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  Abstract—AC series arc faults in the power system can lead to 
electrical fires. However, the generalization performance of the determined 
detection method would be affected under unknown loads, as current 
features vary with loads. To address this issue, this paper presents a 
series arc fault detection method based on a high-frequency (HF) RLC arc 
model and one-dimensional convolutional neural network (1DCNN). By the 
current transformer used for receiving differential HF features (D-HFCT), 
current with complex features is firstly simplified and divided into different 
oscillation-signal types. Since the types of real D-HFCT data are limited, 
the RLC arc model is used to generate D-HFCT data with various types of 
oscillation features by adjusting load types, initial phase angles and 
Bernoulli-sequence frequencies. Then, the simulated data are adopted to 
train the 1DCNN model. Finally, the trained 1DCNN model can detect series arc faults under different types of real loads. 
Compared with the 1DCNN method driven by the limited types of real-current data, the presented method shows good 
generalization ability and achieves 99.33% average detection accuracy under nine types of unknown loads, which 
benefits from the training of simulated D-HFCT data with abundant HF oscillation features. 

Index Terms—AC series arc faults, fault detection, HF oscillation features, 1DCNN, RLC-based arc model. 

I. INTRODUCTION

ERIES arc faults are a phenomenon in which electrical 

discharge occurs in series with the wires. They tend to be 

caused by loose connection and poor conductivity. The 

temperature of series arc faults can reach thousands of degrees 

Celsius, usually accompanied by molten metal [1]. The high 

temperature probably leads to serious fire and explosion if there 

are flammable and explosive materials near the fault point. 

However, the presence of the arc impedance makes the 

effective value of arcing current lower than that of normal 

current [2]. Therefore, it is difficult for conventional over- 

current protection devices to detect series arc faults [3]. 

To effectively detect series arc faults, various types of 

detection methods based on data processing and classification 

have been proposed. Among these recently published methods, 

time-domain analysis, frequency-domain analysis, time- 

and-frequency-domain analysis and artificial-intelligence 

algorithms are commonly used in the field of series arc fault 

detection. 

Since series arc faults can produce obvious distortions in 
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current, the current-based detection is the most popular. 

According to the time-domain features of current signals, some 

detection methods which adopt shoulder length, change rate, 

and signal energy are proposed in [4-6]. However, the selected 

time-domain features are only suitable for a few specific types 

of loads. Most references use additional frequency-domain 

features to detect faults in consideration of misjudgment from 

the non-linear loads. The frequency-domain transformation 

algorithms include discrete Fourier transformation and chirp 

zeta transformation. Discrete Fourier transformation is used 

most frequently because it can well reflect the frequency- 

domain features. However, the algorithm could be affected by 

the determined sampling frequency and observation window. 

In [7], [8], chirp zeta transformation is proposed to address the 

issue of poor spectral resolution in Fourier transformation for 

analyzing the frequency-domain features, and identifies series 

arc faults based on several low-frequency (LF) harmonic 

indicators. However, the LF features of arcing current are not 

obvious in practice and prone to unwanted trips or failure to 

trip. Discrete wavelet transformation is proposed in [9-12] to 

carry out hybrid analysis in the time-and-frequency domain. 

These methods improve the detection accuracy, but they cannot 

achieve the adaptation of feature thresholds.  

Series arc fault detection methods based on machine- 

learning (ML) algorithms have also been proposed in [13-18]. 

In [14], a fully connected neural network (FCNN) based on 

several time-domain and frequency-domain features is used to 

detect series arc faults. In [15], the particle swarm optimization 

(PSO) is used to improve the self-organizing feature map 

(SOM) neural network for detecting faults. Furthermore, 

support vector machine (SVM) is also used for arc fault 
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detection [16]. ML algorithms depend on the classifiers to fit 

the decision rules between input features and output labels, 

which solve the problem of threshold adaptation. However, the 

feature quantities used as the network input highly depend on 

domain expert experience and cannot satisfy the detection 

universality in diverse loads. Series arc fault detection 

algorithms based on convolutional neural network (CNN) have 

been proposed in [19-20]. These methods do not require 

researchers to manually extract the fault characteristics, and can 

learn the characteristics of arbitrary waveform with the help of 

huge parameter sets of the deep network, thereby achieving 

high-precision fault classification [21]. 

Series arc fault detection methods based on statistical 

analysis and signal processing depend on a large amount of 

experimental experience and are suitable for relatively small 

sample systems with the limited load types. In contrast, series 

arc fault detection methods based on neural network are more 

suitable for large-scale systems with diverse types of loads. 

