
Abstract— Machine learning in medical ultrasound faces a 

major challenge: the prohibitive costs of producing and 

annotating clinical data. Optimizing the data collection and 

annotation will improve model training efficiency, reducing 

project cost and times. This paper prescribes a 2-phase method 

for cost optimization based on iterative accuracy/sample size 

predictions, and active learning for annotation optimization. 

Methods: Using public breast, fetal, and lung ultrasound datasets 

we can: Optimize data collection by statistically predicting 

accuracy for a desired dataset size; and optimize labeling 

efficiency using Active Learning, where predictions with lowest 

certainty were labelled manually using feedback. A practical 

case study on BUSI data was used to demonstrate the method 

prescribed in this work. Results: With small data subsets, ~10%, 

dataset size vs. final accuracy relations can be predicted with 

diminishing results after 50% usage. Manual annotation was 

reduced by ~10% using active learning to focus the annotation. 

Conclusion: This led to cost reductions of 50%-66%, depending 

on requirements and initial cost model, on BUSI dataset with a 

negligible accuracy drop of 3.75% from theoretical maximums.  

Clinical Relevance— This work provides methodology to 

optimize dataset size and manual data labelling, this allows 

generation of cost-effective datasets, of interest to all, but 

particularly for financially limited trials and feasibility studies, 

Reducing the time burden on annotating clinicians. 

I. INTRODUCTION

A. Motivation for Cost Optimization

Ultrasound is one of the most commonly used diagnostic 

modalities in the world today due to its low cost and 

minimally invasive approach [1]. There is very limited 

availability of public annotated data for machine learning 

(ML) in clinical ultrasound. This is not a problem unique to

ultrasound, the inherent cost of producing high quality data

and subsequent accurate clinical annotation often means that

generating appropriate datasets for diagnostic quality deep

learning is a major investment [2]. There are many techniques

that have been explored to reduce the cost of image

annotation, such as self-supervision [3, 4], amongst others [5].

Datasets for machine learning are similar to cluster random 

control trials, where the addition of more data has diminishing 

returns on how much it improves the accuracy of the result 

[6]. When training neural networks (NNs), it is important to 

weigh the value of additional data and annotation against the 

time and cost of producing it. This optimization, and analysis 

focusing on time and cost is critical to decision makers 

attempting to balance priorities on medical device and 
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imaging projects. This can be partially automated, reducing 

researcher and clinical burdens using ML and applied clinical 

trial protocols adapted to ML [7]. There is a lack of detailed 

prescriptive methods for optimal data capture and annotation 

in the clinical literature, that this work aims to address. 

B. Cost / Time Optimization Methods and Applications

Statistical power curves have so far been used with retinal 

optical coherence tomography (OCT) [8], and magnetic 

resonance imaging (MRI) [9] but has yet to be explored for 

ultrasound. The use of sample size determination is a common 

technique in clinical trials, but it is possible to adapt the 

technique for machine learning by augmenting the sample 

selection process. This method is known to have significant 

difficulty predicting situations where there are only subtle 

variances between classifiers and reduces overall 

generalizability [10]. Machine learning has shown potential 

to significantly improve control trials such as in reducing 

sample size requirements in MRI studies of cognitive 

impairment [11], in augmenting the selection process to better 

identify and retain sampled population [12-14], and for 

improving statistical analysis [15, 16].  

Where ultrasound data is available without annotation, 

there is an opportunity to apply a targeted approach to sample 

selection. Active learning is a technique where a neural 

network is used to analyze the dataset allowing for targeted 

training on a selected portion of the dataset [17]. There are 

many common methods of active learning within machine 

learning, such as diversity sampling [18]. In this case selective 

uncertainty sampling [19] is used to identify where the neural 

network has the lowest confidence in its prediction and target 

those images for annotation. This forms an active learning 

loop, allowing for the consistent querying of the learning 

network to better inform the annotation process. Active 

learning has already been successfully applied to breast 

ultrasound using a weakly supervised approach, as well as in 

the detection of breast masses [20, 21], in the multi-model 

detection of liver fibrosis for ultrasound elastography [22], 

and in semi-supervised covid lung disease classification [23]. 

This paper examines how optimal ultrasound dataset size 

can be determined and also investigates effectiveness of 

uncertainty sampled active learning for ultrasound data in 

reducing the cost of dataset production for clinical ultrasound 
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This shall result in an understanding of the optimal sample 
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II. METHOD FOR OPTIMIZED SAMPLING/ANNOTATION

Ensuring a representative sampling within the training set 

assists in the subsequent extrapolation of the statistical power 

curve. This also allows the simulation of the data collection 

process with each subsequent iteration representing an 

additional round of data collection of datasets. In this work, 

an AlexNet [27] NN is used as a well-known benchmark, 

however other NNs can be easily substituted.  

A. Phase 1 – Optimized Data Set Capture:

To predict required data set size from iterating power curves: 

1. A NN is trained on a small sample of annotated data

(10-50 samples, dependent on experimental

constraints). Overfitting should be taken into account

when designing your initial model training, with a

portion of annotated data set aside to validate

accuracy. The validation accuracy of this NN,

determined as described in Subsection D is then stored.

