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Abstract

This article presents a Bayesian reliability modelling approach for wind turbines that

incorporates the effect of time-dependent variables. Namely, the technique is used

to explore the effect of annual services on wind turbine failure intensity through time

for turbines within a currently operational wind farm. In the operator's experience,

turbines seemed to fail more frequently after scheduled maintenance was performed;

however, this is an unexplored effect in the literature. Additionally, the effects of sea-

sonality, year of operation and position in the array on failure intensity are explored.

These features were included in a Cox-like model formulation which allows for time-

dependent covariates. Inference was performed via Bayes rule. Results show a spike

in failure intensity reaching 1.57 times the baseline in the six days directly proceeding

annual servicing, after which failure intensity is reduced compared to baseline. Also

observed is a significant year-on-year reduction of failure intensity since the intro-

duction of the site's data management system in 2018, a clear preference for model-

ling time to failure via a Weibull distribution and a dependence on location in the

array with respect to the prominent wind direction. Results also show the benefit of

employing a Bayesian regime, which provides easily interpretable uncertainty

quantification.
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1 | INTRODUCTION

For the purposes of lowering operations and maintenance (O&M) costs for offshore wind farms (OWFs), many operational decision making tools

have been created with OWF operators in mind.1 Central to many of these tools is failure modelling. However, failure modelling is often ham-

pered by issues with consistent and reliable data collection. Reder et al2 and International Energy Agency (IEA) Wind Task 333 explore this issue,

in particular highlighting that failure data are generally hard to come by and can be of a poor quality when they are available. Such issues may be

addressed by more advanced data management systems at OWFs. In turn, more advanced data management systems might lead to better failure

modelling and better operational efficiency.

One of the potential benefits of the industry incorporating better data processing practices is that it allows researchers to draw inferences

between relevant covariates and wind turbine (WT) failure intensity. Information about what factors are detrimental to turbine performance is

valuable to wind farm stakeholders as it allows the potential for a more effective operational strategy and more accurate project financing. This is
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especially true for offshore sites, which in responding to WT failures contend with weather constrictions on safe access and expensive vessel

charters. Particularly, uncertainties in reliability or maintainability estimates are becoming a key focus of investigation for O&M researchers, as

shown by recent works by Seyr and Muskulus,4 Scheu et al5 and Dao et al.6

This study is motivated by WT reliability analysis. An extensive dataset, provided by a currently operational wind farm, acts as the basis.

Insights through conversations with the operator act as another motivator. Particularly, a phenomenon was observed by the operational team

where more failures were occurring directly after scheduled maintenance works, which is a hitherto unquantified effect for WTs. Regarding meth-

odology, we focus on the frequency of corrective maintenance actions via extensions of the traditional methods, namely, Poisson processes and

Weibull processes.

We extend the typical Poisson process-type approach by two means. First, we propose a transition of traditional reliability analysis methods

into the Bayesian regime. This has the advantages characteristic of all Bayesian methodologies, namely, their suitability for small and incomplete

datasets,7 their explicit treatment of uncertainty and support for decision analysis8 and the ability to combine different sources of knowledge or

datasets.9 Second, we propose a data-modelling approach which has been employed by numerous recurrent time-to-event data analyses, capable

of capturing the effect of non-corrective works on the likelihood of proceeding failures. This was inspired by anecdotal evidence of increased tur-

bine failures after annual services from the operator of a large OWF. In this study we establish and quantify this relationship, which is a novel con-

sideration for wind farm O&M modellers. Time since annual service is therefore considered as an impacting covariate which has not been

explored by previous studies. The effects of seasonality, year of operation and position in the array are also considered as covariates in the model.

The rest of the paper is structured as follows. Section 2 provides a review of reliability modelling for WTs, covering the definition and mea-

surement of relevant key performance indicators (KPIs), reliability modelling practices commonly employed by operational decision making tools

and factors which have been considered in the literature. Section 3 is an outline of the methodology employed, covering data preprocessing, the

definition of the Bayesian reliability model and the model selection procedure. Section 4 presents the results of the model selection criteria and

covariate values. Section 5 presents a discussion of the results and their implications. Section 6 is a conclusion.

2 | RELIABILITY MODELLING OF WTS

In the context of wind energy, reliability broadly describes the ability of the WT to produce power over its design life and within its wind limits.

Addressing this concept via the analysis of operational data usually involves the calculation of certain KPIs. As summarized by Gonzalez et al,10

the wind industry is chiefly concerned with two questions concering WT reliability: ‘How often does a turbine fail?’ and ‘Which WT downtimes

are associated with which failure?’. They go on to describe four common reliability KPIs:

1. Mean time between failures (MTBF) and failure rate

2. Mean time to repair (MTTR) and repair rate

3. Mean time to failure (MTTF)

4. Availability

Of these, MTBF and failure rate are the indicators of interest for this study. While many reliability analyses focus on a component breakdown

of turbine failures, we focus on the WT system as a whole. In this respect, we are restricted by the limitations of the dataset available, which does

not readily allow for breakdown of failures into a subcomponent taxonomy. This distinction is important, as not all failures are equal in terms of

resources required to repair them and downtime associated with that repair. Component replacements that require a jack-up vessel—most nota-

bly the gearbox, main bearing, blades and generator—are very costly. Information on them is therefore valued most by decision makers. For a

more thorough discussion of WT component failures and their consequences, see Artigao et al.11

This study relies on the assumption that a third question is of interest to researchers, namely, ‘Under what operational conditions does a tur-

bine fail?’. This is fundamentally what this study to answer by introducing novel covariates to reliability models.

2.1 | Failures, failure rates and MTBF

There is no standard definition of a WT failure in the wind industry. Here, we are consistent with the definition used by the current authors in

Anderson et al12: A failure is defined by a downtime event accompanied by a recorded unscheduled visit to a turbine (a visit signifying the transfer

of a technician crew from vessel to turbine). This is the same definition as Kaidis et al.13 Some studies have additional criteria, for example, Carroll

et al,14 who define a failure as ‘a visit to a turbine, outside of a scheduled operation, in which material is consumed’. Some studies impose a limit

on downtime, (e.g.) only downtimes lasting longer than an hour are counted as failures.13 Other studies rely more heavily on alarm logs for their

definitions and include remote resets,2 in which case failure rates tend to be higher.

2 ANDERSON ET AL.

 10991824, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2846 by U
niversity O

f Strathclyde, W
iley O

nline Library on [11/07/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Since this study is restricted to turbine-level failures, we impose two additional conditions to our failure definition:

1. A lower limit on downtime of 1 h for the event to be considered a failure.

2. Downtime events with recorded unscheduled visits to the same turbine occurring within 24 h of each other are assumed to be the same

failure.

