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Abstract—This paper presents a novel Convolutional Neural
Network (CNN) FPGA architecture designed to perform process-
ing of radio data in a streaming manner without interruption.
The proposed architecture is evaluated for radio modulation clas-
sification tasks implemented on an AMD RFSoC 2x2 development
board and operating in real-time. The proposed architecture
leverages optimisation such as the General Matrix-to-Matrix
(GEMM) transform, on-chip weights, fixed-point arithmetic,
and efficient utilisation of FPGA resources to achieve constant
processing of a stream of samples. The performance of the
proposed architecture is demonstrated through accuracy results
obtained during live modulation classification, while operating
at a sampling frequency of 128 MHz before decimation. The
proposed architecture demonstrates promising results for real-
time, time-critical CNN applications.

Index Terms—deep learning, wireless communications, FPGA,
RFSoC, PYNQ, modulation classification.

I. INTRODUCTION

Deep Learning (DL) has emerged as a powerful tool for
improving Physical Layer (PHY) wireless communications.
As new technologies such as 5G and 6G emerge, DL will
play a crucial role in all layers of the communication stack.
Previous research has shown impressive results in various
DL applications for wireless communications such as channel
estimation [1]–[3], signal identification [4], decoding [5], and
synchronisation [6].

DL in communications is a rapidly developing area, with
breakthrough results being reported often. To fully exploit
these algorithms they must be deployed on existing and
new radio transceivers, many of which use FPGA and SoC
architectures due to their low-power and parallel processing
capabilities. This work targets the AMD RFSoC 2x2 devel-
opment board, which features a Radio Frequency System on
Chip (RFSoC) device. RFSoC devices combine high-accuracy
analog-to-digital converters (ADCs) and digital-to-analog con-
verters (DACs) operating at Gsps with programmable logic for
custom algorithm implementations [7].

This paper builds upon prior work in modulation classi-
fication, including the original paper by O’Shea et al. [4],
which established a dataset and CNN model for the task, and
Umuroglu et al.’s low-precision data flow CNN architecture
[8]. Our work differs from [8] as we have implemented a
data flow model using higher precision weights to keep the
CNN model similar to O’Shea et al.’s. Related works have
implemented CNN architectures for modulation on an RFSoC
ZCU111 development board [9], with one work classifying

between three modulation schemes received at the ADC [10].
In contrast, our novel hardware-friendly CNN architecture for
the AMD RFSoC 2x2 development board includes on-chip
storage of weights, 18-bit fixed-point precision, and preserves
the data flow structure of wireless communications pipelines
by stream processing of every sample without sacrificing input
speed. We demonstrate the effectiveness of our architecture
with an implementation of modulation classification on the
RFSoC board that predicts modulation schemes received on
the ADC.

II. APPLICATION - MODULATION CLASSIFICATION

Modulation classification is the task of identifying which
modulation scheme is used in a radio signal. In telecom-
munications, modulation refers to the process of encoding
information onto a carrier signal for transmission. Modula-
tion classification is an important task in a communication
system, as the receiver must be able to accurately identify the
modulation scheme used in order to properly decode a signal.

In our modulation classifier we aim to identify one of 8
modulation schemes used on a signal: QPSK, BPSK, QAM16,
QAM64, 8PSK, PAM4, GFSK, and CPFSK. The CNN dimen-
sions used can be seen in Table I.

TABLE I
DIMENSIONS OF CNN USED FOR MODULATION CLASSIFICATION.

Layer type Dimensions Activations
Input 2× 128 -
Convolution 64× 3× 1 ReLU
Convolution 16× 3× 2 ReLU
Fully-connected 1984× 128 ReLU
Fully-connected 128× 8 Softmax
Output 1× 8 -

A. Dataset Creation & Training the CNN

The dataset was designed to train a CNN to identify mod-
ulation schemes in the received signal affected by the RFSoC
loopback and a simulated channel. 30, 000 frames of 4, 096
samples each, representing various modulation schemes, were
generated and passed through a Rician channel with added
noise achieving an signal-to-noise ratio (SNR) of 30dBm.
The digital-to-analog converter (DAC) transmitted the data,
which was then captured in 128 sample frames upon loopback
reception (DAC to ADC via an RF cable). This recorded signal
serves as the training dataset for the CNN model [11].
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The recorded data was then used to train the CNN model in
Tensorflow [12]. The data was split into training, validation,
and testing with a 80/10/10 ratio split. The network was
trained for 20 epochs with a batch size of 128. The first three
layers used L2 kernel regularisation. The resulting trained
layer weights and biases were saved and quantised to 18-
bits using MATLAB’s Fixed-Point Designer [13]. Fixed-Point
Designer selects the best fractional point by allocating the
minimum number of integer bits needed to represent the largest
weight/bias for each layer.