2. Add an additional 10-50 annotated samples (in even

chunks as before) and retrain NN on cumulative

sample set. Record the validation accuracy.

3. Plot NN accuracy vs. sample size and fit a power curve

to the data. Continue adding data in chosen chunk sizes

until curve fit is ‘stable’ at desired accuracy.

Stability is when subsequent sample groups predict

end accuracies within your desired tolerance, say 2%.

4. Use the power curve to determine the required sample

size for desired/acceptable accuracy.

5. Capture remainder of  the predicted data set, without

immediate annotation + 25% (based on conventional

80/20 split) again of annotated data for validation set.

B. Phase 2 – Optimizing annotation:

In cases where excess samples have been captured, 

particularly in large unannotated datasets, active learning can 

be used to selectively annotate samples that the NN has the 

most difficulty identifying, thus optimizing the annotated 

sample set. This can also be used to optimize annotation of 

small pre-captured datasets. 

1. Using NN trained on annotated data from Phase 1,

evaluate the probability outcome (NN classification

certainty) on the remaining unannotated data.

2. Identify least certain samples on unannotated data,

where NN has least certainty, say bottom 50 samples.

3. Manually annotate this sample group.

4. Retrain NN on phase 1 annotated samples + phase 2

manual annotation group.

5. Evaluate result on validation set.

6. Compare accuracy to predicted value from Phase 1.

7. If accuracy is outside of acceptable tolerance for

theoretical accuracy from phase 1, say 5%, use step 8-

9, if within tolerance, terminate the process.

8. Reshuffle all annotated data (phase 1 + phase 2 group

+ validation set) into a new 80/20 split. (Transfer

learning could also be used but this is out of this work).

9. Iterate back to step 2 using remaining unannotated

sample pool until accuracy is within an acceptable

tolerance of theoretical accuracy from phase 1, say 5%.

III. RESULTS FROM BUSI CASE STUDY

A. Dataset Size Optimization

In order to demonstrate the potential saving incrementally, 

phase 1 and phase 2 of the prescribed method were applied 

independently to the BUSI data set, and then as a combined 

method considering mean response and max response of the 

NNs respectively. A standard Alexnet NN that had been 

pretrained using the ImageNet Challenge dataset [28] was 

used with the final layer output reduced to fit the classification 

requirements of the dataset. 

Phase one was applied to the BUSI breast dataset, with an 

initial sample size of 15. The process was iterated until power 

curve stability was achieved at 150 samples as shown in Fig. 

1a. This allowed a prediction that 400 samples were required 

to be within 4% of the theoretical maximum accuracy 

achievable with the full dataset. These remaining samples 

(250) were then ‘collected’ by randomly sampling the BUSI

dataset. All remaining BUSI data was for validation.

 Phase 2 was then applied with an initial NN  trained on a 

sub sample of 50, and then predicted the annotation for the 

remaining 350 unannotated datasets with 50 chosen for 

annotation using uncertainty sampling and added to the 

training set. A new NN was then trained, validated, and then 

used to select an additional 50 samples from the remaining 

unannotated patient sets.  This was repeated until all 400 

samples were selected as shown in Fig. 1b for illustrative 

purposes, but the process would stop at the desired tolerance. 

All networks were trained for 100 times for a cycle of 20 

epoch, using an Alexnet NN and ADAM optimization 

method. Depending on the experimental robustness 

requirements, the best result of the training epochs or the 

mean result can be considered with differing conclusions.  

For the BUSI dataset with 400 samples from Phase 1, with 

an acceptable tolerance of 2%, 350 samples of the 400 need 

annotation for the mean response to be within tolerance but 

only 200 samples of the 400 need be annotated for the 

maximum result to be within acceptable tolerance. 

Figure 1 – a.) Comparing the power curve fit for sampling steps of the 

breast dataset from phase 1. b.) Performance of active learning in 
comparison to full annotation of 400 samples from phase 2. 

From the combined method of phase 1 and phase 2, 

considering the maximum response form the NNs, an 

accuracy of 85% was achievable using only 400 samples 

compared with the theoretical maximum of 88% at the full 

BUSI dataset size. Additionally with only 200 of the 400 

samples manually annotated, accuracy only drops to 84.7% 

for a 50% reduction in annotation burden, directly translatable 

into both time and costs. 
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B. Cost Saving Vs. Accuracy 

For completeness, the cases of simply performing phase 1 

alone (with 400 captured and annotated samples) and 

performing phase 2 alone on the full BUSI dataset, yielding 

50% annotation, were also considered to illustrated cost 

differences. Using an initial representative costing model of 

1:2 for data collection and annotation the relative costs of each 

method and phase can be seen in Fig. 2, calculated using (1), 

where P is the price of collection or annotation and N is the 

numbers predicted by phase 1 and 2 respectively. 

 

Cost = (PCollect X NCollection) + (PAnnotate X NAnnotate)     (1) 

 

Dependent on accuracy and robustness requirements, 

significant cost savings can be made by optimizing collection 

using a statistical power curve, and by targeting annotation by 

applying active learning as described in our method. 