WT failure rate describes the number of failures for a given fleet of turbines per unit time, usually presented as number of failures per turbine

per year.15 Failure rate is a particularly critical KPI for wind farm operators to consider as it is a key O&M cost driver. For onshore sites, numerous

reliability analyses have been published—see Pfaffel et al.'s review of WT performance and reliability for details.16 For offshore sites published

reliability figures are sparse. Table 1 summarizes those average failure rate estimates for offshore WTs that are available in the literature. For this

particular wind farm and failure definition, the failure rate was calculated to be 7.31 failures per year. Figure 1A shows how these failures are dis-

tributed. Notably, this study has a lower failure rate than those previously recorded for turbines with similar power ratings. In the case of SPARTA,

it may be that their definition of ‘repair rate’ differs significantly than the proposed ‘failure rate’ of this study; however, since it is not defined in

the publication, it is difficult to comment on.

The focus of this study is in modelling time between failures rather than failure rates. This represents something of a shift away from the cou-

nting processes usually employed in WT reliability modelling to time-to-event data, which is akin to the common reliability metric MTBF or just

time between failures. Figure 1B shows a histogram plot of time between failures for the dataset utilized in this study, with the MTBF shown by

the dotted line. The metric is evidently exponentially distributed, justifying the use of the exponential family of models to represent it.

2.2 | Reliability models, Poisson and Weibull processes

A central part to many operational decision making tools is the representation of WT failure, more formally known as failure modelling. It is vital

to capture the frequency and probability of turbine failures accurately, as strategy for responding to them will dictate maintenance costs. A popu-

lar option for doing so is via so-called classical reliability analysis, which relies on historical failure data to predict time to failure. Another option is

via structural reliability models, which are comprehensively reviewed by Jiang et al.18 In contrast to classical reliability models, the structured

option aims to derive probability of failures for specific components based on the load characteristics and material properties (among other vari-

ables) of the component. In this study, the focus is on operational efficiency improvement through analysis of operational data. It is restricted to

TABLE 1 Summary of published offshore WT failure rates.

Study Failure rate Power rating (MW) No. of turbines

Anderson et al. 7.31 2–4 N/A

OWEZ15 7.82 3 36

Carroll et al.14 8.27 2-4 350

SPARTA17a 15.84 N/A 1045

aRepair rate rather than a failure rate.

F IGURE 1 Histograms for (A) WT failure rates and (B) WT time between failures for the period covering July 2018–July 2021. Mean values
for both metrics shown by dashed lines.

ANDERSON ET AL. 3
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turbine-level failures. For those two reasons, we deem a classical reliability analysis approach more suitable. If the aim were to inform the design

standards of different components (most notably the blades), structural reliability analysis should be considered.

Many studies have in common their reliance on historic failure data to model failures of WTs via classical reliability analysis. However, there

is plenty of licence for different interpretations of that data. In simple cases, failures are modelled deterministically.1 Turbines are assumed to fail

after a constant period of time, taken as the MTBF. While this is broadly indicative of failure behaviour, a recent study by Scheu et al5 has shown

the importance of considering the uncertainty of failure rate around a mean value. It is therefore advisable to adopt a probabilistic method, where

failures are assumed to occur at random intervals as described by some probability distribution function (PDF), which can be fit to the data. Most

popular of these is the Poisson process, of which there are two variants: the homogeneous and non-homogeneous Poisson process (HPP and

NHPP, respectively). The HPP assumes that time between failures is Poisson distributed according to a constant mean failure rate throughout

time. The NHPP is an extension of this regime, where the mean failure rate is assumed to be time-dependent. The usefulness of this assumption

is demonstrated by Slimacek and Lindqvist,19 who use it to model seasonal effects, and numerous studies which use a power law process to

model wear-in, wear-out and serial defect effects.20

Another popular method of modelling WTs is modelling time to failure via a Weibull distribution. Like the NHPP, Weibull time-to-failure

modelling allows for changing failure intensity through time. In the case where covariates are not included in the model (or where the

effect of covariates is constant), the Weibull formulation leads to a failure intensity that is monotonically increasing or decreasing through

time.21

Such methods might be categorized under the broader heading of reliability analysis in the field of engineering22 and survival analysis in the

fields of biology and medicine.23 There is a depth of theory in survival analysis in the data science research community which has seen broad

application in these fields. However, extensions of the NHPP which permeate survival analysis literature are yet to be fully utilized in the reliability

analysis of WTs. To the authors' best knowledge, there are two studies which have made use of such extensions thus far. The first is by Slimacek

and Lindqvist,19 who extended a NHPP by including a frailty model to capture heterogeneity unexplained by model covariates. They also

employed the model covariates to explore the effect of 4 factors on turbine reliability, namely: harshness of local environment, turbine concept,

date of installation and seasonality. The second is by Ozturk et al,24 who also explored the impact model covariates affecting turbine reliability.

Their list was slightly more comprehensive, encompassing: climatic regions, elevation location, distance to coast, mean annual wind speed, turbine

age, turbine type, number of previous failures and scheduled maintenance history. However, for the most part they used simpler non-parametric

methods, which differ from the semi-parametric methods which are closely related to NHPPs.

2.3 | Model covariates

Reliability models that are typically used in operational decision making tools for OWFs rarely incorporate model covariates. They tend to assume

the same probability of failure distribution for all turbines in the farm, usually under the assumption of a power law process NHPP incorporating

wear-in and wear-out effects. There are, however, many studies that attempt to quantify the impact that various features have on WT failure rate

via other means. These features, or covariates, can be broadly categorized into the sub-headings Environmental, Operational and Design. Table 2

presents summary of the covariates which have been considered in the literature. Environmental covariates are those which (with the exception

of tidal access restrictions) have a direct effect on the turbine loads and operational conditions. Structural reliability analysis methods may often

be more suitable for modelling these effects. Operational and design covariates have an indirect effect on reliability of components. We propose

that classical reliability analyses are more suited to the inclusion of these features.

It should also be noted that several of the variables listed in Table 2 are correlated, and care should be taken in reliability models to capture

this correlation.