With the help of the nonlinear fitting ability of the network, the 

detection is not limited to various indicators and fixed 

thresholds. However, the CNN-based method requires massive 

data types for training, which brings difficulty to practical 

applications. Therefore, the existing series arc fault detection 

methods still have many limitations. 

1) For existing loads: different types of loads exhibit 

different current characteristics, and the same types of loads 

may also exhibit different current characteristics. Given the 

current characteristics of various loads, it is necessary to 

configure a sufficient number of scenarios with different loads 

and select enough features for detecting the faults. However, 

the generation of massive real data for training the fault 

detection algorithms is time-consuming and impractical. 

2) For new/unknown loads: series arc fault detection 

methods are based on the learning of existing loads, neglecting 

the new features in unknown loads that may be connected to the 

system. New/unknown load types present challenges to the 

generalization ability of the detection methods. It is vital to find 

out the common characteristics of various loads for improving 

the detection effectiveness under unknown loads. 

To cope with the aforementioned limitations, this paper 

presents a detection method using a novel high-frequency (HF)  

RLC arc model to drive one-dimensional convolutional neural 

network (1DCNN). This idea originates from the current 

transformer used for acquiring differential HF characteristics 

(D-HFCT) [22-23]. It is found that the D-HFCT can extract the 

common features: arcing data acquired by the D-HFCT have 

different types of oscillation features. Different from the 

traditional features such as shoulder, the common features are 

not affected by different load types. According to the common 

features, the RLC-based arc model is developed to generate 

different types of oscillation signals in consideration of 

different load types. Then, the 1DCNN is selected as the arc 

fault detection algorithm, which is trained by massive 

simulated data. Only one-dimensional time series is used 

without special processing, and end-to-end arc fault diagnosis 

is directly realized from data to state results. The experimental 

results show that the 1DCNN trained by the simulated data can 

correctly detect series arc faults in practical application. The 

main works are listed as follows: 

1) An improved arc model based on R, L and C is presented 

to simulate the HF components of arc current. 

2) Current with complicated features under different load 

types is simplified and divided into different types of oscillation 

signals by the D-HFCT. Since the number of real-data types is 

limited, the arc model is used for generating different types of 

oscillation signals to obtain as many samples as possible under 

various loads. 

3) Instead of the limited types of real data, massive and 

abundant simulated data are used to drive the 1DCNN. 

Compared with the 1DCNN driven by the limited types of real 

data, the presented method has good generalization ability 

under new loads. Furthermore, few references adopt 

model-driven methods to detect series arc faults in practice. 

The detection results in this paper indicate that the 

model-driven methods are also feasible in the field of series arc 

fault detection. 

This paper is organized as follows: Section II shows the HF 

characteristics of series arc fault current and analyzes their 

generation process. Furthermore, a new impedance arc model is 

proposed. Section III presents the implementation of the arc 

model and its verification in SIMULINK. Section IV 

introduces a detection algorithm based on the 1DCNN and the 

simulated data. In Section V, the experimental cases are used 

for verifying the effectiveness of the proposed detection 

algorithm. Section VI concludes this paper. 

II. ARC THEORY AND MODEL 

A. High-Frequency Characteristics of Arc Current 
As shown in Fig. 1, the D-HFCT is used to collect the HF arc 

signals and proposed for series arc fault detection. Since the 

two wires (i.e. the L and N wires) carrying currents in opposite 

directions weaken the magnetic flux in the magnetic core, the 

equivalent magnetic flux density in the magnetic core is 

significantly lower than the saturation magnetic flux density, 

thus largely mitigating the risk of LF saturation. Furthermore, 

the gain for HF signals is greater than that for LF signals by the 

D-HFCT. The arc generator based on the cylindrical copper 

electrode and the conical carbon electrode is customized 

according to the standard IEC 62606-2017 [24], and the 

moving electrode generates an air gap to initiate the arc. The 

load connector is used to connect different loads. The 

oscilloscope is used to observe the output voltage waveforms. 

The line current is acquired by a 1 Ω resistor and compared with 

the D-HFCT output to show that the D-HFCT signals are more 

appropriate for series arc fault detection than current signals. 

The reason is given in the next paragraph. 

 

 
Fig. 1.  Schematic diagram of series arc fault experiment. 
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(a) Incandescent lamp 

 
(b) Vacuum cleaner 

 
(c) Fluorescent lamp 

Fig. 2.  Current signals and D-HFCT signals under normal and arc 
states. 
 