III. REAL-TIME STREAMING CNN ARCHITECTURE

Our proposed architecture is designed to perform DL modu-
lation classification continuously on the received decimated RF
data with no pauses. In our Tensorflow training, we provided
finite frames of data to the model and trained it to identify
signals based on this buffer of data. While the implementation
of the DL model on hardware also makes a decision on a
finite frame of data, we have adapted the layers to allow
for samples to flow through uninterrupted. This means that
the implemented DL model’s latency is deterministic and
therefore can be synchronised with other parts of a receiver
design. Additionally, applications such as decoding, channel
estimation, or anomaly detection where dropping samples can
negatively affect the performance of the receiver system, can
benefit from this streaming-based CNN architecture.

The design philosophy of this architecture is centered on the
data-flow model, treating incoming data as a continuous stream
of infinite samples and processing them in real-time. A signif-
icant challenge encountered in this approach is the increased
production of output samples by convolutional layers, leading
to potential loss in samples due to processing lag. To address
this issue, the overall clock rate of the model was increased
by a factor of 32. The proposed DL model follows a Digital
Down Converter (DDC), which has reduced the sampling rate
of the incoming signal by a factor of 32 from the RF-ADC
input rate.

The following sections will describe the design choices and
methodologies for implementing the proposed CNN architec-
ture on the RFSoC.

A. Input Data Pre-processing

The received IQ signal from the antenna is digitised in the
ADC and modulated to baseband before entering the FPGA at
a rate of 128 Msps. To minimise computational requirements
while adhering to the Nyquist sampling theorem, the signal
is passed through a filter decimation chain that reduces the
sampling rate by a factor of 32, to 4 Msps. The decimation
chain implements a low-pass filter with stopband frequency
equal to: fstop = 1

32×
fs
2 , to eliminate any aliased components

while maintaining the 1MHz bandwidth of the modulated
signals. Since the received signal is complex, it is split into
two paths and each path is decimated with identical filters.
Once decimated, the I and Q samples are interleaved into a
one-dimensional input before entering the first convolutional
layer.
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Fig. 1. Samples written into buffer with controller.

B. Convolutional Layers

Convolutional layers are the main building blocks of CNNs.
They are able to extract feature maps from an input by sliding
a set of filters (or kernels) over the input and computing the dot
product between the filter weights and the overlapping input
values. The output resulting from a convolution operation is
a feature map. These layers are very useful for identifying
localised features within an input, however, convolutional lay-
ers are also computationally complex. In our architecture, we
have used the General Matrix-to-Matrix (GEMM) Transform
to perform the convolutions and to minimise their complexity.
In simple terms, the GEMM transform for convolutional layers
simplifies the whole calculation for a layer into one large
matrix-to-matrix multiplication [14].

The convolutional layers are split into three stages: the
input data buffer, the sliding window generator, and the
matrix-to-vector multiplier. The input data buffer receives the
samples into the layer and buffers them in 1-dimensional on-
chip UltraRAM (URAM). The sliding window generator then
performs the GEMM transform on the input samples so that
they can be multiplied with the pre-processed layer filters
stored in Block-RAM. The sliding window generator outputs
the resulting matrix one sample or row at a time and multiplies
them with the GEMM transformed filter weights to produce
the layer output.

1) Bursting Data: After the data has undergone decimation,
it is fed into the DL model at a slower rate than the model’s
sample rate. To address this, we buffer the samples into Block
RAM and output them in 256-sample long bursts, clocked
at the DL model’s sample rate. This bursting operation is
implemented using a ping-pong buffer to prevent any data
loss during conversion. The incoming samples are quantised
to int16 precision for each I and Q sample.