2.3.1 | Environmental

Several studies have explored the effect of meteorological conditions on WT failure rate. Reder and Melero34 stress the potential benefit of alter-

ing the constant failure rate used to estimate WT reliability by environmental covariates. In doing so, operators might alter their maintenance

strategy to react to, for instance, seasonal periodicity in wind speed. The relationship between wind speed and WT reliability was established rela-

tively early on in the industry's development. Tavner et al25,26 contributed the majority of this early research, identifying a significant cross-

correlation between failure rates and wind speed. Faulstich et al27 corroborated these early findings. Early researchers also identified correlations

between temperature, humidity and proximity to coast and failure rate, implying that the relationship was between reliability and weather, as

opposed to solely wind speed.26 This work was followed up by Wilson and McMillan,28 who quantified the impact of weather effects on failure

rates by employing a Bayesian technique—namely, they used Markov chains and Monte Carlo simulations. They went a step further by quantify-

ing the effect that wind speed-dependent failure rates have on operational expenditure. Later, Reder et al29 devised a methodology for analysing

4 ANDERSON ET AL.
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environmental conditions ahead of turbine failures in more detail. They also explored an alternative approach using a naive Bayesian network to

predict WT failures.34 Seasonality is explored by a number of studies. Slimacek and Lindqvist19 and Reder et al29 both observed higher failure

rates in winter months, where wind conditions are harsher. However, Slimacek and Lindqvist19 also observed a less prominent peak in June and

July. Presumably, the summer months offer the most favourable access conditions, meaning that operators use this time to carry out the majority

of non-critical maintenance work. This trend was also observed by the SPARTA initiative,17 who recorded a higher repair rate of turbines in the

summer months. The current authors also explored the effects of tidal access restrictions on WT reliability and maintainability metrics.12 While no

disparity was observed between tidally restricted and non-tidally restricted turbines, a statistically significant effect was observed for location in

the array with respect to the prominent wind direction.

2.3.2 | Operational

In the wider context of operational decision making tools, the covariates which fit under the Operational sub-heading are a key focal point for

researchers. In theory, it is conceivable that maintenance actions taken today will have a consequence on WT reliability in the future. There are

two prominent factors to consider in this regard:

1. Scheduled maintenance campaigns are used as preventative measures aiming to improve reliability. They therefore might be assumed to have

a significant impact on WT failure rates.

2. Modern WTs are equipped with advanced condition monitoring tools for failure prevention.

In reality, however, the impact of operational parameters such as these on failure rates can be difficult to quantify. State-of-the-art decision

making tools have various methods of handling them, however drawing inferences from the operational data itself seen relatively little scrutiny in

reliability models.

Studies that have scrutinized the impact of scheduled maintenance in the literature tend to optimize the time between preventative mainte-

nance actions. Carlos et al35 derived an optimal 113 days between scheduled maintenance visits using a Monte Carlo simulation method, using a

Spanish failure database. Zhong et al36 devised a decision making tool based on a nondominated sorting genetic algorithm which allows the user

to balance the objectives of turbine reliability and maintenance cost. Besnard et al37 used a stochastic optimization model to show that pre-

forming service maintenance tasks opportunistically during periods of low wind could save 32% of the transportation and production losses when

compared to more conventional approaches. Byon et al38 used a partially observed Markov decision process to derive an optimal preventative

maintenance policy. Pattison et al39 include annual service campaigns in their novel architecture and system for the provision of reliability-centred

TABLE 2 Summary of covariate effects on WT reliability.

Factor considered Factor category References

Wind speed Environmental Tavner et al.,25,26 Faulstich et al.,27 Wilson and McMillan,28 Reder et al.29

Turbulence Environmental Tavner and Tavner30

Temperature Environmental Tavner et al.,26 Wilson and McMillan,28 Reder et al.29

Humidity Environmental Tavner et al.,26 Wilson and McMillan,28 Reder et al.29

Seasonality Environmental Slimacek and Lindqvist,19 Reder et al.,29 SPARTA17

Harshness of environment Environmental Slimacek and Lindqvist19

Koppen–Geiger climatic regions Environmental Ozturk et al.24

Elevation location Environmental Ozturk et al.24

Distance to coast Environmental Faulstich et al27 and Ozturk et al.24

Tidal access restrictions Environmental Anderson et al.12

Position in the array Design Anderson et al.12

Number of previous failures Operational Ozturk et al.24

Scheduled maintenance history Operational Ozturk et al.24

WT concept Design Faulstich et al.,31 Slimacek and Lindqvist,19 Ozturk et al.,24

Arabian-Hoseynabadi et al.,32 Carroll et al.33

WT manufacturer Design Slimacek and Lindqvist19

ANDERSON ET AL. 5
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maintenance (RCM) such that cost-effective PM management could be achieved. To the authors' best knowledge, no evidence is presented in the

literature for increased failure intensity directly after scheduled maintenance works, nor any attempts to model this effect.

Condition monitoring studies represent the main academic contribution to the field of WT O&M.40 For detailed examples, see Artigao et al,11

who present a comprehensive review of condition monitoring tools for WTs. Despite this prevalence of CM studies in the literature, attempts to

quantify the impact of the developed tools prove to be difficult. The earliest was by McMillan and Ault,41 who used discrete-time Markov chains

to evaluate effectiveness of a CM system on various metrics such as failure rate, O&M costs and availability. The work of May et al42 followed

up, using a hidden Markov model to estimate model reduced failure types, false alarms, detection rates and 6-month failure warnings form CM

systems. The dataset made available for this study is not detailed enough to investigate this factor; however, it is conceivable that the efficacy of

condition monitoring tools on reducing turbine failure rate could be measured provided some preliminary alarm code analysis.

2.3.3 | Design

By Design, we refer to those factors which are determined by the turbine model—that is, turbine concept or manufacturer. Faulstich et al31 inves-

tigated (among other factors) turbine size, which was shown to increase failure rates. This finding is corroborated by Slimacek and Lindqvist.19

They also compared turbine manufacturers, finding that differences in failure intensity were insignificant. Turbine concept has been explored by

Carroll et al,33 who compared the reliability of WTs with doubly fed induction generators (DFIG) and permanent magnet generator (PMG) drive

trains for onshore turbines, finding that the DFIG has approximately 40% more failures than the PMG. Arabian-Hoseynabadi et al32 compared

geared and direct drive turbines but were unable to establish that one was more reliable that the other. Ozturk et al43 also compared geared and

direct drive turbines via a failure modes, effects and criticality analysis (FMECA), finding significant differences in cost criticality in various

subcomponents.

3 | METHODOLOGY

3.1 | Reliability analysis

Modelling time between failures facilitates the use of hazard scale models. Within a hazard scale formulation, we can represent the hazard func-

tion for a given turbine i at time t from our designated point of origin via a regression model:

hiðtÞ¼ h0ðtÞeηiðtÞ, ð1Þ

where h0ðtÞ is the baseline hazard rate and ηiðtÞ is some linear predictor describing the effect of the chosen covariates on turbine i at time t. The

baseline hazard is therefore the estimated hazard rate in the absence of covariate effects. Typically, WT reliability modelling relies on exponential

models:

hiðtÞ¼ λiðtÞ; λiðtÞ¼ aeηiðtÞ: ð2Þ

Here, when covariate effects are assumed to be time invariant, we arrive at a constant hazard rate defined by a. Note the similarity to the for-

mulation used by Slimacek and Lindqvist19 to define their HPP. In some instances,44,45 researchers opt for Weibull-distributed failures. In this

case,

hiðtÞ¼ γtγ�1eηiðtÞ, ð3Þ

where γ >0 is a shape parameter. We explore both models by comparing Bayesian fit metrics.