An incandescent lamp, a vacuum cleaner and a fluorescent 

lamp are alternately connected to the circuit. The results are 

shown in Fig. 2. Since the three loads are different, the first 

waveforms in Fig. 2(a), Fig. 2(b) and Fig. 2(c), respectively, 

exhibit different characteristics during the arc state, which 

make arc fault detection difficult. When more new load types 

are connected to the circuit, there may be new current features, 

leading to classification failure of the determined detection 

method. However, with the use of the D-HFCT, its arcing 

output consistently exhibits different-amplitude HF pulses 

because the LF features are filtered out. Under the normal state, 

the output under various loads is uniformly close to zero. Since 

Gaussian white noise with very small amplitude is unavoidable 

in the output, the output is not absolutely zero. Therefore, it can 

be seen that the HF components of arc current are the common 

features of arc faults. 

B. Fundamental Mechanism of HF Arc Current 
The air between two separate conductors tends to be 

insulated. However, when the potential difference between the 

conductors is above a certain level, the insulated air would be 

broken down. Then, there would be a high-temperature and 

conductive object in the air gap, which is often regarded as a 

series arc fault. 

During the breakdown process, the thermal emission and the 

field emission make many free electrons on the cathode surface 

enter the gap to generate an arc. The two emissions are 

generated in different ways. The thermal emission is induced 

by high temperature when the increased current density at the 

contact point leads to high temperature. Meanwhile, the 

distance between the two conductors is very small, which 

makes the corresponding electric field strength high. Therefore, 

the field emission is induced by the high electric field strength. 

The high electric field strength between the surface 

protrusion and the arc column tends to induce the formation of 

the new filed-emission points [25], [26]. However, the heat 

produced by the arc could vaporize the protrusion, which 

makes the filed-emission points vanish. The points vanish and 

regenerate repeatedly, which can constantly provide a large 

number of electrons to maintain the presence of the arc. The 

position change between the old points and the new points leads 

to the movement of the arc root. The continuously moving arc 

root offers the continuous electron flow to the arc column, 

which generates the power-frequency (PF) component in the 

arcing current. The formation and disappearance of the points 

provide the arc column with intermittent electronic pulses and 

generate the HF current component. 

C. RLC-Based Arc Model 
There are very few references that have reported models to 

simulate the HF arc current. In this paper, an RLC-based arc 

model has been established. The equivalent circuit diagram is 

shown in Fig. 3. The impedance arc model is composed of the 

arc resistance Ra, the arc inductance La and the inter-electrode 

capacitance Ca. During the stable status, the arc is equivalent to 

a series connection of the low resistance (Ra(low)) and the arc 

inductance (La). During the arc extinction and regeneration, the 

arc resistance is equivalent to the high resistance (Ra(high)). The 

ideal switches K-K3 are used to disconnect or connect the main 

circuit with the arc branches. us represents the alternating 

voltage of the power supply. R1, L1 and C1 represent the 

equivalent parameters of the power-side line. R2, L2 and C2 

represent the equivalent parameters of the load-side line, and ZL 

represents the load impedance. The resistance-inductance 

branch is the LF path of the arc current, and the capacitance 

branch is the HF path of the arc current. 

In the normal operation, K is in the closed state, and K1-K3 

are in the open state. At this time, the current is mainly 

determined by the load impedance. When an arc fault occurs, K 

is always in the disconnected state, and the arc starts to be 

extinguished and reignited periodically: 1) as shown in Fig. 

4(a) and Fig. 4(b), the HF path quickly opens and closes, 

making the arc current contain HF pulses; 2) as shown in Fig. 

4(c), when the arc is extinguished, the arc resistance is very 

large, and the arc inductance is negligible, which is equivalent 

to disconnecting K2 and closing K1; 3) as shown in Fig. 4(d), 

when the arc is stable, the arc resistance becomes low, which is 

equivalent to opening K1 and closing K2. The opening and 

closing of the HF path are random, while the change of the LF 

path depends on the combustion state of the arc. 

The process of the HF path can be regarded as the zero-input 

response of the second-order circuit, as shown in Fig. 5(a). The 

operation circuit after the Laplace transform is shown in Fig. 

5(b). Assuming that the instantaneous voltage on the power 

side is U1, and the instantaneous voltage on the load side is U2. 

When the voltage difference is large enough to cause the 

field-induced breakdown of the HF current emission point, C1 

and C2 will exchange energy and produce a rapid oscillation 

process of arc current. 