2) GEMM Transform and Sliding Window: Once the sam-
ples are buffered, the Sliding Window Controller (SWC) reads
out the GEMM-transformed samples. The 18-bit filter/kernel
weights were transformed into a matrix representation. The
interleaving of C channels for each filter N was performed
first. Then the unrolling and concatenation of each filter N
formed a single matrix, denoted as Θ̃conv, with dimensions
N × CKJ (where N is the number of filters, C is the
number of channels, and J and K refer to the number of
columns and rows of the filter weights, respectively). This
transformation was conducted offline and the filter weights
were stored on-chip for efficient access. The illustration of
the matrix transform for the filters can be seen in Figure 2.

2

Streaming Convolutional Neural Network FPGA architecture for RFSoC data converters



The GEMM transform for the input samples to a convolu-
tional layer involves the following steps:

• Re-shaping the input into a 2-dimensional matrix where
the channels C of the input are interleaved. Typically, the
input to a layer is a 3-dimensional tensor.

• Striding and replication. The input is replicated based on
the stride of the layer’s filter window.

• Unrolling. For each step of the stride, the input samples
under the filter window are unrolled and concatenated to
make the resulting matrix X̃conv.

Unlike the filter weights, the input transformation has to be
performed during operation. A downside to the transformation
approach is that the input samples have to be replicated
in order to achieve the same output as a sliding window
convolution. We implemented a SWC to perform the transform
while running live and receiving a continuous stream of input
samples.

In the model architecture, seen in Figure 1, the SWC handles
the reading and writing of samples to on-chip RAM. The
controller contains a state machine that performs the sliding
window transformation, depicted in Figure 2, and reads the
samples out of memory based on the resulting order.
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Fig. 2. GEMM Transform for input samples and filter weights.

Firstly, the columns, K of each input channel, C, are inter-
leaved to form one 2-dimensional matrix. Next, the flattened
sliding window is passed over the 2-dimensional input and
splits it into smaller matrices based on how many strides S
the sliding window performed. Each of these split matrices are
then unrolled and concatenated to form the resulting GEMM-
transformed input matrix, X̃conv, with dimensions CJK × S.
The SWC sends storage addresses to the on-chip RAM to read
out the resulting matrix.

3) Matrix to Vector Multiplication: Once the input has
been transformed into a matrix, it is then multiplied with the
transformed filter weights in the matrix-vector multiplier stage
to produce the output of the convolution Ỹ conv = Θ̃conv×X̃conv.

In this proposed architecture, we present multiple imple-
mentations of the matrix-vector multiplier. The first option
involves parallel processing of vector-vector multiplications,
with input vectors sourced from the SWC. The second op-
tion performs the matrix-vector calculation sample-by-sample

using N multiply-accumulate (MAC) units, where N is the
number of filters in the convolutional layer. This latter design
is optimized for larger multiplications. Finally, another option
is a serialised implementation of the matrix-vector multiplier
that time-shares one (or a small number) of MAC units,
depending on the number of spare clock cycles.

All implementations maintain a 18-bit fixed-point precision
on the output and carefully minimise the wordlength growth.
All optimisations necessitate a higher sampling rate than the
input rate of the model. This requirement is driven by multiple
factors, including the need to replicate samples in the GEMM
transform stage and the increased number of samples output
in certain convolutional layers.

C. Dense Layers
A dense layer in a CNN is a fully connected layer where

every neuron in the layer is connected to every neuron in the
previous layer. The dense layer performs a matrix multiplica-
tion between the inputs and weights: Ỹ dense

n×1 = W̃ dense
n×p ×X̃prev

p×1,
where p is the number of features in X and n is the number
of neurons in the dense layer.

Similarly to Section III-B3, the matrix-vector multiplication
in the dense layers can be implemented in a number of
ways for resource saving and throughput optimisations, as
mentioned previously, while maintaining an 18-bit fixed-point
precision at the output.

D. Activations and Bias
The activations and bias terms play a critical role in the

functioning of a neural network. The activations, represented
by f(x), introduce non-linearity into the outputs of each layer
through the application of non-linear functions. This ability to
model non-linear data structures is crucial for the success of
CNNs. The resulting output of a dense layer with activations
and biases included is denoted by: Ỹ dense = f(W̃ dense×X̃prev+
b).