The above model formulations are akin to the popular Cox model.46 The model we present here, however, differs by three means: via time-

dependent covariate effects, frailty (random) effects and Bayesian estimation, which are elaborated on in the following subsections.

3.1.1 | Covariate effects

Covariate effects are wrapped up in the linear predictor ηiðtÞ:

6 ANDERSON ET AL.
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ηiðtÞ¼ βTðtÞXiðtÞ, ð4Þ

where XiðtÞ¼ ½1,xi,1ðtÞ,…,xi,PðtÞ� is a vector of covariates with xi,pðtÞ being the observed value of the pth covariate for the ith turbine at time t.

βðtÞ¼ ½β0,β1ðtÞ,…,βPðtÞ� is a vector of coefficient values in which β0 is an intercept term and βpðtÞ is the coefficient for the pth variable. Individual

covariates contribute an effect via the term expðβpðtÞÞ, otherwise known as the hazard ratio. This represents a relative increase or decrease in the

baseline hazard due to the inclusion of a specific parameter. A unit increase in the covariate corresponds to a unit increase in the hazard, propor-

tional to the hazard ratio.

Typically within WT reliability analyses, βpðtÞ is time invariant, that is,

βpðtÞ¼ θp0, ð5Þ

such that θp0 is a constant effect. This is commonly referred to as the proportional hazards assumption and is key in formulating the Cox model.

Note that this assumption is implicitly held by Slimacek and Lindqvist19 and any previous studies that employ covariate effects.44 Some covariates

may violate this assumption, however, by having a time dependence. Such variables will be referred to as having a time-varying effect, since their

hazard ratio is a function of time. In this study, we model the time dependence via a B-spline, or basis spline, so-called because it combines a num-

ber of weighted basis functions to represent the given relationship. Thus, we model the covariate effect as

βpðtÞ¼ θp0þ
XL

l¼1

θplBlðt;k,δÞ, ð6Þ

where θp0 is a constant, Blðt;k,δÞ is the lth basis term of a degree δ B-spline function subject to a vector of knot locations k and θpl is the

corresponding lth B-spline coefficient. Such a formulation utilizing B-splines has been shown to be effective for modelling time-varying effects, as

shown by (e.g.) Perperoglou,47 Andrinopoulou et al48 and Gao et al.49 Their effectiveness, however, depends on two hyper-parameters, namely, δ

and the knot vector k. Regarding the choice of δ, cubic basis functions (i.e., δ¼3) are most popular in the literature.50 Given the property of con-

tinuous first and second derivatives, they provide smooth interpolation when compared to linear and quadratic basis functions.51 They also avoid

some of the issues associated with higher order polynomials, for example, Runge's problem.

Knot locations present a more complex problem. Improper selection of knot locations can lead to poor predictions via either overfitting

(in the case where there are too many splines) or underfitting (in the case where too few knot locations).52 The literature presents two main ways

of handling this issue. The first employs some form of penalty against overfitting, as is common to many machine learning methodologies. This

involves the selection of another smoothing parameter or penalty weight, which is optimized to achieve the best ‘smoothness’ between adjacent

splines.47,53 We opt for the alternative approach, whereby several configurations of knot locations are considered and compared via a model

selection criteria,54 such that a model is selected parsimoniously. More information on model comparison is given in Section 3.3.3.

3.1.2 | Hierarchical reliability

WT reliability is difficult to properly quantify. There are myriad different covariates that have an influence. On top of this, the complete set of

influential environmental, operational or design parameters that might be considered to improve the accuracy of any reliability model is rarely

available to researchers—or indeed even operators. Often there is an additional heterogeneity between systems which is unexplained by model

covariates. In a previous study, we have explored the use of hierarchical models in addressing issues of heterogeneity within a limited dataset.

Indeed, they proved to be useful in quantifying WT reliability and in turn for assessing strategy to address failures. In survival or reliability analysis,

this hierarchical nature is commonly accounted for by including frailties in the model.55 In effect this clusters observations into groups sharing a

common characteristic; here, we include a turbine-by-turbine frailty. This means that any ith event belonging to any jth given turbine are corre-

lated, which can be modelled via a random effects term in the linear predictor:

ηijðtÞ¼ βTXijðtÞþbTj Zij, ð7Þ

where Xij has been given a subscript to denote events belonging to the turbine j, Zij is a vector of covariates for the ith event for the jth

turbine and bj is the associated vector of turbine-specific random effect parameters with covariance matrix CovðbjÞ¼Σb and expected

value EðbjÞ¼0.

Including frailty effects not only has the potential to improve the accuracy of the model but addresses how to alter the traditional Cox-like

parameterization to include recurrent events for individual turbines. As explained by Amorim and Cai,56 there two options for datasets of this

ANDERSON ET AL. 7
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type. The first is to employ a Markov process, where future events depend only on the immediate past. The other is via shared random effects or

frailties, as we have done here. This is a natural choice for WTs: Failure rates may differ significantly even among fleets of the same model, and it

is often difficult to attribute any discrepancies to observable covariates.

3.2 | Bayesian reliability analysis

3.2.1 | Priors

The specified model has a number of parameters for which prior distributions must be defined. For smaller datasets, setting informative priors

would be useful for allowing statistically relevant inferences. As it stands, we argue that the dataset upon which this analysis is based is large

enough to allow weakly-informative priors. Additionally, in the absence of structured expert opinion it is difficult to define informative priors for

many parameters. The time-varying effect of maintenance works on failure rate, for instance, is a novel covariate for which no data points exist.

Neither is the effect accounted for by state-of-the-art decision tools. The covariance matrices that characterize the frailties of individual turbines

would vary from farm-to-farm.

Having determined that priors will be weakly-informative, we set the following assumptions:

1. Intercept value β0. Models contain an intercept term in the linear predictor which partly characterizes the baseline hazard. It takes the form of a

diffuse normal distribution such that β0 �Nðμ,σÞ, where μ¼0 and σ¼5.

2. Time-invariant regression coefficients θp0. As above, we use a normal distribution such that θp0 �Nðμ,σÞ, where μ¼0 and σ¼5.

3. Time-varying B-spline coefficients θpl. We describe the B-spline coefficients via a random walk where θp,1 �Nð0,1Þ and θp,m �Nðθp,m�1,τpÞ for
m¼2,…,M, where M is the total number of basis terms. Using this specification also requires a prior for τp, which we define as an exponential

such that τp � expðλÞ, where λ¼5. τp acts as a smoothing parameter for the B-spline which can be used as a form of regularization. Thus, the

exponential form of prior is used to encourage low values and prevent overfitting.

4. Wiebull scale parameter γ. Where we employ a Weibull model, the scale parameter is assumed to follow a half normal distribution, such that

γ�Nðμ,σÞ, where μ¼0,σ¼1 and γ >0.