AC series arc fault detection based on RLC arc model and convolutional neural network 
 

Sampling 
resistor 
outpul 

0-HFCT 
output 

Sampling 
resistor 
output 

D-HFCT 
output 

Sampling 
resistor 
output 

D-HFCT 
ou1pu1 

J:~ > 0.40 0.02 0.04 0.06 0.08 T 0.12 0.14 0.16 0.18 0.2 J_j , , , , 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Timc(s) 

20 Nom1al : Arc 

' Q I 

l -20 ~ 
0.40 0.02 0.04 0.06 0.08 T 0.12 0.14 0. 16 0.1 8 0.2 

l.a:i : : : : I :~I 1'1:,IM I•: I, j1 :~ ' 11 I 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Timc(s) 

r~ 
l-10~=--~-~-~~-~----<--~-~--~-~-~ i o.:o 0.02 0.04 0.06 0.08 0'1 0. 12 0.14 0.16 0.18 0.2 

0. 
~-0.4 --~----~-~--~ -~~-~-~--~~~ 

0 0.02 0.04 0.06 0.08 0.1 0. 12 0.14 0.16 0.1 8 0.2 
Timc(s) 



6  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

 
Fig. 3.  Proposed RLC-based arc model. 

 
(a) Open HF path                           (b) Closed HF path 

 
(c) LF path in the extinguishing phase (d) LF path in the arcing phase 
Fig. 4.  Equivalent circuits at different stages. 

     
(a) Zero-input response circuit             (b) Operation circuit 

Fig. 5.  Analysis of HF-path process. 
 

The equation is listed as follows by the loop current method: 

1 2
2 2
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Then, the frequency-domain solution I(s) can be derived as: 
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where C = (C1Ca+ C2Ca + C1C2)/C1C2Ca. In fact, the pulse of 

HF arc current exhibits attenuated oscillation, and the circuit is 

in an under-damped state, so the time domain solution of the 

current can be obtained: 
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where ω is the angular frequency, and α is the damped 
coefficient of damped oscillation. The HF characteristics of arc 
current are related to arc voltage, arc parameters, and line 
parameters. They mainly depend on the HF charging and 
discharging process of ground capacitance through arc 
capacitance and line impedance. 

III. SIMULATION VERIFICATION OF ARC MODEL 
To verify the effectiveness of the proposed arc model, the 

detailed simulation is shown in Fig. 6 and Fig. 7. Fig. 6 divides 

the circuit into the LF and HF paths, which are used to generate 

LF and HF components, respectively. The arc controller of Fig. 

6 is related to Fig. 7(a) and determines whether the components 

are normal or arcing. In the normal state, K is closed, and K4 is 

disconnected. The LF path is short-circuited, and the HF path is 

disconnected. When a fault occurs, K is disconnected. Then, K4 

is closed, and both the LF path and the HF path begin to work. 

For the LF path, whether Ra is high or low depends on the 

arcing state, which is shown in Fig. 7(c). For the HF path, the 

corresponding switch K3 is randomly switched on and off at a 

high speed. In the simulation, by setting the signal generation 

probability of the binary sequence generator, the opening and 

closing of K3 are random, as shown in Fig. 7(b). In order to 

improve the simulation effect, Gaussian white noise is added to 

the simulated signal. Finally, the HF, LF and white-noise 

components can be put together to represent the line current i. 

Resistive loads with working current of 1 A, 2 A and 5 A, 

respectively, are used to verify the effectiveness of the arc 

model. For comparison, the simulated output current has been 

converted to the voltage by the sensor. The simulated and actual 

results are shown in Fig. 8. In the normal state, the HF signals 

are close to zero. In the arc state, a large number of HF spikes 

appear in the signals. As the load resistance decreases, the HF 

components of the arc will slightly decrease. The simulated 

waveform of Fig. 8(b) retains the fault characteristics of the 

actual load waveform of Fig. 8(a). This can prove the validity of 

the arc model. It is possible to generate enough HF arc current 

data for training the neural network by traversing the initial 

phase angle of the AC power source, the frequency of the 

Bernoulli random sequence and the load type. 

IV. DEEP LEARNING DETECTION ALGORITHM 
CNN is composed of multiple network layers connected in 

series. The standard CNN [27] usually consists of an input 

layer, multiple convolutional-and-pooling layers, one or two 

fully connected layers and an output layer. The structure of the 

1DCNN model proposed in this paper is shown in Fig. 9. The 

input layer is used to receive a 1D array composed of raw 

D-HFCT signals. The output layer is used to output the final 

results. Hidden layers consist of convolutional layers, pooling 

layers and fully connected layers, and are used for feature 

recognition. The hidden layers represent a complex nonlinear 

mapping from the input layer to the output layer, and fit the 

decision rule between the input data and the output data. 

 
Fig. 6.  Simulated-circuit diagram of impedance arc model. 

