results
and analysis are considered in Section V. Finally, in Section
VI, the conclusions are drawn.

II. SYSTEM DESCRIPTION

The developed system was designed for the RFSoC 4x2
board [10] which is based on the 3rd generation AMD RFSoC
architecture. In addition to FPGA fabric resources and an Arm-
based applications Processing System (PS), it incorporates
4x 14-bit RF Analog to Digital Converters (RF-ADCs) and
2x 14-bit RF Digital to Analog Converters (RF-DACs) with
maximum sampling rates of 5 Giga-Samples per Second
(GSPS) and 9.85 GSPS, respectively [11]. Additionally, a
QSFP28 Ethernet interface is available on the board that

1



supports 4x25GBit/s, 2x50GBit/s or 1x100GBit/s network
configurations. The development board was designed to make
full use of the PYNQ framework [12], which provides Python
Application Programming Interfaces (APIs) for interacting
with the Programmable Logic (PL), as well as RFSoC-specific
functionality such as controlling the sampling and centre fre-
quencies of the RF-ADCs and RF-DACs, and the frequencies
of the internal reference clocks.

The RFSoC offload design was implemented to be compli-
ant with the 1x100GBit/s QSFP28 Ethernet configuration and
utilise the UltraScale+ Integrated 100G Ethernet Subsystem
found on RFSoC devices. UDP is used for data transfer
via the QSFP28 network, which provides no handshaking or
guarantee of delivery but reduces network overhead compared
to Transmission Control Protocol (TCP). Another advantage
of UDP over TCP for time-sensitive applications such as this
design is that retransmission is not employed, thus packets
with errors are discarded, avoiding the latency required for
selective retransmission and the associated signalling. An
additional RJ45 Ethernet network interface is used to access
a JupyterLab server running on the board (part of PYNQ)
and send configuration commands from the GNU Radio-based
client interface. The hardware setup is shown in Figure 1.

Fig. 1. Hardware setup diagram.

III. HARDWARE ARCHITECTURE

To provide the maximum network bandwidth and minimum
latency, the high speed network architecture is implemented
entirely on the PL of the RFSoC 4x2 board, with software
being used only for configuration and performance monitoring.
The high-level hardware architecture of the RFSoC QSFP28
offload system is presented in Figure 2.

The network interface layer can be fed from one of the two
available sources facilitated by an AXI-Stream switch:

• User Data Direct Memory Access (DMA) — a PS-
connected DMA engine that allows custom payloads to
be sent from the software environment. It can be used for
system and network debugging or to send user-generated
data to the client.

• RF-ADC source — ZYNQ Ultrascale+ RF Data Con-
verter (RFDC) Intellectual Property (IP) core which pro-
vides a configurable wrapper around the hardened RF-
ADC and RF-DAC blocks.

Fig. 2. High level overview of the hardware system.

The RF-ADC source option allows this design to capture
RF data from RF-ADC Channel A at a maximum of 2.46
GSPS, to be sent via the QSFP28 network interface. The
captured data is output by the RFDC IP in 8 parallel samples
per AXI4-Stream cycle configuration for each 16-bit I and Q
sample stream. The I/Q output streams are then interleaved and
combined in multiple stages to a single 32-byte AXI4-Stream
interface. Before being fed to the Network Layer IP, the data is
packetised into 64-byte wide packets of user-selectable length.

RF-ADC Channel A can be connected to an antenna via an
optional external Variable Gain Amplifier (VGA) to examine
the spectrum of captured RF signals (as shown in Figure 3),
or be connected to RF-DAC Channel B via a loopback cable
to inspect user-generated RF signals.

The hardware signal generator module present in this design
allows signals generated in Python to be interpolated and
mixed to RF frequencies using the integrated RFDC Digital
Up Converter (DUC), to be transmitted via the RF-DAC. The
signal generator module is implemented using a DMA module
configured in a cyclic mode which allows a segment of a signal
to be transmitted continuously without user intervention or
additional resources.

When driven by the RF-ADC source, the RFSoC offload
design also supports a runtime configurable bandwidth selec-
tion by leveraging the RF-ADC programmable decimator. It
is a software-controllable chain of hardened decimating filters
that can be cascaded together to achieve a desired decimation
rate. The following interleaving and packetisation stages are
driven by the RFDC module’s fabric clock output, which can
be synchronised to the programmable decimator output rate.
This design feature removes the need for partial bitstream
loading and allows continuous operation during the bandwidth
change.