5. Covariance matrix. The covariance matrix is made up of a series of decompositions. First, the covariance matrix Σb is decomposed into a corre-

lation matrix Ω and a vector of variances. The variances are in turn decomposed into the product of a simplex vector π and the trace of the

matrix. The trace is the product of the order of the matrix and the square of a scale parameter ϵ. The Lewandowski–Kurowicka–Joe (LKJ) dis-

tribution57 is used as a prior for Ω—this is dependent on a regularization parameter ζ. We use the default ζ¼1, meaning that the prior distribu-

tion is jointly uniform over all possible correlation matrices. A symmetric Dirichlet prior is used for π, which has a single concentration

parameter ϕ>0. Again, we use the default ϕ¼1, meaning jointly uniform probability for all simplexes. A gamma distribution is specified for ϵ,

such that ϵ�Gammaðα,βÞ,α¼1,β¼1.

Figure 2 summarizes the relationships between model variables for the Weibull model.

3.2.2 | Posterior calculation

Posterior calculation is where we condition our model on observed data via Bayes's rule. It is a key difference from the likelihood methods as pre-

viously used for inference by Slimacek and Lindqvist.19 Given a set of observations y¼ðy1,y2,…,ynÞ assumed to be independent given the param-

eters θ, a set of prior distributions pðθÞ, the posterior distribution is derived by

pðθjyÞ¼ pðθÞpðyjθÞ
pðyÞ , ð8Þ

where the non-zero probability of observation pðyÞ of y is given by

pðyÞ¼
ð
pðθÞpðyjθÞdθ, ð9Þ

a quantity that often doesn't readily allow for analytical solutions. For this reason we use Markov chain Monte Carlo (MCMC), a popular inference

method for building Bayesian models.58 We use a form of Hamiltonian Monte Carlo (HMC) called the No-U-Turn-Sampler (NUTS),59 which

8 ANDERSON ET AL.
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benefits practitioners in not having to hand-tune HMC via a parameter which defines the number of steps in the simulation. We use 1000 itera-

tions as an initial training period for the algorithm. These training samples are then discarded, and we go on to sample 1000 draws from the target

posterior distribution.

3.2.3 | Model comparison

We use leave-one-out (LOO) cross-validation (CV) to undertake model comparison.60 LOO was developed specifically for estimating out-

of-sample predictive accuracy from the posterior sample of fitted Bayesian models. Consider a dataset y¼ðy1,y2,…,ynÞ, which has been generated

by some theoretical true generating mechanism for y, ptðyÞ. Also consider a new dataset ~y¼ð ey1, ey2,…, eynÞ. ~y is independent from y but is also

assumed to be generated by ptðyÞ. In the Bayesian setting, we arrive at a posterior predictive distribution for the new dataset ~y fitted on the origi-

nal dataset y:

pð~yjyÞ¼
ð
pðeyijθÞpðθjyÞdθ: ð10Þ

Evaluating a given set of models Mk � fM1,M2,…,Mzg involves estimating the expected log point-wise predictive density (ELPD), which acts

as a measure of predictive accuracy for the dataset ~y. The ELDP is given by61

ELDPðMkjyÞ¼
Xn
i¼1

ð
ptðeyiÞlog pkðeyijyÞdeyi, ð11Þ

where pkðeyijyÞ is the posterior predictive density for the model Mk . In practice. however, what we refer to as the true data generating process is

unknown. We therefore must resort to some means of approximation for Equation (11). In many machine learning methodologies, out-of-sample

test data are used for a similar purpose. In the Bayesian framework, CV62 has become popular. CV involves splitting the data into K parts which

F IGURE 2 Diagram showing the relationships between model parameters and hyper-parameters as described in Section 3.2.1, along with
their associated prior specifications.

ANDERSON ET AL. 9
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are, respectively, used as out-of-sample validation sets for the model fit with the remaining data. In LOO CV, we estimate the predictive accuracy

of the n data points taken one at a time, such that K¼ n. This is given by

ELPDLOOðMkjyÞ¼
Xn
i¼1

log pMk
ðyijyi�1Þ, ð12Þ

where

log pMk
ðyijyi�1Þ¼ log

ð
pMk

ðyijθÞpMk
ðθjyi�1Þdθ ð13Þ

is the LOO predictive log density for the ith data point of the model Mk . In practice, we are only concerned with the comparison of two models,

so we estimate the difference in their expected predictive power. For two models M1 and M2 (e.g., representing models with different knot vec-

tors k), we estimate the difference in their expected predictive accuracy as

delpdLOOðM1,M2jyÞ ¼ delpdLOOðM1jyÞ� delpdLOOðM2jyÞ

¼
Xn
i¼1

ðlogpM1
ðyijyi�1Þ� logpM2

ðyijyi�1ÞÞ

¼
Xn
i¼1

delpdLOO,iðM1,M2jyÞ:

ð14Þ

Now that there is a model comparison criterion in place, we employ a two stage step-wise procedure for model building as developed by

Hofner et al.63 This consists of the following steps:

1. Starting model definition. The starting model consists simply of the baseline hazard rate with turbine frailties. There are two choices for baseline

hazard rate, namely, exponential and Weibull. This is the initial model selection problem. Note that frailties must be included from the outset

to account for recurrent events among the same turbine.

2. Initial choice set. Define a set of variables to be, respectively, added to the model. These are defined in Section 3.3.2. The primary problem is in

selecting the number of knots for time-varying effects. We do this by increasing the number of knots to the point where the increase in model

accuracy is insignificant. If any respective variable improves the model's predictive accuracy it is included.

3. Backwards selection. Perform a backward deletion step on the current model, that is, estimate all hazard regression models obtained from the

current model by dropping one covariate at a time. If an improvement of the model comparison criterion can be achieved, make the reduced

model with optimal model comparison criterion the working model.

The process is summarized by Figure 3.

3.3 | Data preprocessing

3.3.1 | Dataset description and identification of failures

The current analysis is based on the same historical database as is used by Anderson et al.12,64 It consists of supervisory control and data acquisi-

tion (SCADA), weather and operational data describing the performance, meteorological conditions and maintenance actions performed for a large

group of modern, geared WTs with a multi-MW power rating. The farm utilizes a typical condition-based maintenance strategy and is located

around an hour-long trip from its operational base by CTV.

Of particular importance to this study is the Downtime Catalogue, which was created by cross-referencing technician work orders and SCADA

data, such that every period of turbine downtime is associated with a corresponding set of maintenance tasks. There are some important charac-

teristics about Downtime Catalogue which should be highlighted for interpretation of results going forward.