 
(a) Arc controller                        (b) State controller 1 

 
(c) State controller 2 

Fig. 7.  Arc control module. 
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(a) Experimental results 

 
(b) Simulated results 

Fig. 8.  HF features of experimental results and simulated ones. 
 

 
Fig. 9.  Structure of the proposed 1DCNN. 
 

The convolutional layers extract the features of the sequence 

through different convolutional kernels (filters) acting on the 

original sequence, and different convolutional kernels extract 

different features. Each convolutional layer has several 

convolution kernels, and the specific parameters of these 

convolutional kernels are adaptively learned by the training 

process. The convolution-calculation output can be obtained as: 

( * )Y f X w b= +                                   (4) 

where X and Y are the input column vector and the output 

matrix of the first convolutional layer, respectively. The input 

data are normalized before being input into the first 

convolutional layer. The magnitude of all the data is scaled to 

[-1, 1], which can speed up the network convergence and avoid 

the problem of gradient disappearance or explosion caused by 

excessive numerical differences. w and b represent the weight 

vector and the offset vector, respectively. * represents the 

discrete convolution operation. f is the nonlinear activation 

function, which realizes the nonlinear mapping from input to 

output. The rectified linear unit (ReLU) [28] with faster 

convergence speed is selected, and its formula is: 

( )max 0,f x=                                   (5) 

The pooling layers do not contain trainable parameters, but 

they calculate the average or maximum value of the data 

segment according to the specified step size. Max pooling is the 

most common. It is equivalent to distilling the input data and 

simplifying the information from the convolutional layers 

while ensuring the same signal characteristics. After passing 

through the pooling layer, the processed data should be input 

into several fully connected layers for classification. However, 

there are a so large number of parameters in the fully connected 

layers that the model becomes very large. The number of model 

parameters can be greatly reduced by using the global average 

pooling layers instead of the fully connected layers. 

The fully connected layers follow two steps. Firstly, the 1D 

column vector output from the global average pooling layers is 

mapped to two numerical values, representing the original 

output of the fully connected layers. This mapping relies on the 

weight and bias between the input neuron group and each 

output, and the operation is as follows: 

0 0 0

1 1 1

T

T

y w x b
y w x b

 = +


= +
                                  (6) 

where y0 and y1 are the original output of the fully connected 

layers. x is the input column vector of the input neurons. w0
T 

and w1
T are the weight matrices between the input neurons and 

the two output neurons. b0 and b1 represent the offset of the two 

output neurons, respectively. Secondly, the Sigmoid function is 

selected as the activation function, and the two numerical 

values are mapped between 0 and 1. The calculation formula of 

classification probability is: 

0 0 1

01 1

0

1

/ ( )
/ ( )

y y y

yy y

P e e e
P e e e

 = +


= +
                              (7) 

The two mapping values P0 and P1 represent the probability 

of the normal state (label 0) and the arc state (label 1), 

respectively, and the relatively large probability value is taken 

as the final classification result. 

V. EXPERIMENTAL VERIFICATION 

A. Series Arc Fault Experimental Setup 
In this work, a detection scheme that combines the simulated 

data and the 1DCNN has been established and used to detect 

series arc faults under real loads. The experimental setup is 

shown in Fig. 10. The deep learning model is developed using 

Python & Pycharm on a laptop equipped with an AMD Ryzen 

4800H CPU and a 16 GB RAM. The training and the validation 

of the 1DCNN model depend on the data generated by the arc 

model. The real signals collected by the D-HFCT are used to 

further evaluate the generalization ability of the trained 

1DCNN. In the normal state, the simulated data containing 

small amplitude Gaussian white noise construct normal 

samples by slicing every two cycles. The length of each sample 

is 0.04 s, and the number of sampling points is 16000. The 

simulated data in the arc state follow the same steps. Before 

training the 1DCNN, the samples must be labeled as 0 in the 

normal state and 1 in the arc state. The original set containing 

5000 samples is constructed, and these samples are evened out 

between the two states. 4000 samples are randomly selected as 

the training set, and the remaining 1000 samples are used as the 

validation set. 