The bias terms, b, adjust the decision boundaries of the indi-
vidual neurons. In the context of modulation classification, the
Rectified Linear Unit (ReLU) activation function, represented
as y = max(0, x), was utilised on a stream of input samples.
The bias term was then added to either a vector or stream of
samples, accompanied by a counter to index the specific bias
value to be added.

IV. RESOURCE UTILISATION

Table II presents the resource utilisation of the modulation
classification CNN model when implemented on the AMD
RFSoC 2x2 development board which includes a Zynq Ul-
trascale+ XCZU28DR part. The results show that the CNN
model utilises approximately 10% of the available DSP slices
and 15% of the available BlockRAMs (BRAMs). The DSPs
slices are used to perform the vector-matrix multiplication
operations in each layer of the model, while the BRAMs
store the intermediate samples from previous layers and the
layer weights. This on-chip storage of intermediate results and
weights helps to reduce the latency of the CNN model and
improve its overall performance.
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Fig. 3. Overall HDL CNN architecture for modulation classification.

TABLE II
FPGA RESOURCE UTILISATION OF MODULATION CLASSIFICATION CNN.

Slice
(LUTs)

Slice
(Register) DSPs BRAMs URAMs

Conv 1 3,810 4,008 64 0 1
Conv 2 5,359 8,815 256 32 0
Dense 1 8,343 15,569 128 136.5 0
Dense 2 593 592 8 0 0

Total
(%)

18,389
(4.32%)

29,277
(3.44%)

456
(10.67%)

169.5
(15.65%)

1
(1.25%)

V. PERFORMANCE RESULTS

The architecture described in Figure 3 depicts the overall
architecture of the CNN for the applications of modulation
classification. The interleaved IQ samples are received from
the ADC as int16 precision and converted to 18-bit fixed-
point precision for the rest of the model. The weights for each
layer are stored in BRAM as 18-bit fixed point.

On AMD RFSoC 2x2 board, a variety of modulation
schemes were transmitted through the DAC and received by
the ADC connected in loopback. The Processing System (PS)
was used to send the modulated data to the Programmable
Logic (PL) through a Direct Memory Access (DMA) IP. The
transmission was executed using a cyclic buffer, followed by
a rate change of 32 through a filter interpolation chain.

The received signals were processed through a decimation
filter chain with a rate change of 32, prior to being fed into
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Fig. 4. Accuracy metrics for modulation classification with RFSoC in
loopback.

the trained CNN model for classification at a throughput of
128Mbit/s. The communication between the PS and PL was
facilitated through the use of PYNQ, enabling the modulation
schemes to be efficiently transmitted to the DMA. The con-
fusion matrix plotted in Figure 4 highlights the performance
capabilities of this proposed architecture. As can be seen,
the model identifies all modulation schemes with a 70%+
accuracy, except for QAM64. The model confuses QAM16
and QAM64 more often than other classes because these
two modulation schemes have the most similar waveforms.
The drop in accuracy for QAM64 is due to the quantisation
of the filter weights from trained floating-point values. This
loss in precision will cause the model to struggle classifying
modulation schemes. It becomes weaker at identifying the
finer details between classes. To minimise the loss in accuracy
through quantisation, future work could include training the
model with fixed-point quantisation applied to the weights
during training.

VI. CONCLUSION

In this paper, we proposed a novel streaming CNN architec-
ture designed to work with radio receivers. The objective was
to create a data flow CNN model that can be seamlessly in-
tegrated into wireless communication pipelines. The proposed
architecture processes every sample received at the input with
no pauses, which makes it an ideal solution for time and data
sensitive applications such as decoding, channel estimation,
and others.

Experimental results showed mostly 70% or higher accuracy
(except for QAM64) in modulation classification tasks when
implemented on an AMD RFSoC 2x2 development board
running at a clock rate of 128 MHz and accepting samples
output from a DDC at 4 Msps. These results demonstrate
the viability and practicality of the proposed architecture for
real-time wireless communication applications. In conclusion,
the proposed CNN architecture can be considered a promis-
ing solution for various time-critical wireless communication
applications that demand high throughput and continuous
operation.
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