1. Entries consist of periods of turbine downtime coinciding with maintenance actions. ‘Failures’ are selected by downtime events which have a

coinciding maintenance action labelled as ‘corrective’. Corrective actions are distinct from inspections and balance of plant activities: they cor-

respond directly to a repair of the turbine. However, specific failure modes or components affected cannot be ascertained at this stage.

10 ANDERSON ET AL.

 10991824, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2846 by U
niversity O

f Strathclyde, W
iley O

nline Library on [11/07/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2. A ‘failure’ implies that something has gone wrong with the turbine and it can no longer produce power. In this study, the onset of turbine

downtime is the qualifier for a failure. The time between the end of one corrective downtime event and the start of the next is what we mea-

sure. This is different from the time between corrective maintenance actions. Beyond ascertaining that a corrective maintenance action

occurred within the period of downtime, the timing of them is irrelevant.

3. Using ‘failure’ in this context is justified in the absence of a standard failure definition in the industry. However, uncertainty remains because

the onset of downtime may not be regarded as the onset of a failure by all researchers. In the absence of a detailed root-cause analysis, we

deem a turbine shutdown a reasonable threshold to define a failure.

4. Restricting the identification of failures to the turbine-level potentially obfuscates dependencies that are only affect specific failure modes.

There would therefore be a lot of value in scrutinizing particular failure modes, but it is outwith the scope of this study. On the other hand,

restricting failures to turbine level avoids some uncertainty associated with small datasets; that is, there are far more samples at the turbine

level than component level.

F IGURE 3 Flow chart summarizing the model selection criteria.
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3.3.2 | Selected covariates

The key contribution of this study in in quantifying the effect of operational covariates on WT reliability. The time-varying effect of scheduled

maintenance works on failure rates is a particularly novel consideration. The full list of covariates considered is as follows:

1. Seasonality. Simalarly to Slimacek and Lindqvist,19 we employ seasonality as a model covariate. This is either coded by month of the year

(i.e., ‘Jan’, ‘Feb’, …) such that each month has a constant covariate effect with respect to a reference month (which is arbitrarily chosen to be

April) or season of the year under the same assumption (reference month is arbitrarily autumn).

2. Year of operation. Year of operation is of interest because WT failure behaviour is often assumed to vary over time, most frequently by a

power law process. Failure intensity is often assumed to follow the bathtub curve,65 which includes a wear-in period and wear-out period.

One study by Stiesdal et al also included a serial defect period for Siemens turbines.20 We assume that the data cover the normal

operations period in the wind farms life; however, there are few results in the literature to conform that this is actually flat. Also of inter-

est is the fact that the site deployed their advanced data management system in 2018, which in itself may have improved operational

efficiency.

3. Turbine location. Turbine location may be assumed to effect reliability primarily due to the effects of turbulence. Indeed, we have explored this

effect in a previous publication.12 We include this effect via a frailty term, either using the turbine row or individual turbine names as categori-

cal variables.

4. Time since annual services. It is common practice in the industry to have an annual campaign where a set of scheduled maintenance actions are

carried out on turbines. The exact nature of these actions vary from one service provider to the next and depend largely on maintenance con-

tract arrangements.66 Contracts generally assign up to 60 downtime hours per year towards these services; however, a recent study by

Anderson et al12 estimates the number to be around 29 h/year. This generally includes tasks such as lubrication of mechanical parts (e.g., gear

oil, hydraulic oil and greasing), measurement of part temperatures, a torque tensioning of bolts and basic inspection of parts within the nacelle.

Analysis of the effect of annual services on failure rates was a key motivation for introducing time-dependent effects, as the data provider for

this study reported allegorical evidence of repeated failures after annual services from technicians.

5. Time since inspection. Likewise, it is common to regularly inspect certain key components—for example, a visual inspection of blades for cracks

or erosion. Again, we assume a time dependence for this variable; it is conceivable that a repair is more likely to take place soon after an

inspection, but thereafter, the risk of failure might be assumed to decrease.

3.3.3 | Time-to-event dataset

The Downtime Catalogue acts as the basis of this study. However, it requires an additional transformation step in order to convert the information

into a data format that is compatible with the methodology. We refer to this as the time-to-event dataset, a subset of which is shown in Table 3.

Most important are the columns tgap and failure, upon which the model fundamentally depend. tgap represents the time since the last mainte-

nance action, that is, the difference between tstart (the time stamp at which the turbine is restored to fully operational after the previous mainte-

nance action) and tstop (time time stamp at which the turbine stops producing power due to some maintenance intervention). The rest of the

columns are covariate values. Time is recorded in units of days.

We propose that, at a turbine level, there are enough samples in the time-to-event dataset to set un-informative priors. However,

600 turbine years of data is a relatively small amount for a reliability analysis. As with most data analysis techniques, results would be more robust

if the dataset were bigger. The dataset is made up of turbines of one concept from one OWF. Results should be interpreted with these facts

in mind.

TABLE 3 First five rows of the time-to-event dataset.

ID Turbine Turbine row tstart tstop tgap AS Inspection Failure Month Year Season

1 A1 A 0 15 15 0 0 1 7 2018 Summer

2 A1 A 29 49 20 0 1 1 8 2018 Summer

3 A1 A 50 87 37 0 0 1 9 2018 Autumn

4 A1 A 99 115 16 1 0 1 10 2018 Autumn

5 A1 A 115 117 2 0 0 1 10 2018 Autumn

12 ANDERSON ET AL.
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4 | RESULTS

4.1 | Model comparison and knot locations

Table 4 summarizes the results of the step-wise model comparison procedure. Immediately from the starting model definition, we see that a

Weibull model significantly outperforms the exponential model in representing the time-to-failure dataset. From visual inspection of Figure 4, it is

evident that the Weibull model also matches more accurately the non-parametric Kaplan–Meier estimate.67 Note that we re-check this compari-

son at each stage of the procedure, and results are consistent. This in itself is an interesting result. According to Seyr and Muskulus,1 WT failures

are most commonly modelled exponentially via a Poisson process. Our results imply that a Weibull-distributed time to failure would be more accu-

rate. Scheu et al5 conclude that the difference in modelled availability between exponential and Weibull-distributed failures is as much as 10%.

This distributional assumption can therefore have a significant impact on the outputs of cost models—it may benefit the research community to

investigate this disparity further. Weibull versus Poisson process for the modelling of individual failure would be particularly useful, as individual

failure modes have different consequences in terms of costs.

Seasonality has a lesser, though still significant effect on modelling performance, as does year of operation. Time since annual service also

improves model performance—the degree to which it does so depends on the knot vector. We see a quite significant improvement when adding

5 internal knots (compared to 0), but the improvement quickly tails off as additional knots are added. The peak value is at 7, after which there is a

very small depreciation in model performance. Given that all internal knot configurations containing greater than seven have a small ELPDLOO

score compared to the model error (SE), they have similar predictive power and we should choose the least complex model. Modelling both time

since annual servicing and time since inspection provides the most accurate results. Time since inspection is most accurately modelled with five

internal knots—perhaps this is fewer than time since annual service since it is characterized by a less dramatic spike in the first few weeks after

performing the task. The effects of increasing number of internal knot locations is shown in Figure 5.