Combining the methods shows the potential to reduce costs 

even further, up to 66% where the best performing network is 

taken into account as shown in (Fig. 2). The shape of this 

graph shows that regardless of the initial costing model used, 

the prescribed method will always yield a cost reduction in 

comparison to capturing arbitrary amounts of data and 

annotating it all, which is an important result allowing 

decision makers to optimize their clinical applications of 

machine learning. The scale of the cost saving is related to the 

complexity of the data, the NN type used, and the costing 

model, but this method is always expected to return a cost 

reduction for minimal accuracy loss. 

 
 

Figure 2 - Cost saving of capture and annotation for methods: Full 

capture/Full annotate (FC/FA), Full capture/Active learning (FC/AL), 
Optimized capture/Full annotate (OC/FA), optimized capture/Active 

learning from mean accuracy (OC/Mean-AL), optimized capture/Active 

learning from max accuracy (OC/Max-AL). 

This case study has shown statistical power curves and 

active learning allow for significant optimization in both 

sample and annotation set size. This reduction in sample size 

represents a direct cost reduction in producing a viable 

dataset. Through the example case study on the BUSI dataset, 

this gave a 50% cost reduction for an accuracy loss of 4% 

when considering mean response or a 66% cost reduction for 

an accuracy loss of 3.75% from theoretical maximums at full 

dataset size using Alexnet as a performance benchmark. 

IV. DISCUSSION 

Estimating clinical trial sample size is a standardized 

practice allowing clinical researchers to fit the size of studies 

so they are feasible clinically and financially within the 

timeframe available. This same approach has be used to 

predict the effectiveness of increasing the dataset for machine 

learning and inform researchers as to the usefulness of further 

annotation. Examining the results from the three datasets in 

this simple classifier per image study, the NN response to 

sample size trend is clear and can be exploited to cap data 

collection and annotation costs. The breast and lung datasets 

both showed diminished returns after 40-50% of the dataset 

with the much larger fetal dataset reaching diminishing 

returns between 10-20%. This means that data collection and 

annotation can be reduced without significant accuracy loss. 

This is an iterative process that can be done throughout the 

data collection process to plan subsequent data capture and 

annotation with each successive cycle providing a more 

accurate indicator of how much additional data is required to 

achieve the desired results. This is due to the power curve 

convergence observed (Fig. 1a), where the power curve 

converges onto a stable value predicting accuracy for 

arbitrary sample sizes. 

This process can also be used retrospectively to determine 

possible accuracy increases from additional sampling. 

Considering Fig. 3, for the BUSI dataset, extrapolation of the 

BUSI power curve suggests that additional accuracy can be 

achieved but a doubling of sample size will only yield a 4% 

improvement in accuracy. Similarly, no improvement is 

expected for the large fetal dataset with increasing sample 

size, allowing decision makers to plan appropriately. 

 

 
Figure 3 - Power curve extrapolated trends from mean NN accuracy results 

of all three datasets normalized to a patient set sample size. 

When evaluating the effectiveness of active learning across 

each of the datasets there is a measurable decrease in dataset 

annotation requirement but only up to ~60% dataset usage, 

above this point, it provided minimal improvement over 

untargeted annotation methods. Using a targeted approach 

such as active learning it is possible to further reduce the 

sample size by identifying where the neural network is least 

sure of the result, but this effect also diminishes in value as 

the training set increases in size.  
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V. CONCLUSION 

In order to progress machine learning research further in 

ultrasound, significant investment in data collection and 

annotation will be required, but this burden can be 

significantly reduced using targeted sampling methods. This 

paper proposed a 2 phase method to optimize the collection 

and annotation processes, demonstrated rigorously and 

repeatably per phase on public datasets, before being shown 

as effective together on a practical example. These methods 

provide ultrasound researchers with a method to not only 

identify the most effective sample size when collecting data 

but also a method to maximize annotation effectiveness 

potentially producing robust algorithms at reduced cost. 

Using a simple statistical power curve to predict accuracy 

results will allow researchers to provide an estimate as to the 

usefulness of additional data in NN training. This allows the 

results of limited feasibility studies using relatively small 

datasets to inform the selection and design of subsequent 

larger studies just as with clinical trials. Active learning using 

uncertainty sampling to reduces annotation effort on a smaller 

subset, useful especially where a data collection is ongoing or 

a large unlabeled dataset is available. These methods can be 

used independently, but give best results when used together. 

This method is to be used to streamline future clinical trials 

by the authors, and applied to other ultrasound applications 

like NDT and industrial inspection to standardize methods. 

While this study has focused on accuracy as the sole metric, 

additional validation metrics would allow for these methods 

to be significantly finetuned to produce the best network 

response at the lowest cost. Alexnet and per image 

classification provided an adequate baseline but further 

research into more complex architectures and ultrasound 

datasets with a more complex taxonomy would offer further 

insight into developing additional methods to reduce the cost 

of producing and annotating ultrasound data, especially where 

overlapping classifiers exist within the dataset. 
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