2

100GBit/s RF sample offload for RFSoC using GNU Radio and PYNQ



Not all of the Gen 3 RFSoC decimation rates are supported
by this architecture because the RFDC module is only able to
provide output clocks that are equal to the maximum reference
clock divided by powers of two. Additional decimation rates
could be implemented using PL fabric at the cost of additional
hardware resources and design complexity. The available
bandwidth selection options are listed in Section V, Table II.

The proposed design makes use of an open-source Network
Layer kernel [13], which is a collection of High-Level Synthe-
sis (HLS) modules that implement the network layer function-
ality including translation between Internet Protocol (IP) and
Media Access Control (MAC) addresses, ping capability and
UDP transport layer functionality. Additionally, the CMAC
IP [14] which requires a no-charge licence, encapsulates the
UltraScale+ Integrated 100G Ethernet Subsystem, and is used
to provide Ethernet Media Access Controller (MAC), Physical
Coding Sublayer (PCS) and Reed-Solomon Forward Error
Correction (RS-FEC) functionality.

IV. SOFTWARE ARCHITECTURE

This section describes the software architecture of the
RFSoC 4x2 offload design, which is split between the de-
velopment board and the client implementations. The RFSoC
4x2 board contains a Quad-core ARM Cortex A53 processing
system which is capable of running an Ubuntu-based PYNQ
operating system with JupyterLab as the primary development
environment. The software for the board portion of the design
is written entirely in Python, and makes use of the PYNQ
framework libraries for hardware design access. The notebook
contains comments and visual aids as well as code to guide
users through the setup and example applications. The follow-
ing tasks are performed by the RFSoC 4x2 board notebook:

• Configure and start the CMAC core.

• Set the IP address for the board’s QSFP28 network
interface.

• Open the desired communications socket and fill the
table of network socket connections with the relevant
information.

• Switch between User Data DMA and RF-ADC as the
data source.

• If used, initialise the RF-ADC and RF-DAC.
• Set the UDP packet size.
• Initialise the remote access server for GNU Radio.

As the JupyterLab environment provides an interactive
Python session, all of the software and available hardware pa-
rameters can be dynamically adjusted during runtime. Custom
network payloads can be generated and sent via the User Data
DMA directly over the network. Custom signals can also be
generated in Python and transmitted from the RF-DAC using
the integrated hardware signal generator module.

The client interface is implemented using GNU Radio, a
Free and Open Source Software (FOSS) toolkit for SDR
design development. The GNU Radio flowgraph mainly con-
sists of a UDP receive block, which is configured to accept
packets of user-defined length from the QSFP28 network, a
data reinterpretation block, and a gr-fosphor [15] Out-Of-Tree
(OOT) module. An OOT module is a custom GNU Radio
component that needs to be installed separately. The gr-fosphor
block provides a real-time spectrum visualisation interface that
can utilise GPU hardware acceleration to compute the FFTs
required for plotting spectrum data. It is necessary to use
a hardware-accelerated block for this task as even modern
CPUs are unable to process such extensive amounts of data
(>70GBit/s) in real time. Additionally, an Operating System
(OS) agnostic protocol for remote procedure calls, XML-RPC
[16], is used to facilitate remote control over the board.

Fig. 3. Spectrum of the 4G 800MHz band captured by the RFSoC and displayed using GNU Radio.

3

100GBit/s RF sample offload for RFSoC using GNU Radio and PYNQ



Using convenient Graphical User Interface (GUI) widgets,
users can change the required bandwidth (Table II) and centre
frequency of the RF-ADC. An example of the client interface
centred on LTE Band 20 (800MHz) is shown in Figure 3.