4.2 | Covariate values

The effect of seasonality is shown in Figure 6. This is most likely indicative of the strategy employed at the site rather than direct wind speed

effects on turbine reliability. The operator favours the low wind speed months of June and July to perform repairs. This corroborates the

TABLE 4 Summary of covariate effects on WT reliability.

Modelling group Added variable Modelling alternative LOO-score (ELPD) LOO-score (SE)

1 Baseline Weibull 0 0

Exponential �588.3 32.8

2 Seasonality Seasons 0 0

Monthly �11.9 6.4

No covariate �38.5 10.2

3 Year of Yearly (constant effect) 0 0

operation Yearly (year-by-year) �2.0 0.9

No covariate �47.6 9.3

4 Time since TVE (7 internal knots) 0 0

annual service TVE (8 internal knots) �0.4 0.3

TVE (9 internal knots) �0.6 0.4

TVE (10 internal knots) �1.1 0.5

TVE (6 internal knots) �4.1 0.7

TVE (5 internal knots) �4.6 1.1

No covariate �28.1 5.9

5 Time since TVE (5 internal knots) 0 0

inspection TVE (6 internal knots) �1.3 0.3

TVE (7 internal knots) �1.4 0.4

TVE (4 internal knots) �3.4 0.8

TVE (2 internal knots) �9.2 1.9

No covariate �18.7 5.1
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seasonality pattern of repair rate presented by the SPARTA initiative.17 It does not align with the results presented by Slimacek and Lindqvist,19

who observe a similar uptick in repairs during summer, but increased failure rates throughout winter. The disparity may be indicative of improving

operational efficiency with growing experience in the industry; however, it may also be attributed to different methods of modelling seasonality.

The high hazard rate in autumn is unexpected given the patterns previously presented in the literature. It is unclear exactly what causes this—it

has been suggested that there may be a ‘fatigue effect’ after the busy summer months, but this is difficult to verify.

The effect of year of operation is shown in Figure 7. The effect on the hazard rate is with reference to the first year for which data are avail-

able, 2018. There is a consistent and quite significant reduction of the hazard rate through time. What causes this is not clear. It may be indicative

of increasing operational efficiency through learned experience of operating the site. It may imply that the bathtub curve describing infant turbine

failure rates has a longer tail than commonly assumed. However, Carroll et al14 found no evidence of increased infant failure rates, and we

F IGURE 5 ELPDLOO values for models of varying internal knot locations.

F IGURE 4 Survival curves for both baseline hazard rate distributions. For reference, the non-parametric Kaplan–Meier curve is also shown.

14 ANDERSON ET AL.
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consider it to be unlikely. Interestingly, it coincides with the introduction of an advanced data management system to the site in 2018. It may

therefore present evidence of the value of data management systems regarding operational efficiency. In the absence of more detailed fault data,

it is difficult to draw any hard conclusions. Hazard rate does not necessarily translate directly to failure rate. It may be that repairs are carried out

in a way that cause fewer stoppages or that there are fewer ‘fault finding’ missions.

Frailty effects are explored in Figure 8. Figure 8A shows how the means of all Monte Carlo simulations for each turbine are distributed—

approximately normally around a median of 1. There are quite significant deviations from the mean. The most unreliable turbine is predicted to fail

1.65 times more that average, the most reliable 0.5 times the average. This is quite a significant heterogeneity in failure intensity that is rarely

taken into account in costs models. Again, further research into how this effects cost modelling outputs may be useful for researchers in the field.

Figure 8B shows how all of the frailty estimates (i.e., from every Monte Carlo simulation) are distributed, which is useful for checking the assump-

tion that frailties are indeed gamma distributed. Evidently, the random effect estimates can be accurately approximated by a gamma distribution,

as the fitted gamma curve fits the histogram very well.

F IGURE 6 Effect of year of seasonality on WT hazard rate, relative to autumn.

F IGURE 7 Effect of year of operation on WT hazard rate, relative to the year 2018. Since data collection commenced in 2018, there has
been a consistent downward trend.
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Frailties are also useful for exploring the effect of position in the array, as has previously been done by Anderson et al.12 Figure 9 explores

the effect that turbine row has on frailty values. It does so by fitting a cubic spline function to the mean frailty values of turbines in each row, as

well as the 25th and 75th percentile values for each row. Values towards the left of the plot on the x axis represent rows which are towards the

front of the array with respect to the prominent wind direction. The first row is characterized by a relatively low failure intensity and relatively

low uncertainty in the failure intensity. The next foremost rows are characterized by both an increasing hazard rate and increasing uncertainty in

the hazard rate. This trend continues to a point in the middle of the array. After this, successive rows retain high uncertainty in hazard rates, with

mean values decreasing towards the back of the array. Turbines downwind of others are subject to higher turbulence, which has been shown to

be detrimental to WT reliability.30 At the same time, downwind turbines operate in lower speeds, so we see a decreasing median trend from the

rows in the middle to the rows at the back. Interestingly, these ‘middle’ rows are characterized by the highest heterogeneity in reliability.

Figure 10 shows the time-dependent covariate time since annual service. It is characterized by a sharp initial upward trend peaking at 2 days.

The maximum value for mean hazard ratio estimate at this point is 1.57. Turbine failure intensity is higher for the first 6 days after the service,

after which there is a reduced failure intensity until 137 days after. Beyond this point, failure intensity is estimated to increase, as might be

expected for turbines far away from their annual service. Lower values along the time axis have lower uncertainty in their estimate as the majority

of turbines will most likely require corrective maintenance again in the next few weeks than in the next few months. Hence, estimates further

along the x axis are more uncertain as there are fewer samples. The results back up the theory of the operational team—initially, annual services

can be thought to lead to more failures, after which they prevent failures as they are supposed to. However, the effect is short lasting, and the

higher failure intensity may not justify any change in strategy.

F IGURE 8 Histograms of (A) the mean frailty effect for each turbine and (B) the turbine frailty effect over all Monte Carlo simulations. The
assumption of gamma-distributed random effects is a reasonable one.

F IGURE 9 Fitted cubic function approximating frailty effects' relationship to turbine position in the array with respect to the prominent wind
direction.
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F IGURE 10 Time-dependent relationship between annual servicing and wind turbine failure rate. A hazard ratio <1 signifies an increased
failure rate, <1 decreased.

F IGURE 11 Time-dependent relationship between inspection and wind turbine failure rate. A hazard ratio <1 signifies an increased failure
rate, <1 decreased.