AC series arc fault detection based on RLC arc model and convolutional neural network 
 

Take the local 

Two Convolutional-Local 
Max Pooling Layer 

0. 1 0.1 2 0.14 0. 16 0.18 0.2 

:, ~- ,111 : 11 -jj: 11 I 11~1 : ,1-f ~~-i I I 
0. 1 0.12 0.14 0. 16 0.18 0.2 

:11 - ~ :11 I •f: !•~ 11••1: 'j'•1
, I 

0. 1 0.1 2 0.14 0. 16 0. 18 0.2 
Timc(s) 

~,-1, !· 111 I~ ,11 ••• 

0.1 0.12 0.14 0.16 0.18 0.2 : ~I~ : t~•: 1~~1: 1,,,. : r,-11 1 
0.1 0.12 0.14 0.1 6 0.18 0.2 

~· II :,, ~, .'' •I :1 :II ,,, I 
0.1 0.12 0.14 0.1 6 0.1 8 0.2 

Timc(s) 

Take the global 
average 

§ 

onnal 

l!I Arc 

Global Average Fully Connecled 
Pooling Layer -Output Layer 



6  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

 
Fig. 10.  Experimental setup. 

B. Network Structure of 1DCNN Model 
The network structure of the 1DCNN model established in 

this paper is shown in Table Ⅰ. The “Reshape” layer normalizes 

the original data and performs row-column conversion to dock 

with the convolutional layers. The convolution operation is 

used to extract features, and the number of convolution layers 

and filters is decreased as much as possible to reduce 

computation cost and parameter number. Additionally, the 

“Max Pooling” layers with relatively large size and stride are 

used, and the Global Average Pooling replaces the fully 

connected layers (Dense) to further reduce computation cost 

and parameter number. The related hyper-parameters are 

determined through experiments. 

At each training epoch, the training set trains the network in 

batches to adjust the network parameters. At the end of each 

epoch, the network performance is tested with the validation 

set. The changes of loss and accuracy in the training and the 

validation, respectively, are shown in Fig. 11. The maximum 

training epoch is set as 100. When running to the 10th epoch, the 

network has shown less loss and higher accuracy, which are a 

good result. The network parameter configuration is saved by 

using the callback function when the validation loss is minimal. 

 
TABLE I 

NETWORK STRUCTURE OF 1DCNN MODEL 

Layer Hyper-parameter Output 

Reshape - (16000,1) 
Conv 1 5/50/2(num/size/stride) (7976,5) 

Max Pooling 1 50/50(size/stride) (159,5) 
Conv 2 10/25/2(num/size/stride) (80,10) 

Max Pooling 2 25/25(size/stride) (3,10) 
Global Average Pooling - 10 

Dense - 2 

 

 
(a) Loss indicator                       (b) Accuracy indicator 

Fig. 11.  Iteration process of training and validation. 

C. Actual Detection Case 
The real samples are put into the trained 1DCNN, including a 

normal sample and an arcing sample. The output of different 

network layers is visualized to show the detection process, 

which is shown in Fig. 12, Fig. 13, Table Ⅱ, and Table Ⅲ. As 

can be seen from Fig. 12(c) and Fig. 13(c), the output of the 

Conv 1-layer contains almost all the information of the original 

waveform, and its input is the normalized waveform of Fig. 

12(a) and Fig. 12(b). Due to the ReLU function, the output only 

displays the waveform whose values are larger than zero. After 

the pooling layer, the signal becomes sparse, but the overall 

trend of the waveform is still maintained. Due to the lack of 

spikes in Fig. 12(d), the waveforms filtered by Conv 2-3, Conv 

2-6, Conv 2-9 and Conv 2-10 are almost zero, as shown in the 

3rd, 6th, 9th and 10th waveforms of Fig. 12(e), respectively. On 

the contrary, there are many spikes in Fig. 13(d). The 

waveforms filtered by Conv 2-3, Conv 2-6, Conv 2-9 and Conv 

2-10 also contain spikes, as shown in Fig. 13(e). Therefore, the 

difference between the normal sample and the arcing sample 

becomes obvious after the Conv 2-layer, and the waveforms 

filtered by the four convolutional filters are the most noticeable. 

Subsequent layer output is given in Table Ⅱ and Table Ⅲ. 

After the Max Pooling (M-P 2) layer and the Global Average 

Pooling (G-A-P) layer, the data dimension becomes 1D, and the 

waveform becomes a column vector with a length of 10. The 

table gives the weight and the bias of the Dense layer. 

According to the equation (6), two values can be obtained, 

which are the original output of the Dense layer. Then, the 

values are converted into two probabilities according to the 

equation (7). As can be seen from Table Ⅱ, the probability that 

the normal sample is classified into the normal state (label 0) is 

1, and the probability of being classified into the arc state (label 

1) is 0. On the contrary, as can be seen from Table Ⅲ, the 

probability that the arcing sample is classified into the arc state 

(label 1) is 1, and the probability of being classified into the 

normal state (label 0) is 0. Therefore, the 1DCNN trained by the 

simulated data can identify normal and arcing signals 

accurately. 