V. EXPERIMENTAL RESULTS

Using the RFSoC 4x2 development board, the PL hardware
resource utilisation required to implement the full RFSoC
offload design is summarised in Table I. As the design contains
additional features, a subsection of the table is dedicated to the
resource utilisation required to implement only the network
layer and “ZYNQ Ultrascale+ RF Data Converter” modules.
The full design uses approximately 16% of the available Look-
Up Tables (LUTs), 15% of the available Flip-Flops (FFs) and
11% of the available Block RAMs (BRAMs), leaving the ma-
jority of the device free for implementing other functionality.
Additionally only 4 out of the 16 available gigabit transceivers
(GTY) are used, meaning multiple instances of the Network
Layer module could be implemented on boards supporting
additional Small Form-factor Pluggable (SFP) connectors,
such as the Zynq UltraScale+ RFSoC ZCU208 board. The
relatively low hardware resource usage for the design can be
attributed to the use of hardened RFSoC resources including
digital up and down converters, as well as gigabit transceivers.

TABLE I
PL HARDWARE RESOURCE UTILISATION.

Network Layer and RFDC Full System

Resource Used Utilisation Used Utilisation

LUT 37822 8.89% 67584 15.89%

LUTRAM 2195 1.03% 5115 2.39%

Flip-Flops 87452 10.28% 120878 14.21%

Block RAM 61 5.65% 110 10.19%

GTY Transceivers 4 25% 4 25%

Referring to the experimental setup shown in Figure 1, the
aforementioned RFSoC 4x2 development board was connected
to a computer with a PCIe QSFP28 Network Interface Card
(NIC) via QSFP28 transceiver modules and a female-to-female
fibre-optic cable. To fully leverage the NIC, it has to be
inserted in a compatible PCIe slot with x16 lanes available.
Another slot with at least x4 PCIe lanes available is required
for the GNU Radio client implementation, as it uses GPU
acceleration to rapidly process the FFT data. To achieve
the maximum network throughput, Jumbo Frames need to
be enabled in the client network controller for the QSFP28
interface. Jumbo Frames are Ethernet frames that can transfer
up to 9000 bytes of payload compared to the 1500 bytes
of standard Ethernet frames. This significantly reduces the
amount of Ethernet frame header data sent over the network,
cutting the number of CPU cycles required to process the
frames and allowing more user data to be sent.

The network throughput test results together with calculated
RF-ADC data output rates are summarised in Table II. The RF-
ADC data output rate (RRF−ADC) is the maximum amount

of data in bits/s that RF-ADC produces for a given bandwidth
selection, and thus the maximum amount of data that is
expected to be sent via the network. It can be obtained using

RRF−ADC = B × C ×Q (1)

where bandwidth (B) is the selected RF-ADC sampling rate,
channels (C) = 2 for complex (I and Q) data, and the RF-
ADC resolution (Q) is 14 bits with 2-bit padding, giving 16
bits total for the RFSoC Gen 3 ZU48DR device present on the
RFSoC 4x2 board. The network throughput test results were
acquired from the client system using the nload [17] network
monitoring application for Linux systems.

TABLE II
NETWORK THROUGHPUT TEST RESULTS.

Decimation
Bandwidth RF-ADC Data Measured Avg.

(MHz) Output Rate (GBit/s) Throughput (GBit/s)

2 2457.6 78.6432 73.40

4 1228.8 39.3216 36.81

8 614.4 19.6608 18.41

16 307.2 9.8304 9.20

As is evident from the third and fourth columns of Table
II, the experimental results are very close to the calculated
ideal throughput, and the network is able to achieve a constant
speed of >70 GBit/s. Although the Linux kernel reports
that no packets are received with errors, around 6% of the
incoming packets are dropped when 2457.6MHz bandwidth
is selected, due to the receiving system being unable to
keep up with the traffic. The relatively small error between
the experimental results and calculated throughput could be
related to packet forming latency, UDP network overhead, or
PCIe lane throughput limitations of the client PC as these are
shared with other devices within the computer.

VI. CONCLUSION

In this paper, we have presented, validated via demonstra-
tion, and evaluated the performance of a novel practical design
for direct-RF capture and offload to a GPU accelerator. The
software solution opens a UDP socket allowing for arbitrary
data transfer, meaning the solution can be applied to not only
RF data and communications, but to various instrumentation
applications as well. Moving forward, the amount of data
enabled by SDR technology is likely to increase – being
able to offload this data from power-limited edge devices to
datacentres is only going to become more and more important,
especially for spectrum monitoring and machine learning
applications. Capable software solutions will be necessary to
progress in this space.