Figure 11 shows the time-dependent covariate time since inspection. The shape is similar to time since annual service: There is an initial peak in

failure intensity (where inspections report a problem leading to a corrective maintenance action), after which the hazard rate is below 1. Again,

the initial peak is at 2 days after inspection, with a slightly smaller hazard ratio of 1.30. 6 days after servicing, the hazard rate falls below 1. It

remains below 1 throughout the entire year, rising gradually as time goes on.

5 | DISCUSSION

5.1 | Reflections on methodology

There are two ways to consider the utility of this study. The first has to do with the context and quality of the input data, the second to do with

the methodology itself. Regarding the input data: the data-table Downtime Catalogue results from an operational database provided by a currently

ANDERSON ET AL. 17
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operational OWF which employs an advanced data management system. Given the scarcity of reliability data available for offshore WTs (see

Reder et al2 for details), this is valuable to the research community. However, the dataset is limited in that it is not broken down into a component

or subcomponent taxonomy. This means that no conclusions can be made on the time to failure of individual components, the effect of seasonal-

ity on individual components or the effect of year of operation on individual components. Since some modern cost modelling tools consider reli-

ability at the component level, such an analysis would be useful to the research community. This is especially pertinent for the time-varying effect

of inspections. Figure 11 does not reveal anything particularly useful—as expected, the inspection reveals the need for corrective action and so

there are likely to be corrective actions following. However, future work plotting Figure 9 on a component by component basis with a view to

seeing how inspections of a given component correlate to that component's failure rate would be more valuable. It may also be of value to con-

sider the time-varying effect of annual services on specific components, such that operators can consider changes in how scheduled maintenance

is carried out. That being said, the approach we have used here can be easily adapted to a subcomponent taxonomy or indeed can be applied to

repairable systems other than WTs. Also, uncovering this relationship at the turbine level is also valuable, as it has previously not been formally

quantified.

Regarding the methodology itself, the alterations we propose to the traditional NHPP are novel in the context of WT reliability. Given the

growing recognition in the wind research community that more care must be taken uncertainty handling, extending the NHPP into the Bayesian

regime is a natural extension. The advantages of implicit uncertainty handling by Bayesian models are well documented and often cited.68 Inter-

preting uncertainty via Bayesian interval estimates, which are interpreted as the interval containing the true parameter with some probability, are

generally seen as more intuitive than confidence intervals, which are interpreted as the range of values containing the true parameter a certain

percentage of the time given a large sample approximation.

Inclusion of time-dependent variables is the second extension. In this case, it proved to be a useful one, as it allowed us to explore the effect

of varying failure intensity proceeding scheduled maintenance works which was posited by the operational team. There is one important caveat in

employing time-dependent variables, though. Namely, the selection of knot locations in B-splines takes care, as different assumptions might lead

to quite significantly different results. The parsimonious model selection methodology we used was relatively computationally expensive, consid-

ering the usual run time of survival models.

The final methodological point has to do with failure definition. As noted by Leahy et al,69 there is no standard definition of a failure in the

wind industry. The choice of failure definition often depends on the data available to the researcher. Here, we used downtime as a qualifier for a

failure, when that downtime coincided with a maintenance action recorded as corrective in the database. In the absence of a standard failure defi-

nition in the industry, this choice of failure definition becomes a model hyper-parameter in itself which may significantly affect the results. Of par-

ticular importance is the timing of failure onset, which is not necessarily the onset of downtime recorded here (especially for minor repairs).

However, for many operational datasets, it would be difficult to decipher any failure onset time beyond the onset of downtime.

5.2 | Future analysis based on results

We propose that there are three ways to gain further insight from the results presented. The first is by the use of a cost modelling tool, for

instance, the one developed by Dinwoodie et al.70 To begin with, a comparison of the different baseline distributional assumptions could be infor-

mative. This would build on the work of Scheu et al,5 which investigated different baseline hazard rate assumption. Two factors would provide

novelty: the fact that the results presented here are based on real world data from a currently operational wind farm and an investigation into not

only availability but the impact on levelized cost of energy (LCoE) or some other financial metric. The results of such a study would further high-

light the importance of modelling statistical uncertainty accurately.

There could also be value in a similar study where the impact of heterogeneity in turbine reliability is investigated. Given that mean values of

turbine-by-turbine frailty are approximately normally distributed, this may not have such a significant impact as if there were gamma-distributed

random effects with a long tail. For instance, it would be interesting to see whether inclusion of random effects in cost models would significantly

effect the financial outputs, especially for a large OWF.

The second avenue for further research is in optimizing the timing of scheduled maintenance campaigns and the resources dedicated to them.

Figure 10 has three stages to consider. First, there is the initial spike in failure intensity which occurs during the first few weeks after a scheduled

maintenance work. This may not inspire any drastic changes to when services are performed, as typically annual service campaigns are carried out

in summer where lost production is low and access favourable. However, if operators could quantify the additional risk in terms of corrective

maintenance, they could make a more informed decision about how many technicians and vessels they require.

The third avenue is in including more detailed data about exactly what work was carried out on the turbine. By doing so, the proposed meth-

odology would be able to uncover dependencies between the selected covariates and specific failure modes. These data were not available for

research presented in this article; however, it will be available for future works.

18 ANDERSON ET AL.
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6 | CONCLUSION

This work presents a Bayesian reliability analysis of WTs operating within a large OWF. We employ the typical Poisson process and Weibull-

distributed time-to-failure assumptions. However, we transitioned from the frequentest to the Bayesian regime, which has the primary benefit

that it allows for built-in and easily interpretable uncertainty quantification. We propose a model which incorporates time-dependent variables in

response to the operational team's reasoning that turbine failures are more frequent following annual services. This was indeed the observed

behaviour, with a higher turbine failure intensity for 6 days after annual service works take place. There is a peak failure intensity reaching 1.57

times an average 2 days after servicing. A similar though less significant effect was observed with the covariate representing time since inspec-

tion. The higher failure rate lasted for 6 days after the maintenance work was carried out, reaching a peak of 1.302 days after. We also observed

seasonality effects similar to those presented by the SPARTA initiative and a consistent year-on-year reduction of failure intensity. We propose

that this may be partly due to the wind farm employing more advanced data management and control room software in 2018. Significant turbine

frailties were observed. Plotting these by turbine row, a dependence of reliability on turbine position with respect to the prominent wind direction

is observed. We suggest three avenues for future work. The first explores the effect of different hazard rate assumptions on the outputs of some

cost modelling tool, in particular the different baseline hazard distributions and the effect of turbine-by-turbine random effects. The second uti-

lizes the time-dependent hazard ratio of the variables time since annual service and time since inspection to optimize dynamic resource allocation.

Quantifying financial risk due to scheduled maintenance works could be particularly beneficial for operations. The third involves incorporating

more detailed work procedure data, so that correlations between covariate effects and specific failure modes could be uncovered.
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