 
(a) Normal original input waveform (b) Reshape-layer waveform 

 
(c) Conv 1-layer output waveform 

 
(d) Max Pooling 1-layer output waveform 

 
(e) Conv 2-layer output waveform 

Fig. 12.  Network visualization of a normal sample. 
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(a) Arcing original input waveform (b) Reshape-layer waveform 

 
(c) Conv 1-layer output waveform 

 
(d) Max Pooling 1-layer output waveform 

 
(e) Conv 2-layer output waveform 

Fig. 13.  Network visualization of a fault sample. 

D. Arc Fault Detection Strategy 
The detection process is shown in Fig. 14. The actual data 

with a length of 1 s are cut into 25 data segments (samples) by a 

two-cycle (0.04 s) step, and the number of data segments 

classified into the arc state is counted. There are 9 types of 

common household loads used to generate the test data. In 

Table Ⅳ, these loads are unknown for the trained 1DCNN 

because only the oscillation signals generated by the arc model 

are used to train the 1DCNN. The proposed detection algorithm 

achieves 100% accuracy in some resistive and nonlinear loads, 

and more than 96% accuracy in inductive loads. This is mainly 

because the carbon brushes and commutators of the motor in 

inductive loads generate commutation sparks, leading to some 

misjudged samples. However, thanks to the continuous 

detection strategy, the misjudged samples would not lead to the 

final misjudgment. The continuous detection means that series 

arc faults will be recognized as long as there are at least Nthre 

arcing data segments among 25 data segments. Only when the 

number of data segments classified into the arc state is 7 or 

more (N≥7), it is considered as a real arc fault. When Nthre is 

smaller than 7, the misjudgment would occur sometimes 

because of the misjudged samples. Therefore, Nthre is selected 

as 7. Furthermore, it can also avoid the misjudgment from the 

starting process of loads. 

 
Fig. 14.  Flow chart of series arc fault detection. 

TABLE Ⅱ 
PARTIAL LAYER OUTPUT (REAL NORMAL SAMPLE)  

M-P 2 G-A-P Dense Dense P0/P1 output Output Wight Bias output 
12.502517 
12.581809 
12.150744 

12.41169 0.586779 
-0.703849 

-0.24451 
0.190474 

30.63986 
-32.7399 

1 
0 

0     0     0 0 0.286219 
-0.197791 

0     0     0 0 -0.670362 
1.04945 

12.874266 
12.639414 
12.181286 

12.564988 0.571263 
-0.63562 

10.703744 
11.106236 
10.730649 

10.846877 0.793833 
-0.79623 

0     0     0 0 -0.90857 
0.802369 

0     0     0 0 0.292806 
-0.525038 

12.337868 
12.594505 
12.009651 

12.314008 0.634475 
-0.614848 

0     0     0 0 -0.84312 
0.954623 

0     0     0 0 -0.806546 
0.696096 

 
TABLE Ⅲ 

PARTIAL LAYER OUTPUT (REAL FAULT SAMPLE)  
M-P 2 G-A-P Dense Dense P0/P1 output Output Wight Bias output 

2.3714936 
2.2549934 
1.9275188 

2.1846685 0.586779 
-0.703849 

-0.24451 
0.190474 

-9.97264 
10.43709 

0 
1 

0     0     0 0 0.286219 
-0.197791 

4.061629 
4.3071294 
3.7570655 

4.041941 -0.670362 
1.04945 

2.5691764 
2.2164252 
1.9750535 

2.2535517 0.571263 
-0.63562 

2.3297687 
2.24926 

1.8570101 
2.1453464 0.793833 

-0.79623 

4.91534 
5.0860634 
5.348719 

5.1167073 -0.90857 
0.802369 

0     0     0 0 0.292806 
-0.525038 

2.4929726 
2.3851748 
1.9757875 

2.2846448 0.634475 
-0.614848 

4.6217356 
4.8606567 
3.719809 

4.400734 -0.84312 
0.954623 

5.287821 
4.9507236 
6.0576763 

5.4320736 -0.806546 
0.696096 

 

To further show the main contributions of the presented 

detection method, Table Ⅴ lists advantages and disadvantages 

between the presented method and the published methods. 

Reference [4] mainly uses the signal energy to detect faults. 

The indicator is simple and easy to be implemented. However, 

the threshold changes in some nonlinear loads. The design of 

features and thresholds should be reconsidered. 
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TABLE Ⅳ 
ARC FAULT DETECTION RESULT UNDER ACTUAL NEW LOAD  

Load Normal Arc Average Accuracy Size/Result Size/Result 
Incandescent lamp 100/100 100/100 100% 

Electric kettle 100/100 100/100 100% 
Electric heater 100/100 100/100 100% 
Electric drill 100/92 100/108 96% 

Electric hammer 100/97 100/103 98.5% 
Vacuum cleaner 100/99 100/101 99.5% 
Computer screen 100/100 100/100 100% 
Fluorescent lamp 100/100 100/100 100% 
Microwave oven 100/100 100/100 100% 

 
TABLE Ⅴ 

COMPARISON WITH EXISTING SERIES ARC FAULT DETECTION METHOD   

Reference Detection method Contribution Disadvantage 

[4] 

Singular value 
decomposition and 

reconstruction + signal 
energy 

⚫ Simple feature 
⚫ High detection 

accuracy 

Threshold 
change in 

nonlinear loads 

[16] 

Support vector machine 
based on time-domain 

difference energy, etc. + 
FFT-based harmonic 

analysis (PCA processing) 

⚫ Low-dimensional   
1     feature vector 
⚫ High detection 

accuracy 

Only suitable 
for a few load 

types 

[20] 
Raw current signal-based 

convolutional neural 
network  

⚫ Without additional 
      signal processing 
⚫ High detection 

accuracy 

Not suitable 
for new load 

types 

[29] 

Machine-learning methods 
based on many 

Time-domain and 
frequency-domain features  

⚫ Arc fault detection   
1      + load type             
1     classification 
 

Fair detection 
accuracy 

Presented 
method 

Simulated HF arc 
model-based 

convolutional neural 
network 

⚫ Without additional 
      signal processing 
⚫ High detection 

accuracy 
⚫ Suitable for new      
1       load types 
⚫ Convenient train-   
ing by new arc model     
/real data not required 

- 

 
Reference [16] and [29] combine the time-domain features 

with the frequency-domain features to detect faults. They are 
suitable for a few load types, and the detection accuracy would 
decrease with the increase of load types. Reference [20] adopts 
raw current signal-based CNN to detect faults and achieves 
high detection accuracy when the training set is sufficient, but 
the detection accuracy would drop under new load types. The 
presented method has good detection accuracy under many new 
loads because it is driven by abundant types of oscillation 
signals and takes account of as many signal types as possible. 
There are also other methods for generating the simulated data, 
such as physics-based models and data augmentation. However, 
the physics-based models tend to be time-consuming, while the 
data augmentation cannot take into account different 
combinations of circuit parameters. Furthermore, the quality of 
data generated by the data augmentation depends on the quality 
and diversity of the original data. Therefore, it is recommended 
to use the equivalent circuit models. However, high-frequency 
current features cannot be recovered by the traditional arc 
models, such as Mayr model, Cassie model and so on. Given 

the limitations of these arc models, an improved arc model 
based on RLC is presented to more accurately generate data. 

In terms of computation cost and parameters, the complexity 
of the standard 1DCNN is N1k1c0c1+ … +Ntktct-1ct+Ntctm1+ 
ms-1ms+2ms for binary classification, where Nt, kt and ct are the 
feature-map size, the filter size and the filter number, 
respectively, in the t-th convolutional layer, and ms is the 
neuron number of the s-th layer in neural network. To reduce 
the complexity, the Global Average Pooling is used instead of 
the neural network in Section Ⅴ, and the overall complexity is 
expressed as N1k1c0c1+…+Ntktct-1ct+Ntct+2ct. In Section Ⅴ, the 
layer number, the filter number and the feature-map size are 
also decreased to reduce the complexity without compromising 
the detection accuracy.  

VI. CONCLUSION 
To improve the detection accuracy under unknown load 

types, this paper has presented a 1DCNN method driven by an 

improved arc model. The D-HFCT used in this paper proves 

that the HF oscillation features are common in arcing current, 

and the signals acquired by the D-HFCT can be divided into 

different oscillation types. To simulate the HF arcing features, 

the improved arc model is composed of the arc resistance, the 

arc inductance and the arc capacitance. Since the types of real 

data are limited, the improved arc model is used to generate 

various types of oscillation signals by adjusting the initial phase 

angle, the Bernoulli-sequence frequency and the load 

resistance. Then, the simulated data are used to drive the 

1DCNN, and the trained 1DCNN is tested under various real 

loads. Finally, the presented method achieves high detection 

accuracy under 9 types of commonly used appliances, whose 

data are not used to train the 1DCNN. Compared with the 

published methods, the presented method is more suitable to 

detect series arc faults under unknown loads. Based on series 

arc fault detection, the future work will be focused on fault 

location to isolate fault inception points correctly. 
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