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1 Introduction

Alzheimer’s disease (AD) is a brain disconnection syndrome [5], where functional con-
nectivity can detect disconnection in pre-dementia stages [8]. Functional connectivity
networks created from functional magnetic resonance imaging (fMRI) and electroen-
cephalogram (EEG) are susceptible to signal noise from a combination of biologic arte-
facts (eg. eye movement) and environmental sources (eg. electrical interference) [6].

A particular challenge for EEG is volume conduction, whereby a signal from a sin-
gle source propagates through biological tissue to be detected simultaneously by mul-
tiple sensors (channels). The imaginary part of coherency (iCOH) provides a measure
for connectivity that avoids this signal contamination, by ignoring correlation between
signals with zero or π-phase lag [7]. This removes false instantaneous activity with
connectivity denoting synchronised signals at a given time lag, but it does come at the
cost of erasing true instantaneous activity. We propose a network assessment, eigenvec-
tor alignment (EA) [2, 4], that is robust to noise and connectivity erasure by evaluating
pairwise relationships (alignments) from the pattern of functional connectivities.

2 Methodology

EA was introduced to study fMRI connectivity networks in AD [2]. The methodol-
ogy is similar to that of cosine similarity, which is applied as a data clustering metric
for machine learning among other applications. For EA, the nodes – representing re-
gions of interest (ROI) or EEG sensors – are embedded in a Euclidean space defined
by the connectivity network’s dominant eigenvectors. Employing a selection of only
the most dominant eigenvectors ensures that the nodes are aligned according to the
network’s most prominent pathways [3]. Figure 1 demonstrates that low iCOH con-
nectivity values (eg. between sensors 88 to 96) can still achieve small alignment angles
(i.e. close alignment), as close alignment indicates similarity in the connectivity pattern.
The three sensor groupings (marked by colour) have close in-group alignments, while
between group alignment angles are large as these groups form separate clusters in the
Euclidean space (Fig. 1 C).
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Fig. 1: The (A) iCOH connectivity matrix, (B) eigenvector alignment matrix, and (C) sensor
node embedding, in an eigenvector defined Euclidean space, are presented for a 128-channel
EEG recording of a control subject. Colour denotes node groupings in (C) with the related sensor
IDs highlighted in (A) & (B), where v2 & v3 are the 2nd & 3rd eigenvectors, respectively.

3 Results

Since iCOH removes true instantaneous activity to mitigate against volume conduc-
tion, some of the lowest iCOH connectivities will map to erased true connectivities. In
Fig. 2 A the lowest iCOH connectivities are altered to demonstrate how EA results can
remain robust to even dramatic changes to a minority of connectivities, indicating that
alignments between sensors can still be reliably determined after connectivity erasure.

EA’s exposure of network structure relies on connectivity patterns rather than mag-
nitudes, therefore recording conditions that are known to significantly alter functional
connectivity – such as eyes open versus closed in resting state fMRI [1] – can still be
directly compared. EA finds similar significant changes in alignment when comparing
control and AD subjects for both eyes open and closed resting state fMRI recordings.
In particular, Fig. 3 displays that the cerebellum undergoes the same notable changes
in eyes open and closed; a reduction in decreased alignments in AD with those that re-
main primarily associated with frontal ROI, and increased alignments in AD extending
further forward in the brain to connect with the planum polare in eyes closed (Fig. 3 B)
and the planum polare, temporal pole, and Heschl’s gyrus in eyes open (D). The planum

Fig. 2: In (A) the iCOH matrix has ∼ 2% of the lowest iCOH values set equal to the maximum
recorded value for a control subject’s delta frequency (0.1− 4 Hz) 128-channel EEG recording.
In (B) the EA matrix is based on the iCOH matrix (A), while in (C) the EA matrix is based on
the original, unaltered, iCOH matrix.
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Fig. 3: Significant alignments of the cerebellum from resting state fMRI data for (A) 10 CON
subjects, eyes closed, false discovery rate (FDR) = 0.05 (B) 10 AD subjects, eyes closed,
FDR = 0.05 (C) 39 CON subjects, eyes open, FDR = 0.005 (D) 34 AD subjects, eyes open,
FDR = 0.005. The posterior left (PL), right (PR), and frontal right (FR) are marked in A to guide
orientation.

polare and Heschl’s gyrus are notable ROI in AD, as they experience some of the most
notable alignment change in resting state functional connectivity networks [2].
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