ACKNOWLEDGMENT

The authors warmly thank Patrick Lysaght, Graham Schelle
and Cathal McCabe (all of AMD) for their support of this
work. They would also like to acknowledge CENSIS co-
funding for Marius Šiaučiulis.

4

100GBit/s RF sample offload for RFSoC using GNU Radio and PYNQ



REFERENCES

[1] L. Stefanazzi et al., “The QICK (Quantum Instrumentation Control Kit):
Readout and control for qubits and detectors”, Review of Scientific In-
struments, vol. 93, no. 4, p. 044709, Apr. 2022, doi: 10.1063/5.0076249.

[2] C. Liu, M. E. Jones, and A. C. Taylor, “Characterizing the performance
of high-speed data converters for RFSoC-based radio astronomy re-
ceivers”, Monthly Notices of the Royal Astronomical Society, vol. 501,
no. 4, pp. 5096–5104, Jan. 2021, doi: 10.1093/mnras/staa3895.

[3] AMD Inc., “An Adaptable Direct RF-Sampling Solution WP489”. Feb.
20, 2019. [Online]. Available: https://docs.xilinx.com/v/u/en-US/wp489-
rfsampling-solutions.

[4] Jenny Smith, “100GBE-PYNQ”. https://github.com/JennySmith888/
100GBE-PYNQ (accessed April. 28, 2023)

[5] “Tutorial 4: 100GbE — CASPER Tutorials 0.1 documentation”.
https://casper-toolflow.readthedocs.io/projects/tutorials/en/latest/
tutorials/rfsoc/tut 100g.html#introduction (accessed Feb. 16, 2023).

[6] MathWorks Inc., “Simulink - Simulation and Model-Based Design”.
https://uk.mathworks.com/products/simulink.html (accessed Feb. 16,
2023).

[7] AMD Inc., “Vitis Model Composer”. https://www.xilinx.com/products/
design-tools/vitis/vitis-model-composer.html (accessed Feb. 16, 2023).

[8] AMD Inc., “Vivado ML Overview”. https://www.xilinx.com/products/
design-tools/vivado.html (accessed Feb. 16, 2023).

[9] StrathSDR, “University of Strathclyde - Software Defined Radio Re-
search Laboratory GitHub organization page”. https://github.com/strath-
sdr (accessed April. 28, 2023)

[10] “RFSoC 4x2 Overview”, RFSoC-PYNQ. http://www.rfsoc-pynq.io/
rfsoc 4x2 overview.html (accessed Feb. 16, 2023).

[11] AMD Inc, “Understanding Key Parameters for RF-Sampling Data
Converters WP509”. Feb. 20, 2019. Accessed: Feb. 16, 2023.
[Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/
documents/white papers/wp509-rfsampling-data-converters.pdf

[12] “PYNQ - Python productivity for Zynq”, PYNQ - Python productivity
for Zynq. http://www.pynq.io/ (accessed Feb. 16, 2023).

[13] AMD Inc, “XUP Vitis Network Example (VNx)”. https://github.com/
Xilinx/xup vitis network example (accessed Feb. 16, 2023).

[14] AMD Inc., “UltraScale+ Devices Integrated 100G Ethernet Subsystem
v3.1 LogiCORE IP Product Guide ”. Accessed: Feb. 16, 2023. [Online].
Available: https://docs.xilinx.com/r/en-US/pg203-cmac-usplus.

[15] “gr-fosphor - GNU Radio block for RTSA-like spectrum visualization
using OpenCL and OpenGL acceleration.”, gr-fosphor - GNU Radio
block for RTSA-like spectrum visualization using OpenCL and OpenGL
acceleration. https://osmocom.org/projects/sdr/wiki/Fosphor. (accessed
Feb. 16, 2023).

[16] “What is XML-RPC?” http://xmlrpc.com/ (accessed Feb. 16, 2023).
[17] R. Roland, “nload - Real time network traffic monitor for the text

console”. https://github.com/rolandriegel/nload (accessed Feb. 16, 2023).

5

100GBit/s RF sample offload for RFSoC using GNU Radio and PYNQ


	I. INTRODUCTION
	II. SYSTEM DESCRIPTION
	III. HARDWARE ARCHITECTURE
	IV. SOFTWARE ARCHITECTURE
	V. EXPERIMENTAL RESULTS
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES



